Documentation Verification Report

ExtendToSucc

📁 Source: Mathlib/CategoryTheory/SmallObject/Iteration/ExtendToSucc.lean

Statistics

MetricCount
DefinitionsextendToSucc, map, obj, objIso, objSuccIso, extendToSuccObjIso, extendToSuccObjSuccIso, extendToSuccRestrictionLEIso
8
TheoremsarrowMap_extendToSucc, arrowSucc_extendToSucc, map_comp, map_eq, map_id, map_self_succ, obj_eq, obj_succ_eq, extendToSuccObjIso_hom_naturality, extendToSuccObjIso_hom_naturality_assoc, extendToSuccRestrictionLEIso_hom_app, extendToSuccRestrictionLEIso_inv_app, extendToSucc_map, extendToSucc_map_le_succ, extendToSucc_obj_eq, extendToSucc_obj_succ_eq
16
Total24

CategoryTheory.SmallObject.SuccStruct

Definitions

NameCategoryTheorems
extendToSucc 📖CompOp
10 mathmath: extendToSucc_map_le_succ, extendToSuccObjIso_hom_naturality_assoc, extendToSuccObjIso_hom_naturality, extendToSuccRestrictionLEIso_hom_app, extendToSucc_obj_eq, extendToSuccRestrictionLEIso_inv_app, extendToSucc_map, extendToSucc_obj_succ_eq, arrowSucc_extendToSucc, arrowMap_extendToSucc
extendToSuccObjIso 📖CompOp
6 mathmath: extendToSucc_map_le_succ, extendToSuccObjIso_hom_naturality_assoc, extendToSuccObjIso_hom_naturality, extendToSuccRestrictionLEIso_hom_app, extendToSuccRestrictionLEIso_inv_app, extendToSucc_map
extendToSuccObjSuccIso 📖CompOp
1 mathmath: extendToSucc_map_le_succ
extendToSuccRestrictionLEIso 📖CompOp
2 mathmath: extendToSuccRestrictionLEIso_hom_app, extendToSuccRestrictionLEIso_inv_app

Theorems

NameKindAssumesProvesValidatesDepends On
arrowMap_extendToSucc 📖mathematicalIsMax
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
arrowMap
Order.succ
extendToSucc
LE.le.trans
Order.le_succ
LE.le.trans
Order.le_succ
extendToSucc.obj_eq
extendToSucc_map
CategoryTheory.Arrow.arrow_mk_eqToHom_comp
CategoryTheory.Arrow.arrow_mk_comp_eqToHom
arrowSucc_extendToSucc 📖mathematicalIsMax
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
arrowSucc
Order.succ
extendToSucc
Order.lt_succ_of_not_isMax
CategoryTheory.Functor.obj
Set.Elem
Set.Iic
Preorder.smallCategory
Subtype.preorder
Set
Set.instMembership
Order.lt_succ_of_not_isMax
extendToSucc.obj_succ_eq
LE.le.trans
Order.le_succ
extendToSucc.obj_eq
extendToSucc_map_le_succ
CategoryTheory.Arrow.arrow_mk_eqToHom_comp
CategoryTheory.Arrow.arrow_mk_comp_eqToHom
extendToSuccObjIso_hom_naturality 📖mathematicalIsMax
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Set.Elem
Set.Iic
Order.succ
Preorder.smallCategory
Subtype.preorder
Set
Set.instMembership
extendToSucc
LE.le.trans
Order.le_succ
CategoryTheory.Functor.map
CategoryTheory.homOfLE
CategoryTheory.Iso.hom
extendToSuccObjIso
LE.le.trans
Order.le_succ
extendToSucc.map_eq
CategoryTheory.Category.assoc
CategoryTheory.Iso.inv_hom_id
CategoryTheory.Category.comp_id
extendToSuccObjIso_hom_naturality_assoc 📖mathematicalIsMax
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Set.Elem
Set.Iic
Order.succ
Preorder.smallCategory
Subtype.preorder
Set
Set.instMembership
extendToSucc
LE.le.trans
Order.le_succ
CategoryTheory.Functor.map
CategoryTheory.homOfLE
CategoryTheory.Iso.hom
extendToSuccObjIso
LE.le.trans
Order.le_succ
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
extendToSuccObjIso_hom_naturality
extendToSuccRestrictionLEIso_hom_app 📖mathematicalIsMax
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
CategoryTheory.NatTrans.app
Set.Elem
Set.Iic
Preorder.smallCategory
Subtype.preorder
Set
Set.instMembership
CategoryTheory.SmallObject.restrictionLE
Order.succ
extendToSucc
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
Order.le_succ
extendToSuccRestrictionLEIso
CategoryTheory.Functor.obj
extendToSuccObjIso
Order.le_succ
extendToSuccRestrictionLEIso_inv_app 📖mathematicalIsMax
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
CategoryTheory.NatTrans.app
Set.Elem
Set.Iic
Preorder.smallCategory
Subtype.preorder
Set
Set.instMembership
CategoryTheory.SmallObject.restrictionLE
Order.succ
extendToSucc
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
Order.le_succ
extendToSuccRestrictionLEIso
CategoryTheory.Functor.obj
extendToSuccObjIso
Order.le_succ
extendToSucc_map 📖mathematicalIsMax
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
CategoryTheory.Functor.map
Set.Elem
Set.Iic
Order.succ
Preorder.smallCategory
Subtype.preorder
Set
Set.instMembership
extendToSucc
LE.le.trans
Order.le_succ
CategoryTheory.homOfLE
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Iso.hom
extendToSuccObjIso
CategoryTheory.Iso.inv
LE.le.trans
Order.le_succ
extendToSuccObjIso_hom_naturality_assoc
CategoryTheory.Iso.hom_inv_id
CategoryTheory.Category.comp_id
extendToSucc_map_le_succ 📖mathematicalIsMax
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
CategoryTheory.Functor.map
Set.Elem
Set.Iic
Order.succ
Preorder.smallCategory
Subtype.preorder
Set
Set.instMembership
extendToSucc
LE.le.trans
Order.le_succ
CategoryTheory.homOfLE
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Iso.hom
extendToSuccObjIso
CategoryTheory.Iso.inv
extendToSuccObjSuccIso
extendToSucc.map_self_succ
extendToSucc_obj_eq 📖mathematicalIsMax
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
CategoryTheory.Functor.obj
Set.Elem
Set.Iic
Order.succ
Preorder.smallCategory
Subtype.preorder
Set
Set.instMembership
extendToSucc
LE.le.trans
Order.le_succ
extendToSucc.obj_eq
extendToSucc_obj_succ_eq 📖mathematicalIsMax
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
CategoryTheory.Functor.obj
Set.Elem
Set.Iic
Order.succ
Preorder.smallCategory
Subtype.preorder
Set
Set.instMembership
extendToSucc
extendToSucc.obj_succ_eq

CategoryTheory.SmallObject.SuccStruct.extendToSucc

Definitions

NameCategoryTheorems
map 📖CompOp
4 mathmath: map_self_succ, map_eq, map_comp, map_id
obj 📖CompOp
6 mathmath: map_self_succ, obj_succ_eq, map_eq, map_comp, map_id, obj_eq
objIso 📖CompOp
2 mathmath: map_self_succ, map_eq
objSuccIso 📖CompOp
1 mathmath: map_self_succ

Theorems

NameKindAssumesProvesValidatesDepends On
map_comp 📖mathematicalIsMax
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Order.succ
map
LE.le.trans
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
obj
Set
Set.instMembership
Set.Iic
LE.le.trans
Order.le_succ
map_eq
CategoryTheory.Category.assoc
CategoryTheory.Iso.inv_hom_id_assoc
CategoryTheory.Functor.map_comp_assoc
CategoryTheory.homOfLE_comp
LE.le.lt_or_eq
Order.lt_succ_iff_of_not_isMax
CategoryTheory.Category.comp_id
map_id
le_antisymm
Order.succ_le_of_lt
not_le
map_eq 📖mathematicalIsMax
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
map
LE.le.trans
Order.succ
Order.le_succ
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
obj
Set
Set.instMembership
Set.Iic
CategoryTheory.Functor.obj
Set.Elem
Preorder.smallCategory
Subtype.preorder
CategoryTheory.Iso.hom
objIso
CategoryTheory.Functor.map
CategoryTheory.homOfLE
CategoryTheory.Iso.inv
LE.le.trans
Order.le_succ
map_id 📖mathematicalIsMax
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Order.succ
map
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
obj
Set
Set.instMembership
Set.Iic
LE.le.trans
LE.le.trans
CategoryTheory.Functor.map_id
CategoryTheory.Category.id_comp
CategoryTheory.Iso.hom_inv_id
le_antisymm
Order.succ_le_of_lt
not_le
map_self_succ 📖mathematicalIsMax
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
map
Order.succ
Order.le_succ
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
obj
Set
Set.instMembership
Set.Iic
LE.le.trans
CategoryTheory.Functor.obj
Set.Elem
Preorder.smallCategory
Subtype.preorder
CategoryTheory.Iso.hom
objIso
CategoryTheory.Iso.inv
objSuccIso
LE.le.trans
Order.le_succ
le_refl
CategoryTheory.Functor.map_id
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
obj_eq 📖mathematicalobj
Set
Set.instMembership
Set.Iic
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Order.succ
LE.le.trans
Order.le_succ
CategoryTheory.Functor.obj
Set.Elem
Preorder.smallCategory
Subtype.preorder
LE.le.trans
Order.le_succ
obj_succ_eq 📖mathematicalIsMax
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
obj
Set
Set.instMembership
Set.Iic
Order.succ

---

← Back to Index