Documentation Verification Report

Basic

📁 Source: Mathlib/CategoryTheory/SmallObject/Iteration/Basic.lean

Statistics

MetricCount
DefinitionsSuccStruct, Iteration, F, isColimit, mapObj, MapEq, trunc, X₀, arrowMap, arrowSucc, arrowι, ofNatTrans, prop, arrowIso, succ, toSucc, toSuccArrow, coconeOfLE, restrictionLE, restrictionLT
20
TheoremsarrowMap_limit, arrowSucc_eq, arrow_mk_mapObj, congr_arrowMap, congr_map, congr_obj, ext, ext_iff, mapObj_refl, mapObj_trans, mapObj_trans_assoc, obj_bot, obj_limit, obj_succ, prop_map_succ, subsingleton, src, tgt, w, ext, mapEq_refl, mapEq_trans, trunc_F, arrowMap_refl, arrowMap_restrictionLE, arrowSucc_def, arrowι_def, ofNatTrans_X₀, ofNatTrans_succ, ofNatTrans_toSucc, arrowIso_hom_left, arrowIso_hom_right, arrowIso_inv_left, arrowIso_inv_right, fac, fac_assoc, succ_eq, prop_iff, prop_toSucc, toSuccArrow_hom, toSuccArrow_left, toSuccArrow_right, coconeOfLE_pt, coconeOfLE_ι_app, restrictionLE_map, restrictionLE_obj, restrictionLT_map, restrictionLT_obj
48
Total68

CategoryTheory.SmallObject

Definitions

NameCategoryTheorems
SuccStruct 📖CompData
coconeOfLE 📖CompOp
2 mathmath: coconeOfLE_pt, coconeOfLE_ι_app
restrictionLE 📖CompOp
6 mathmath: SuccStruct.extendToSuccRestrictionLEIso_hom_app, restrictionLE_map, SuccStruct.extendToSuccRestrictionLEIso_inv_app, SuccStruct.arrowMap_restrictionLE, SuccStruct.Iteration.trunc_F, restrictionLE_obj
restrictionLT 📖CompOp
8 mathmath: SuccStruct.restrictionLTOfCoconeIso_inv_app, coconeOfLE_pt, SuccStruct.restrictionLTOfCoconeIso_hom_app, SuccStruct.Iteration.obj_limit, SuccStruct.Iteration.arrowMap_limit, restrictionLT_obj, restrictionLT_map, coconeOfLE_ι_app

Theorems

NameKindAssumesProvesValidatesDepends On
coconeOfLE_pt 📖mathematicalPreorder.toLE
PartialOrder.toPreorder
CategoryTheory.Limits.Cocone.pt
Set.Elem
Set.Iio
Preorder.smallCategory
Subtype.preorder
Set
Set.instMembership
restrictionLT
coconeOfLE
CategoryTheory.Functor.obj
Set.Iic
Subtype.partialOrder
coconeOfLE_ι_app 📖mathematicalPreorder.toLE
PartialOrder.toPreorder
CategoryTheory.NatTrans.app
Set.Elem
Set.Iio
Preorder.smallCategory
Subtype.partialOrder
Set
Set.instMembership
CategoryTheory.Functor.comp
Set.Iic
Monotone.functor
DFunLike.coe
RelEmbedding
Preorder.toLT
RelEmbedding.instFunLike
PrincipalSeg.toRelEmbedding
Set.principalSegIioIicOfLE
PrincipalSeg.monotone
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
PrincipalSeg.top
CategoryTheory.Limits.Cocone.ι
Subtype.preorder
restrictionLT
coconeOfLE
CategoryTheory.Functor.map
LE.le.trans
LT.lt.le
CategoryTheory.homOfLE
PrincipalSeg.monotone
restrictionLE_map 📖mathematicalPreorder.toLE
PartialOrder.toPreorder
CategoryTheory.Functor.map
Set.Elem
Set.Iic
Preorder.smallCategory
Subtype.preorder
Set
Set.instMembership
restrictionLE
CategoryTheory.Functor.obj
Subtype.partialOrder
Monotone.functor
DFunLike.coe
InitialSeg
Preorder.toLT
InitialSeg.instFunLike
Set.initialSegIicIicOfLE
CategoryTheory.homOfLE
restrictionLE_obj 📖mathematicalPreorder.toLE
PartialOrder.toPreorder
CategoryTheory.Functor.obj
Set.Elem
Set.Iic
Preorder.smallCategory
Subtype.preorder
Set
Set.instMembership
restrictionLE
LE.le.trans
restrictionLT_map 📖mathematicalPreorder.toLE
PartialOrder.toPreorder
CategoryTheory.Functor.map
Set.Elem
Set.Iio
Preorder.smallCategory
Subtype.preorder
Set
Set.instMembership
restrictionLT
Set.Iic
CategoryTheory.Functor.obj
Subtype.partialOrder
Monotone.functor
DFunLike.coe
RelEmbedding
Preorder.toLT
RelEmbedding.instFunLike
PrincipalSeg.toRelEmbedding
Set.principalSegIioIicOfLE
CategoryTheory.homOfLE
restrictionLT_obj 📖mathematicalPreorder.toLE
PartialOrder.toPreorder
Preorder.toLT
CategoryTheory.Functor.obj
Set.Elem
Set.Iio
Preorder.smallCategory
Subtype.preorder
Set
Set.instMembership
restrictionLT
Set.Iic
LE.le.trans
LT.lt.le

CategoryTheory.SmallObject.SuccStruct

Definitions

NameCategoryTheorems
Iteration 📖CompData
2 mathmath: Iteration.nonempty, Iteration.subsingleton
X₀ 📖CompOp
6 mathmath: ofNatTrans_X₀, Iteration.obj_bot, transfiniteCompositionOfShapeιIteration_isoBot, transfiniteCompositionOfShapeιIteration_incl, transfiniteCompositionOfShapeιIteration_F, transfiniteCompositionOfShapeιIteration_isColimit
arrowMap 📖CompOp
11 mathmath: arrowMap_refl, arrowMap_ofCocone_to_top, arrowMap_restrictionLE, Iteration.congr_arrowMap, Iteration.mkOfLimit.arrowMap_functor, Iteration.arrowMap_limit, arrowMap_ofCocone, Iteration.mkOfLimit.arrowMap_functor_to_top, arrowSucc_def, arrowMap_extendToSucc, Iteration.arrow_mk_mapObj
arrowSucc 📖CompOp
3 mathmath: Iteration.arrowSucc_eq, arrowSucc_extendToSucc, arrowSucc_def
arrowι 📖CompOp
2 mathmath: arrowι_def, Iteration.arrowMap_limit
ofNatTrans 📖CompOp
3 mathmath: ofNatTrans_X₀, ofNatTrans_succ, ofNatTrans_toSucc
prop 📖CompOp
11 mathmath: prop_iff, CategoryTheory.SmallObject.succStruct_prop_le_propArrow, transfiniteCompositionOfShapeιIteration_isoBot, transfiniteCompositionOfShapeιIteration_incl, prop_iterationFunctor_map_succ, transfiniteCompositionOfShapeιIteration_F, prop_toSucc, CategoryTheory.SmallObject.transfiniteCompositionOfShapeSuccStructPropιIteration_F, CategoryTheory.SmallObject.prop_iterationFunctor_map_succ, Iteration.prop_map_succ, transfiniteCompositionOfShapeιIteration_isColimit
succ 📖CompOp
11 mathmath: prop.arrowIso_inv_right, prop.arrowIso_hom_right, iterationFunctor_map_succ_assoc, Iteration.obj_succ, prop.succ_eq, iterationFunctor_map_succ, prop.fac_assoc, prop.fac, toSuccArrow_right, prop_toSucc, ofNatTrans_succ
toSucc 📖CompOp
7 mathmath: toSuccArrow_hom, iterationFunctor_map_succ_assoc, iterationFunctor_map_succ, prop.fac_assoc, prop.fac, prop_toSucc, ofNatTrans_toSucc
toSuccArrow 📖CompOp
9 mathmath: prop.arrowIso_hom_left, prop.arrowIso_inv_left, prop_iff, prop.arrowIso_inv_right, prop.arrowIso_hom_right, toSuccArrow_hom, Iteration.arrowSucc_eq, toSuccArrow_left, toSuccArrow_right

Theorems

NameKindAssumesProvesValidatesDepends On
arrowMap_refl 📖mathematicalPreorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
arrowMap
CategoryTheory.Functor.obj
Set.Elem
Set.Iic
Preorder.smallCategory
Subtype.preorder
Set
Set.instMembership
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.map_id
arrowMap_restrictionLE 📖mathematicalPreorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
arrowMap
CategoryTheory.SmallObject.restrictionLE
LE.le.trans
arrowSucc_def 📖mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
arrowSucc
arrowMap
Order.succ
Order.le_succ
Order.succ_le_of_lt
arrowι_def 📖mathematicalOrder.IsSuccLimit
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Preorder.toLT
arrowι
CategoryTheory.Functor.obj
Set.Elem
Set.Iio
Preorder.smallCategory
Subtype.preorder
Set
Set.instMembership
CategoryTheory.Limits.colimit
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Limits.hasColimitsOfShape_of_isSuccLimit
CategoryTheory.Limits.colimit.ι
ofNatTrans_X₀ 📖mathematicalX₀
CategoryTheory.Functor
CategoryTheory.Functor.category
ofNatTrans
CategoryTheory.Functor.id
ofNatTrans_succ 📖mathematicalsucc
CategoryTheory.Functor
CategoryTheory.Functor.category
ofNatTrans
CategoryTheory.Functor.comp
ofNatTrans_toSucc 📖mathematicaltoSucc
CategoryTheory.Functor
CategoryTheory.Functor.category
ofNatTrans
CategoryTheory.Functor.whiskerLeft
CategoryTheory.Functor.id
prop_iff 📖mathematicalprop
toSuccArrow
CategoryTheory.MorphismProperty.arrow_mk_mem_toSet_iff
prop_toSucc
prop_toSucc 📖mathematicalprop
succ
toSucc
toSuccArrow_hom 📖mathematicalCategoryTheory.Comma.hom
CategoryTheory.Functor.id
toSuccArrow
toSucc
toSuccArrow_left 📖mathematicalCategoryTheory.Comma.left
CategoryTheory.Functor.id
toSuccArrow
toSuccArrow_right 📖mathematicalCategoryTheory.Comma.right
CategoryTheory.Functor.id
toSuccArrow
succ

CategoryTheory.SmallObject.SuccStruct.Iteration

Definitions

NameCategoryTheorems
F 📖CompOp
20 mathmath: CategoryTheory.SmallObject.SuccStruct.arrowMk_iterationFunctor_map, mkOfLimit.inductiveSystem_obj, obj_bot, congr_obj, obj_succ, mapObj_trans_assoc, arrowSucc_eq, mapObj_refl, congr_arrowMap, mkOfLimit.arrowMap_functor, obj_limit, arrowMap_limit, congr_map, trunc_F, mkOfLimit.functor_obj, ext_iff, CategoryTheory.SmallObject.SuccStruct.iterationFunctor_obj, prop_map_succ, mapObj_trans, arrow_mk_mapObj
isColimit 📖CompOp
mapObj 📖CompOp
6 mathmath: mkOfLimit.inductiveSystem_map, mapObj_trans_assoc, mapObj_refl, mkOfLimit.arrowMap_functor, mapObj_trans, arrow_mk_mapObj
trunc 📖CompOp
1 mathmath: trunc_F

Theorems

NameKindAssumesProvesValidatesDepends On
arrowMap_limit 📖mathematicalOrder.IsSuccLimit
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Preorder.toLE
Preorder.toLT
CategoryTheory.SmallObject.SuccStruct.arrowMap
F
LT.lt.le
CategoryTheory.SmallObject.SuccStruct.arrowι
CategoryTheory.SmallObject.restrictionLT
arrowSucc_eq 📖mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
CategoryTheory.SmallObject.SuccStruct.arrowSucc
F
CategoryTheory.SmallObject.SuccStruct.toSuccArrow
CategoryTheory.Functor.obj
Set.Elem
Set.Iic
Preorder.smallCategory
Subtype.preorder
Set
Set.instMembership
LT.lt.le
arrow_mk_mapObj 📖mathematicalPreorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
CategoryTheory.Functor.obj
Set.Elem
Set.Iic
Preorder.smallCategory
Subtype.preorder
Set
Set.instMembership
F
mapObj
CategoryTheory.SmallObject.SuccStruct.arrowMap
CategoryTheory.Arrow.arrow_mk_eqToHom_comp
congr_arrowMap 📖mathematicalPreorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
CategoryTheory.SmallObject.SuccStruct.arrowMap
F
subsingleton
LT.lt.le
not_le
congr_map 📖mathematicalPreorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
CategoryTheory.Functor.map
Set.Elem
Set.Iic
Preorder.smallCategory
Subtype.preorder
Set
Set.instMembership
F
LE.le.trans
CategoryTheory.homOfLE
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.eqToHom
congr_obj
CategoryTheory.Arrow.mk_eq_mk_iff
congr_arrowMap
LE.le.trans
congr_obj
congr_obj 📖mathematicalPreorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
CategoryTheory.Functor.obj
Set.Elem
Set.Iic
Preorder.smallCategory
Subtype.preorder
Set
Set.instMembership
F
subsingleton
LE.le.trans
le_of_lt
ext 📖Fbot_le
LT.lt.le
ext_iff 📖mathematicalFext
mapObj_refl 📖mathematicalPreorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
mapObj
LE.le.trans
CategoryTheory.Functor.map
Set.Elem
Set.Iic
Preorder.smallCategory
Subtype.preorder
Set
Set.instMembership
F
CategoryTheory.homOfLE
LE.le.trans
CategoryTheory.Category.id_comp
mapObj_trans 📖mathematicalPreorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Set.Elem
Set.Iic
Preorder.smallCategory
Subtype.preorder
Set
Set.instMembership
F
mapObj
LE.le.trans
LE.le.trans
congr_obj
congr_map
CategoryTheory.eqToHom_trans_assoc
CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
mapObj_trans_assoc 📖mathematicalPreorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Set.Elem
Set.Iic
Preorder.smallCategory
Subtype.preorder
Set
Set.instMembership
F
mapObj
LE.le.trans
LE.le.trans
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
mapObj_trans
obj_bot 📖mathematicalCategoryTheory.Functor.obj
Set.Elem
Set.Iic
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Preorder.smallCategory
Subtype.preorder
Set
Set.instMembership
F
Bot.bot
OrderBot.toBot
Preorder.toLE
bot_le
CategoryTheory.SmallObject.SuccStruct.X₀
obj_limit 📖mathematicalOrder.IsSuccLimit
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Preorder.toLE
CategoryTheory.Functor.obj
Set.Elem
Set.Iic
Preorder.smallCategory
Subtype.preorder
Set
Set.instMembership
F
CategoryTheory.Limits.colimit
Set.Iio
CategoryTheory.SmallObject.restrictionLT
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Limits.hasColimitsOfShape_of_isSuccLimit
LT.lt.le
Order.IsSuccLimit.bot_lt
arrowMap_limit
obj_succ 📖mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
CategoryTheory.Functor.obj
Set.Elem
Set.Iic
Preorder.smallCategory
Subtype.preorder
Set
Set.instMembership
F
Order.succ
Order.succ_le_of_lt
CategoryTheory.SmallObject.SuccStruct.succ
LT.lt.le
LT.lt.le
arrowSucc_eq
prop_map_succ 📖mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
CategoryTheory.SmallObject.SuccStruct.prop
CategoryTheory.Functor.obj
Set.Elem
Set.Iic
Preorder.smallCategory
Subtype.preorder
Set
Set.instMembership
F
LT.lt.le
Order.succ
Order.succ_le_of_lt
CategoryTheory.Functor.map
CategoryTheory.homOfLE
Order.le_succ
LT.lt.le
Order.succ_le_of_lt
Order.le_succ
CategoryTheory.SmallObject.SuccStruct.prop_iff
CategoryTheory.SmallObject.SuccStruct.arrowMap.eq_1
CategoryTheory.SmallObject.SuccStruct.arrowSucc_def
arrowSucc_eq
subsingleton 📖mathematicalCategoryTheory.SmallObject.SuccStruct.Iterationsubsingleton.ext
subsingleton.mapEq_refl
obj_bot
IsMin.eq_bot
Order.le_succ
CategoryTheory.Functor.congr_obj
LE.le.trans
CategoryTheory.SmallObject.SuccStruct.arrowMap_restrictionLE
CategoryTheory.SmallObject.SuccStruct.arrowMap.congr_simp
LE.le.lt_or_eq
Order.lt_succ_iff_of_not_isMax
subsingleton.mapEq_trans
LT.lt.le
Order.lt_succ_of_not_isMax
Order.succ_le_of_lt
CategoryTheory.SmallObject.SuccStruct.arrowSucc_def
arrowSucc_eq
subsingleton.MapEq.eq_1
CategoryTheory.SmallObject.SuccStruct.arrowMap_refl
obj_succ
le_antisymm
Order.succ_le_iff_of_not_isMax
le_refl
le_rfl
CategoryTheory.Arrow.functor_ext
arrowMap_limit
CategoryTheory.SmallObject.SuccStruct.arrowι.congr_simp
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Limits.hasColimitsOfShape_of_isSuccLimit
obj_limit
CategoryTheory.Limits.colimit.congr_simp
ext
trunc_F 📖mathematicalPreorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
F
trunc
CategoryTheory.SmallObject.restrictionLE

CategoryTheory.SmallObject.SuccStruct.Iteration.subsingleton

Definitions

NameCategoryTheorems
MapEq 📖MathDef
1 mathmath: mapEq_refl

Theorems

NameKindAssumesProvesValidatesDepends On
ext 📖MapEqCategoryTheory.Arrow.functor_ext
mapEq_refl 📖mathematicalPreorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
CategoryTheory.Functor.obj
Set.Elem
Set.Iic
Preorder.smallCategory
Subtype.preorder
Set
Set.instMembership
MapEqMapEq.eq_1
CategoryTheory.SmallObject.SuccStruct.arrowMap_refl
mapEq_trans 📖Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
MapEq
LE.le.trans
LE.le.trans
MapEq.src
MapEq.tgt
CategoryTheory.homOfLE_comp
CategoryTheory.Functor.map_comp
MapEq.w
CategoryTheory.Category.assoc
CategoryTheory.eqToHom_trans_assoc
CategoryTheory.Category.id_comp

CategoryTheory.SmallObject.SuccStruct.Iteration.subsingleton.MapEq

Theorems

NameKindAssumesProvesValidatesDepends On
src 📖mathematicalPreorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
CategoryTheory.SmallObject.SuccStruct.Iteration.subsingleton.MapEq
CategoryTheory.Functor.obj
Set.Elem
Set.Iic
Preorder.smallCategory
Subtype.preorder
Set
Set.instMembership
LE.le.trans
tgt 📖mathematicalPreorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
CategoryTheory.SmallObject.SuccStruct.Iteration.subsingleton.MapEq
CategoryTheory.Functor.obj
Set.Elem
Set.Iic
Preorder.smallCategory
Subtype.preorder
Set
Set.instMembership
w 📖mathematicalPreorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
CategoryTheory.SmallObject.SuccStruct.Iteration.subsingleton.MapEq
CategoryTheory.Functor.map
Set.Elem
Set.Iic
Preorder.smallCategory
Subtype.preorder
Set
Set.instMembership
LE.le.trans
CategoryTheory.homOfLE
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.eqToHom
CategoryTheory.Arrow.mk_eq_mk_iff
LE.le.trans

CategoryTheory.SmallObject.SuccStruct.prop

Definitions

NameCategoryTheorems
arrowIso 📖CompOp
4 mathmath: arrowIso_hom_left, arrowIso_inv_left, arrowIso_inv_right, arrowIso_hom_right

Theorems

NameKindAssumesProvesValidatesDepends On
arrowIso_hom_left 📖mathematicalCategoryTheory.SmallObject.SuccStruct.propCategoryTheory.CommaMorphism.left
CategoryTheory.Functor.id
CategoryTheory.SmallObject.SuccStruct.toSuccArrow
CategoryTheory.Iso.hom
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
arrowIso
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
arrowIso_hom_right 📖mathematicalCategoryTheory.SmallObject.SuccStruct.propCategoryTheory.CommaMorphism.right
CategoryTheory.Functor.id
CategoryTheory.SmallObject.SuccStruct.toSuccArrow
CategoryTheory.Iso.hom
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
arrowIso
CategoryTheory.eqToHom
CategoryTheory.Category.toCategoryStruct
CategoryTheory.SmallObject.SuccStruct.succ
arrowIso_inv_left 📖mathematicalCategoryTheory.SmallObject.SuccStruct.propCategoryTheory.CommaMorphism.left
CategoryTheory.Functor.id
CategoryTheory.SmallObject.SuccStruct.toSuccArrow
CategoryTheory.Iso.inv
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
arrowIso
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
arrowIso_inv_right 📖mathematicalCategoryTheory.SmallObject.SuccStruct.propCategoryTheory.CommaMorphism.right
CategoryTheory.Functor.id
CategoryTheory.SmallObject.SuccStruct.toSuccArrow
CategoryTheory.Iso.inv
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
arrowIso
CategoryTheory.eqToHom
CategoryTheory.Category.toCategoryStruct
CategoryTheory.SmallObject.SuccStruct.succ
fac 📖mathematicalCategoryTheory.SmallObject.SuccStruct.propCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.SmallObject.SuccStruct.succ
CategoryTheory.SmallObject.SuccStruct.toSucc
CategoryTheory.eqToHom
succ_eq
succ_eq
CategoryTheory.Category.comp_id
fac_assoc 📖mathematicalCategoryTheory.SmallObject.SuccStruct.propCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.SmallObject.SuccStruct.succ
CategoryTheory.SmallObject.SuccStruct.toSucc
CategoryTheory.eqToHom
succ_eq
succ_eq
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
fac
succ_eq 📖mathematicalCategoryTheory.SmallObject.SuccStruct.propCategoryTheory.SmallObject.SuccStruct.succ

---

← Back to Index