Documentation Verification Report

WellOrderInductionData

📁 Source: Mathlib/CategoryTheory/SmallObject/WellOrderInductionData.lean

Statistics

MetricCount
DefinitionsWellOrderInductionData, instUnique, limit, ofLE, succ, val, zero, ofExists, sectionsMk, succ
10
Theoremscompatibility, instNonempty, instSubsingletonOfWellFoundedLT, map_limit, map_succ, map_zero, ofLE_val, val_injective, zero_val, map_lift, map_succ, sectionsMk_val_op_bot, surjective
13
Total23

CategoryTheory.Functor

Definitions

NameCategoryTheorems
WellOrderInductionData 📖CompData

CategoryTheory.Functor.WellOrderInductionData

Definitions

NameCategoryTheorems
ofExists 📖CompOp
sectionsMk 📖CompOp
1 mathmath: sectionsMk_val_op_bot
succ 📖CompOp
2 mathmath: map_succ, Extension.map_succ

Theorems

NameKindAssumesProvesValidatesDepends On
map_lift 📖mathematicalOrder.IsSuccLimit
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Preorder.toLT
CategoryTheory.Functor.map
Opposite
CategoryTheory.Category.opposite
Preorder.smallCategory
CategoryTheory.types
Opposite.op
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.homOfLE
LT.lt.le
lift
Set
Set.instMembership
CategoryTheory.Functor.sections
Set.Iio
Subtype.preorder
CategoryTheory.Functor.comp
CategoryTheory.Functor.op
Monotone.functor
DFunLike.coe
OrderHom
OrderHom.instFunLike
OrderHom.Subtype.val
OrderHom.monotone
map_succ 📖mathematicalIsMax
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
CategoryTheory.Functor.map
Opposite
CategoryTheory.Category.opposite
Preorder.smallCategory
CategoryTheory.types
Opposite.op
Order.succ
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.homOfLE
Order.le_succ
succ
sectionsMk_val_op_bot 📖mathematicalSet
Set.instMembership
CategoryTheory.Functor.sections
Opposite
CategoryTheory.Category.opposite
Preorder.smallCategory
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
sectionsMk
Opposite.op
Bot.bot
OrderBot.toBot
Preorder.toLE
bot_le
CategoryTheory.FunctorToTypes.map_id_apply
Extension.map_zero
surjective 📖mathematicalSet.Elem
CategoryTheory.Functor.sections
Opposite
CategoryTheory.Category.opposite
Preorder.smallCategory
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
CategoryTheory.Functor.obj
CategoryTheory.types
Opposite.op
Bot.bot
OrderBot.toBot
Preorder.toLE
Set
Set.instMembership
sectionsMk_val_op_bot

CategoryTheory.Functor.WellOrderInductionData.Extension

Definitions

NameCategoryTheorems
instUnique 📖CompOp
limit 📖CompOp
ofLE 📖CompOp
1 mathmath: ofLE_val
succ 📖CompOp
val 📖CompOp
6 mathmath: ofLE_val, map_zero, map_succ, compatibility, map_limit, zero_val
zero 📖CompOp
1 mathmath: zero_val

Theorems

NameKindAssumesProvesValidatesDepends On
compatibility 📖mathematicalPreorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
CategoryTheory.Functor.map
Opposite
CategoryTheory.Category.opposite
Preorder.smallCategory
CategoryTheory.types
Opposite.op
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.homOfLE
val
instSubsingletonOfWellFoundedLT
instNonempty 📖mathematicalCategoryTheory.Functor.WellOrderInductionData.Extension
instSubsingletonOfWellFoundedLT 📖mathematicalCategoryTheory.Functor.WellOrderInductionData.Extensionval_injective
bot_le
map_zero
CategoryTheory.FunctorToTypes.map_id_apply
Order.succ_le_of_lt
Order.lt_succ_of_not_isMax
not_isMax_iff
LT.lt.le
map_succ
Order.le_succ
le_refl
OrderHom.monotone
LE.le.trans
map_limit
map_limit 📖mathematicalOrder.IsSuccLimit
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Preorder.toLE
CategoryTheory.Functor.map
Opposite
CategoryTheory.Category.opposite
Preorder.smallCategory
CategoryTheory.types
Opposite.op
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.homOfLE
val
CategoryTheory.Functor.WellOrderInductionData.lift
Set
Set.instMembership
CategoryTheory.Functor.sections
Set.Iio
Subtype.preorder
CategoryTheory.Functor.comp
CategoryTheory.Functor.op
Monotone.functor
DFunLike.coe
OrderHom
OrderHom.instFunLike
OrderHom.Subtype.val
OrderHom.monotone
CategoryTheory.Functor.obj
LE.le.trans
LT.lt.le
map_succ 📖mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
CategoryTheory.Functor.map
Opposite
CategoryTheory.Category.opposite
Preorder.smallCategory
CategoryTheory.types
Opposite.op
Order.succ
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.homOfLE
Order.succ_le_of_lt
val
CategoryTheory.Functor.WellOrderInductionData.succ
IsMax
Preorder.toLE
not_isMax_iff
LT.lt.le
map_zero 📖mathematicalCategoryTheory.Functor.map
Opposite
CategoryTheory.Category.opposite
Preorder.smallCategory
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
CategoryTheory.types
Opposite.op
Bot.bot
OrderBot.toBot
Preorder.toLE
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.homOfLE
bot_le
val
ofLE_val 📖mathematicalPreorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
val
ofLE
CategoryTheory.Functor.map
Opposite
CategoryTheory.Category.opposite
Preorder.smallCategory
CategoryTheory.types
Opposite.op
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.homOfLE
val_injective 📖valbot_le
Order.succ_le_of_lt
not_isMax_iff
LT.lt.le
OrderHom.monotone
LE.le.trans
zero_val 📖mathematicalval
Bot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
zero

---

← Back to Index