Documentation Verification Report

TransfiniteCompositionLifting

📁 Source: Mathlib/CategoryTheory/SmallObject/TransfiniteCompositionLifting.lean

Statistics

MetricCount
DefinitionsSqStruct, f', map, sqFunctor, wellOrderInductionData, liftHom
6
Theoremsext, ext_iff, map_f', sq, w, w_assoc, w₁, w₁_assoc, w₂, w₂_assoc, hasLift, hasLiftingPropertyFixedBot_ι_app_bot, hasLiftingProperty_ι_app_bot, sqFunctor_map, sqFunctor_obj, liftHom_fac, liftHom_fac_assoc, lift_f', map_lift, isStableUnderTransfiniteCompositionOfShape_llp, retracts_transfiniteComposition_pushouts_coproducts_le_llp_rlp, retracts_transfiniteCompositionsOfShape_pushouts_coproducts_le_llp_rlp, transfiniteCompositionsOfShape_le_llp_rlp, transfiniteCompositionsOfShape_pushouts_coproducts_le_llp_rlp, transfiniteCompositions_le_llp_rlp, transfiniteCompositions_pushouts_coproducts_le_llp_rlp
26
Total32

CategoryTheory.HasLiftingProperty.transfiniteComposition

Definitions

NameCategoryTheorems
SqStruct 📖CompData
1 mathmath: sqFunctor_obj
sqFunctor 📖CompOp
5 mathmath: wellOrderInductionData.liftHom_fac_assoc, wellOrderInductionData.liftHom_fac, sqFunctor_obj, wellOrderInductionData.map_lift, sqFunctor_map
wellOrderInductionData 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
hasLift 📖mathematicalCategoryTheory.HasLiftingPropertyFixedBot
CategoryTheory.Functor.obj
Preorder.smallCategory
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Order.succ
CategoryTheory.Functor.map
CategoryTheory.homOfLE
Order.le_succ
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cocone.pt
CategoryTheory.NatTrans.app
CategoryTheory.Limits.Cocone.ι
CategoryTheory.CommSq
Bot.bot
OrderBot.toBot
Preorder.toLE
CategoryTheory.CommSq.HasLiftOrder.le_succ
bot_le
CategoryTheory.Functor.map_id
CategoryTheory.Category.id_comp
CategoryTheory.CommSq.w
CategoryTheory.Functor.WellOrderInductionData.surjective
CategoryTheory.Category.comp_id
CategoryTheory.Limits.IsColimit.fac
CategoryTheory.Limits.IsColimit.hom_ext
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
SqStruct.w₂
hasLiftingPropertyFixedBot_ι_app_bot 📖mathematicalCategoryTheory.HasLiftingPropertyFixedBot
CategoryTheory.Functor.obj
Preorder.smallCategory
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Order.succ
CategoryTheory.Functor.map
CategoryTheory.homOfLE
Order.le_succ
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cocone.pt
CategoryTheory.NatTrans.app
CategoryTheory.Limits.Cocone.ι
Bot.bot
OrderBot.toBot
Preorder.toLE
Order.le_succ
hasLift
hasLiftingProperty_ι_app_bot 📖mathematicalCategoryTheory.HasLiftingProperty
CategoryTheory.Functor.obj
Preorder.smallCategory
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Order.succ
CategoryTheory.Functor.map
CategoryTheory.homOfLE
Order.le_succ
Bot.bot
OrderBot.toBot
Preorder.toLE
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cocone.pt
CategoryTheory.NatTrans.app
CategoryTheory.Limits.Cocone.ι
Order.le_succ
hasLift
CategoryTheory.sq_hasLift_of_hasLiftingProperty
sqFunctor_map 📖mathematicalCategoryTheory.Functor.map
Opposite
CategoryTheory.Category.opposite
Preorder.smallCategory
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
CategoryTheory.types
sqFunctor
SqStruct.map
Opposite.unop
Quiver.Hom.unop
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
sqFunctor_obj 📖mathematicalCategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
Preorder.smallCategory
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
CategoryTheory.types
sqFunctor
SqStruct
Opposite.unop

CategoryTheory.HasLiftingProperty.transfiniteComposition.SqStruct

Definitions

NameCategoryTheorems
f' 📖CompOp
10 mathmath: CategoryTheory.HasLiftingProperty.transfiniteComposition.wellOrderInductionData.liftHom_fac_assoc, CategoryTheory.HasLiftingProperty.transfiniteComposition.wellOrderInductionData.liftHom_fac, map_f', sq, w₁, CategoryTheory.HasLiftingProperty.transfiniteComposition.wellOrderInductionData.lift_f', w₂, w₁_assoc, w₂_assoc, ext_iff
map 📖CompOp
3 mathmath: map_f', CategoryTheory.HasLiftingProperty.transfiniteComposition.wellOrderInductionData.map_lift, CategoryTheory.HasLiftingProperty.transfiniteComposition.sqFunctor_map

Theorems

NameKindAssumesProvesValidatesDepends On
ext 📖f'bot_le
ext_iff 📖mathematicalf'ext
map_f' 📖mathematicalf'
map
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Preorder.smallCategory
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
CategoryTheory.Functor.map
sq 📖mathematicalCategoryTheory.CommSq
CategoryTheory.Functor.obj
Preorder.smallCategory
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Order.succ
f'
CategoryTheory.Functor.map
CategoryTheory.homOfLE
Order.le_succ
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cocone.pt
CategoryTheory.NatTrans.app
CategoryTheory.Limits.Cocone.ι
Order.le_succ
w₂
CategoryTheory.NatTrans.naturality_assoc
CategoryTheory.Category.id_comp
w 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Preorder.smallCategory
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Bot.bot
OrderBot.toBot
Preorder.toLE
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cocone.pt
CategoryTheory.NatTrans.app
CategoryTheory.Limits.Cocone.ι
bot_le
w₁
CategoryTheory.Category.assoc
w₂
CategoryTheory.Limits.Cocone.w_assoc
w_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Preorder.smallCategory
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Bot.bot
OrderBot.toBot
Preorder.toLE
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cocone.pt
CategoryTheory.NatTrans.app
CategoryTheory.Limits.Cocone.ι
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
w
w₁ 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Preorder.smallCategory
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Bot.bot
OrderBot.toBot
Preorder.toLE
CategoryTheory.Functor.map
CategoryTheory.homOfLE
bot_le
f'
w₁_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Preorder.smallCategory
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Bot.bot
OrderBot.toBot
Preorder.toLE
CategoryTheory.Functor.map
CategoryTheory.homOfLE
bot_le
f'
bot_le
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
w₁
w₂ 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Preorder.smallCategory
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
f'
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cocone.pt
CategoryTheory.NatTrans.app
CategoryTheory.Limits.Cocone.ι
w₂_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Preorder.smallCategory
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
f'
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cocone.pt
CategoryTheory.NatTrans.app
CategoryTheory.Limits.Cocone.ι
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
w₂

CategoryTheory.HasLiftingProperty.transfiniteComposition.wellOrderInductionData

Definitions

NameCategoryTheorems
liftHom 📖CompOp
3 mathmath: liftHom_fac_assoc, liftHom_fac, lift_f'

Theorems

NameKindAssumesProvesValidatesDepends On
liftHom_fac 📖mathematicalOrder.IsSuccLimit
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Preorder.toLT
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Preorder.smallCategory
CategoryTheory.Functor.map
CategoryTheory.homOfLE
LT.lt.le
liftHom
CategoryTheory.HasLiftingProperty.transfiniteComposition.SqStruct.f'
Opposite.unop
Opposite
Set
Set.instMembership
Set.Iio
CategoryTheory.Category.opposite
Subtype.preorder
CategoryTheory.Functor.op
Monotone.functor
DFunLike.coe
OrderHom
OrderHom.instFunLike
OrderHom.Subtype.val
OrderHom.monotone
Opposite.op
CategoryTheory.Functor.sections
CategoryTheory.Functor.comp
CategoryTheory.types
CategoryTheory.HasLiftingProperty.transfiniteComposition.sqFunctor
OrderHom.monotone
CategoryTheory.Limits.IsColimit.fac
PrincipalSeg.monotone
liftHom_fac_assoc 📖mathematicalOrder.IsSuccLimit
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Preorder.toLT
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Preorder.smallCategory
CategoryTheory.Functor.map
CategoryTheory.homOfLE
LT.lt.le
liftHom
CategoryTheory.HasLiftingProperty.transfiniteComposition.SqStruct.f'
Opposite.unop
Opposite
Set
Set.instMembership
Set.Iio
CategoryTheory.Category.opposite
Subtype.preorder
CategoryTheory.Functor.op
Monotone.functor
DFunLike.coe
OrderHom
OrderHom.instFunLike
OrderHom.Subtype.val
OrderHom.monotone
Opposite.op
CategoryTheory.Functor.sections
CategoryTheory.Functor.comp
CategoryTheory.types
CategoryTheory.HasLiftingProperty.transfiniteComposition.sqFunctor
OrderHom.monotone
LT.lt.le
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
liftHom_fac
lift_f' 📖mathematicalOrder.IsSuccLimit
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
CategoryTheory.HasLiftingProperty.transfiniteComposition.SqStruct.f'
Opposite.unop
Opposite.op
lift
liftHom
OrderHom.monotone
map_lift 📖mathematicalOrder.IsSuccLimit
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Preorder.toLT
CategoryTheory.HasLiftingProperty.transfiniteComposition.SqStruct.map
Opposite.unop
Opposite.op
lift
CategoryTheory.homOfLE
LT.lt.le
Set
Set.instMembership
CategoryTheory.Functor.sections
Opposite
Set.Iio
CategoryTheory.Category.opposite
Preorder.smallCategory
Subtype.preorder
CategoryTheory.Functor.comp
CategoryTheory.types
CategoryTheory.Functor.op
Monotone.functor
DFunLike.coe
OrderHom
OrderHom.instFunLike
OrderHom.Subtype.val
OrderHom.monotone
CategoryTheory.HasLiftingProperty.transfiniteComposition.sqFunctor
OrderHom.monotone
CategoryTheory.HasLiftingProperty.transfiniteComposition.SqStruct.ext
LT.lt.le
liftHom_fac

CategoryTheory.MorphismProperty

Theorems

NameKindAssumesProvesValidatesDepends On
isStableUnderTransfiniteCompositionOfShape_llp 📖mathematicalIsStableUnderTransfiniteCompositionOfShape
llp
isStableUnderTransfiniteCompositionOfShape_iff
CategoryTheory.HasLiftingProperty.transfiniteComposition.hasLiftingProperty_ι_app_bot
CategoryTheory.TransfiniteCompositionOfShape.isWellOrderContinuous
TransfiniteCompositionOfShape.map_mem
arrow_mk_iso_iff
instRespectsIsoOfIsStableUnderRetracts
llp_isStableUnderRetracts
CategoryTheory.TransfiniteCompositionOfShape.fac
CategoryTheory.Category.comp_id
retracts_transfiniteComposition_pushouts_coproducts_le_llp_rlp 📖mathematicalCategoryTheory.MorphismProperty
CategoryTheory.Category.toCategoryStruct
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
instCompleteBooleanAlgebra
retracts
transfiniteCompositions
pushouts
coproducts
llp
rlp
le_llp_iff_le_rlp
rlp_retracts
transfiniteCompositions_pushouts_coproducts_le_llp_rlp
retracts_transfiniteCompositionsOfShape_pushouts_coproducts_le_llp_rlp 📖mathematicalCategoryTheory.MorphismProperty
CategoryTheory.Category.toCategoryStruct
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
instCompleteBooleanAlgebra
retracts
transfiniteCompositionsOfShape
pushouts
coproducts
llp
rlp
le_llp_iff_le_rlp
rlp_retracts
transfiniteCompositionsOfShape_pushouts_coproducts_le_llp_rlp
transfiniteCompositionsOfShape_le_llp_rlp 📖mathematicalCategoryTheory.MorphismProperty
CategoryTheory.Category.toCategoryStruct
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
instCompleteBooleanAlgebra
transfiniteCompositionsOfShape
llp
rlp
isStableUnderTransfiniteCompositionOfShape_llp
le_trans
transfiniteCompositionsOfShape_monotone
le_llp_rlp
isStableUnderTransfiniteCompositionOfShape_iff
transfiniteCompositionsOfShape_pushouts_coproducts_le_llp_rlp 📖mathematicalCategoryTheory.MorphismProperty
CategoryTheory.Category.toCategoryStruct
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
instCompleteBooleanAlgebra
transfiniteCompositionsOfShape
pushouts
coproducts
llp
rlp
rlp_pushouts
rlp_coproducts
transfiniteCompositionsOfShape_le_llp_rlp
transfiniteCompositions_le_llp_rlp 📖mathematicalCategoryTheory.MorphismProperty
CategoryTheory.Category.toCategoryStruct
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
instCompleteBooleanAlgebra
transfiniteCompositions
llp
rlp
transfiniteCompositions_iff
transfiniteCompositionsOfShape_le_llp_rlp
transfiniteCompositions_pushouts_coproducts_le_llp_rlp 📖mathematicalCategoryTheory.MorphismProperty
CategoryTheory.Category.toCategoryStruct
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
instCompleteBooleanAlgebra
transfiniteCompositions
pushouts
coproducts
llp
rlp
rlp_pushouts
rlp_coproducts
transfiniteCompositions_le_llp_rlp

---

← Back to Index