Basic
📁 Source: Mathlib/CategoryTheory/SmallObject/Iteration/Basic.lean
Statistics
CategoryTheory.SmallObject
Definitions
| Name | Category | Theorems |
|---|---|---|
SuccStruct 📖 | CompData | — |
coconeOfLE 📖 | CompOp | |
restrictionLE 📖 | CompOp | |
restrictionLT 📖 | CompOp |
Theorems
CategoryTheory.SmallObject.SuccStruct
Definitions
| Name | Category | Theorems |
|---|---|---|
Iteration 📖 | CompData | |
X₀ 📖 | CompOp | |
arrowMap 📖 | CompOp | |
arrowSucc 📖 | CompOp | |
arrowι 📖 | CompOp | |
ofNatTrans 📖 | CompOp | |
prop 📖 | CompOp | 11 mathmath:prop_iff, CategoryTheory.SmallObject.succStruct_prop_le_propArrow, transfiniteCompositionOfShapeιIteration_isoBot, transfiniteCompositionOfShapeιIteration_incl, prop_iterationFunctor_map_succ, transfiniteCompositionOfShapeιIteration_F, prop_toSucc, CategoryTheory.SmallObject.transfiniteCompositionOfShapeSuccStructPropιIteration_F, CategoryTheory.SmallObject.prop_iterationFunctor_map_succ, Iteration.prop_map_succ, transfiniteCompositionOfShapeιIteration_isColimit |
succ 📖 | CompOp | |
toSucc 📖 | CompOp | |
toSuccArrow 📖 | CompOp |
Theorems
CategoryTheory.SmallObject.SuccStruct.Iteration
Definitions
| Name | Category | Theorems |
|---|---|---|
F 📖 | CompOp | 20 mathmath:CategoryTheory.SmallObject.SuccStruct.arrowMk_iterationFunctor_map, mkOfLimit.inductiveSystem_obj, obj_bot, congr_obj, obj_succ, mapObj_trans_assoc, arrowSucc_eq, mapObj_refl, congr_arrowMap, mkOfLimit.arrowMap_functor, obj_limit, arrowMap_limit, congr_map, trunc_F, mkOfLimit.functor_obj, ext_iff, CategoryTheory.SmallObject.SuccStruct.iterationFunctor_obj, prop_map_succ, mapObj_trans, arrow_mk_mapObj |
isColimit 📖 | CompOp | — |
mapObj 📖 | CompOp | |
trunc 📖 | CompOp |
Theorems
CategoryTheory.SmallObject.SuccStruct.Iteration.subsingleton
Definitions
| Name | Category | Theorems |
|---|---|---|
MapEq 📖 | MathDef |
Theorems
CategoryTheory.SmallObject.SuccStruct.Iteration.subsingleton.MapEq
Theorems
CategoryTheory.SmallObject.SuccStruct.prop
Definitions
| Name | Category | Theorems |
|---|---|---|
arrowIso 📖 | CompOp |
Theorems
---