Documentation Verification Report

Square

๐Ÿ“ Source: Mathlib/CategoryTheory/Square.lean

Statistics

MetricCount
DefinitionsmapSquare, mapSquare, Square, comp, id, ฯ„โ‚, ฯ„โ‚‚, ฯ„โ‚ƒ, ฯ„โ‚„, Xโ‚, Xโ‚‚, Xโ‚ƒ, Xโ‚„, arrowArrowEquivalence, arrowArrowEquivalence', category, evaluationโ‚, evaluationโ‚‚, evaluationโ‚ƒ, evaluationโ‚„, flip, flipEquivalence, flipFunctor, fromArrowArrowFunctor, fromArrowArrowFunctor', fโ‚โ‚‚, fโ‚โ‚ƒ, fโ‚‚โ‚„, fโ‚ƒโ‚„, isoMk, map, mapFunctor, op, opEquivalence, opFunctor, toArrowArrowFunctor, toArrowArrowFunctor', unop, unopFunctor
39
TheoremsmapSquare_map_ฯ„โ‚, mapSquare_map_ฯ„โ‚‚, mapSquare_map_ฯ„โ‚ƒ, mapSquare_map_ฯ„โ‚„, mapSquare_obj, mapSquare_app_ฯ„โ‚, mapSquare_app_ฯ„โ‚‚, mapSquare_app_ฯ„โ‚ƒ, mapSquare_app_ฯ„โ‚„, commโ‚โ‚‚, commโ‚โ‚‚_assoc, commโ‚โ‚ƒ, commโ‚โ‚ƒ_assoc, commโ‚‚โ‚„, commโ‚‚โ‚„_assoc, commโ‚ƒโ‚„, commโ‚ƒโ‚„_assoc, comp_ฯ„โ‚, comp_ฯ„โ‚‚, comp_ฯ„โ‚ƒ, comp_ฯ„โ‚„, ext, ext_iff, id_ฯ„โ‚, id_ฯ„โ‚‚, id_ฯ„โ‚ƒ, id_ฯ„โ‚„, arrowArrowEquivalence'_counitIso, arrowArrowEquivalence'_functor, arrowArrowEquivalence'_inverse, arrowArrowEquivalence'_unitIso, arrowArrowEquivalence_counitIso, arrowArrowEquivalence_functor, arrowArrowEquivalence_inverse, arrowArrowEquivalence_unitIso, category_comp_ฯ„โ‚, category_comp_ฯ„โ‚‚, category_comp_ฯ„โ‚ƒ, category_comp_ฯ„โ‚„, category_id_ฯ„โ‚, category_id_ฯ„โ‚‚, category_id_ฯ„โ‚ƒ, category_id_ฯ„โ‚„, commSq, evaluationโ‚_map, evaluationโ‚_obj, evaluationโ‚‚_map, evaluationโ‚‚_obj, evaluationโ‚ƒ_map, evaluationโ‚ƒ_obj, evaluationโ‚„_map, evaluationโ‚„_obj, fac, flipEquivalence_counitIso, flipEquivalence_functor, flipEquivalence_inverse, flipEquivalence_unitIso, flipFunctor_map_ฯ„โ‚, flipFunctor_map_ฯ„โ‚‚, flipFunctor_map_ฯ„โ‚ƒ, flipFunctor_map_ฯ„โ‚„, flipFunctor_obj, flip_Xโ‚, flip_Xโ‚‚, flip_Xโ‚ƒ, flip_Xโ‚„, flip_fโ‚โ‚‚, flip_fโ‚โ‚ƒ, flip_fโ‚‚โ‚„, flip_fโ‚ƒโ‚„, fromArrowArrowFunctor'_map_ฯ„โ‚, fromArrowArrowFunctor'_map_ฯ„โ‚‚, fromArrowArrowFunctor'_map_ฯ„โ‚ƒ, fromArrowArrowFunctor'_map_ฯ„โ‚„, fromArrowArrowFunctor'_obj_Xโ‚, fromArrowArrowFunctor'_obj_Xโ‚‚, fromArrowArrowFunctor'_obj_Xโ‚ƒ, fromArrowArrowFunctor'_obj_Xโ‚„, fromArrowArrowFunctor'_obj_fโ‚โ‚‚, fromArrowArrowFunctor'_obj_fโ‚โ‚ƒ, fromArrowArrowFunctor'_obj_fโ‚‚โ‚„, fromArrowArrowFunctor'_obj_fโ‚ƒโ‚„, fromArrowArrowFunctor_map_ฯ„โ‚, fromArrowArrowFunctor_map_ฯ„โ‚‚, fromArrowArrowFunctor_map_ฯ„โ‚ƒ, fromArrowArrowFunctor_map_ฯ„โ‚„, fromArrowArrowFunctor_obj_Xโ‚, fromArrowArrowFunctor_obj_Xโ‚‚, fromArrowArrowFunctor_obj_Xโ‚ƒ, fromArrowArrowFunctor_obj_Xโ‚„, fromArrowArrowFunctor_obj_fโ‚โ‚‚, fromArrowArrowFunctor_obj_fโ‚โ‚ƒ, fromArrowArrowFunctor_obj_fโ‚‚โ‚„, fromArrowArrowFunctor_obj_fโ‚ƒโ‚„, hom_ext, hom_ext_iff, mapFunctor_map, mapFunctor_obj, map_Xโ‚, map_Xโ‚‚, map_Xโ‚ƒ, map_Xโ‚„, map_fโ‚โ‚‚, map_fโ‚โ‚ƒ, map_fโ‚‚โ‚„, map_fโ‚ƒโ‚„, opFunctor_map_ฯ„โ‚, opFunctor_map_ฯ„โ‚‚, opFunctor_map_ฯ„โ‚ƒ, opFunctor_map_ฯ„โ‚„, opFunctor_obj, op_Xโ‚, op_Xโ‚‚, op_Xโ‚ƒ, op_Xโ‚„, op_fโ‚โ‚‚, op_fโ‚โ‚ƒ, op_fโ‚‚โ‚„, op_fโ‚ƒโ‚„, toArrowArrowFunctor'_map_left_left, toArrowArrowFunctor'_map_left_right, toArrowArrowFunctor'_map_right_left, toArrowArrowFunctor'_map_right_right, toArrowArrowFunctor'_obj_hom_left, toArrowArrowFunctor'_obj_hom_right, toArrowArrowFunctor'_obj_left_hom, toArrowArrowFunctor'_obj_left_left, toArrowArrowFunctor'_obj_left_right, toArrowArrowFunctor'_obj_right_hom, toArrowArrowFunctor'_obj_right_left, toArrowArrowFunctor'_obj_right_right, toArrowArrowFunctor_map_left_left, toArrowArrowFunctor_map_left_right, toArrowArrowFunctor_map_right_left, toArrowArrowFunctor_map_right_right, toArrowArrowFunctor_obj_hom_left, toArrowArrowFunctor_obj_hom_right, toArrowArrowFunctor_obj_left_hom, toArrowArrowFunctor_obj_left_left, toArrowArrowFunctor_obj_left_right, toArrowArrowFunctor_obj_right_hom, toArrowArrowFunctor_obj_right_left, toArrowArrowFunctor_obj_right_right, unop_Xโ‚, unop_Xโ‚‚, unop_Xโ‚ƒ, unop_Xโ‚„, unop_fโ‚โ‚‚, unop_fโ‚โ‚ƒ, unop_fโ‚‚โ‚„, unop_fโ‚ƒโ‚„
151
Total190

CategoryTheory

Definitions

NameCategoryTheorems
Square ๐Ÿ“–CompData
97 mathmath: Square.category_id_ฯ„โ‚ƒ, Square.category_comp_ฯ„โ‚‚, Square.mapFunctor_obj, Square.arrowArrowEquivalence_functor, Square.evaluationโ‚_obj, NatTrans.mapSquare_app_ฯ„โ‚, Square.fromArrowArrowFunctor_map_ฯ„โ‚ƒ, Square.mapFunctor_map, Square.toArrowArrowFunctor_obj_hom_right, NatTrans.mapSquare_app_ฯ„โ‚‚, Square.toArrowArrowFunctor'_obj_left_hom, Square.fromArrowArrowFunctor_obj_fโ‚ƒโ‚„, Square.flipEquivalence_unitIso, Square.fromArrowArrowFunctor'_obj_Xโ‚‚, Square.fromArrowArrowFunctor'_obj_Xโ‚ƒ, Square.evaluationโ‚„_map, Square.toArrowArrowFunctor_obj_left_left, Square.fromArrowArrowFunctor_obj_Xโ‚ƒ, Square.flipFunctor_map_ฯ„โ‚ƒ, Square.fromArrowArrowFunctor'_map_ฯ„โ‚ƒ, Square.fromArrowArrowFunctor_obj_Xโ‚‚, Functor.mapSquare_map_ฯ„โ‚, Square.category_id_ฯ„โ‚„, Square.toArrowArrowFunctor'_obj_right_right, Square.toArrowArrowFunctor_map_right_right, Square.flipEquivalence_inverse, Square.evaluationโ‚‚_map, Square.toArrowArrowFunctor'_map_right_left, Square.toArrowArrowFunctor_obj_right_right, Square.fromArrowArrowFunctor_obj_fโ‚โ‚ƒ, Square.arrowArrowEquivalence_inverse, Square.category_id_ฯ„โ‚, Square.fromArrowArrowFunctor_obj_Xโ‚, Square.evaluationโ‚_map, Square.category_comp_ฯ„โ‚ƒ, Square.toArrowArrowFunctor_obj_hom_left, Square.opFunctor_map_ฯ„โ‚, Square.flipFunctor_map_ฯ„โ‚, Square.opFunctor_obj, Square.category_comp_ฯ„โ‚, Square.toArrowArrowFunctor'_map_left_right, Square.fromArrowArrowFunctor'_obj_fโ‚โ‚ƒ, Functor.mapSquare_map_ฯ„โ‚„, Square.opFunctor_map_ฯ„โ‚‚, Square.flipFunctor_obj, Square.arrowArrowEquivalence'_inverse, Square.fromArrowArrowFunctor_obj_Xโ‚„, Square.fromArrowArrowFunctor'_obj_Xโ‚„, Functor.mapSquare_obj, Square.evaluationโ‚„_obj, Square.evaluationโ‚ƒ_map, Square.fromArrowArrowFunctor_obj_fโ‚โ‚‚, Square.toArrowArrowFunctor_map_left_left, Square.fromArrowArrowFunctor'_obj_Xโ‚, Square.toArrowArrowFunctor_obj_right_hom, Square.toArrowArrowFunctor_obj_right_left, Square.fromArrowArrowFunctor'_map_ฯ„โ‚„, Square.toArrowArrowFunctor_obj_left_right, Square.opFunctor_map_ฯ„โ‚ƒ, Square.toArrowArrowFunctor'_map_left_left, Square.fromArrowArrowFunctor_obj_fโ‚‚โ‚„, Functor.mapSquare_map_ฯ„โ‚‚, Square.evaluationโ‚‚_obj, Square.fromArrowArrowFunctor'_map_ฯ„โ‚‚, Square.fromArrowArrowFunctor_map_ฯ„โ‚, Square.arrowArrowEquivalence'_unitIso, Square.arrowArrowEquivalence'_functor, NatTrans.mapSquare_app_ฯ„โ‚„, Square.fromArrowArrowFunctor'_map_ฯ„โ‚, Square.toArrowArrowFunctor'_map_right_right, Functor.mapSquare_map_ฯ„โ‚ƒ, Square.fromArrowArrowFunctor_map_ฯ„โ‚‚, Square.toArrowArrowFunctor'_obj_hom_right, Square.toArrowArrowFunctor_map_left_right, Square.toArrowArrowFunctor_map_right_left, Square.toArrowArrowFunctor'_obj_left_left, Square.arrowArrowEquivalence'_counitIso, Square.category_id_ฯ„โ‚‚, Square.toArrowArrowFunctor'_obj_hom_left, Square.arrowArrowEquivalence_unitIso, NatTrans.mapSquare_app_ฯ„โ‚ƒ, Square.category_comp_ฯ„โ‚„, Square.opFunctor_map_ฯ„โ‚„, Square.flipFunctor_map_ฯ„โ‚‚, Square.toArrowArrowFunctor'_obj_right_left, Square.fromArrowArrowFunctor'_obj_fโ‚‚โ‚„, Square.flipFunctor_map_ฯ„โ‚„, Square.toArrowArrowFunctor'_obj_right_hom, Square.toArrowArrowFunctor'_obj_left_right, Square.toArrowArrowFunctor_obj_left_hom, Square.fromArrowArrowFunctor'_obj_fโ‚โ‚‚, Square.flipEquivalence_functor, Square.evaluationโ‚ƒ_obj, Square.arrowArrowEquivalence_counitIso, Square.fromArrowArrowFunctor'_obj_fโ‚ƒโ‚„, Square.flipEquivalence_counitIso, Square.fromArrowArrowFunctor_map_ฯ„โ‚„

CategoryTheory.Functor

Definitions

NameCategoryTheorems
mapSquare ๐Ÿ“–CompOp
10 mathmath: CategoryTheory.Square.mapFunctor_obj, CategoryTheory.NatTrans.mapSquare_app_ฯ„โ‚, CategoryTheory.NatTrans.mapSquare_app_ฯ„โ‚‚, mapSquare_map_ฯ„โ‚, mapSquare_map_ฯ„โ‚„, mapSquare_obj, mapSquare_map_ฯ„โ‚‚, CategoryTheory.NatTrans.mapSquare_app_ฯ„โ‚„, mapSquare_map_ฯ„โ‚ƒ, CategoryTheory.NatTrans.mapSquare_app_ฯ„โ‚ƒ

Theorems

NameKindAssumesProvesValidatesDepends On
mapSquare_map_ฯ„โ‚ ๐Ÿ“–mathematicalโ€”CategoryTheory.Square.Hom.ฯ„โ‚
CategoryTheory.Square.map
map
CategoryTheory.Square
CategoryTheory.Square.category
mapSquare
CategoryTheory.Square.Xโ‚
โ€”โ€”
mapSquare_map_ฯ„โ‚‚ ๐Ÿ“–mathematicalโ€”CategoryTheory.Square.Hom.ฯ„โ‚‚
CategoryTheory.Square.map
map
CategoryTheory.Square
CategoryTheory.Square.category
mapSquare
CategoryTheory.Square.Xโ‚‚
โ€”โ€”
mapSquare_map_ฯ„โ‚ƒ ๐Ÿ“–mathematicalโ€”CategoryTheory.Square.Hom.ฯ„โ‚ƒ
CategoryTheory.Square.map
map
CategoryTheory.Square
CategoryTheory.Square.category
mapSquare
CategoryTheory.Square.Xโ‚ƒ
โ€”โ€”
mapSquare_map_ฯ„โ‚„ ๐Ÿ“–mathematicalโ€”CategoryTheory.Square.Hom.ฯ„โ‚„
CategoryTheory.Square.map
map
CategoryTheory.Square
CategoryTheory.Square.category
mapSquare
CategoryTheory.Square.Xโ‚„
โ€”โ€”
mapSquare_obj ๐Ÿ“–mathematicalโ€”obj
CategoryTheory.Square
CategoryTheory.Square.category
mapSquare
CategoryTheory.Square.map
โ€”โ€”

CategoryTheory.NatTrans

Definitions

NameCategoryTheorems
mapSquare ๐Ÿ“–CompOp
5 mathmath: mapSquare_app_ฯ„โ‚, CategoryTheory.Square.mapFunctor_map, mapSquare_app_ฯ„โ‚‚, mapSquare_app_ฯ„โ‚„, mapSquare_app_ฯ„โ‚ƒ

Theorems

NameKindAssumesProvesValidatesDepends On
mapSquare_app_ฯ„โ‚ ๐Ÿ“–mathematicalโ€”CategoryTheory.Square.Hom.ฯ„โ‚
CategoryTheory.Functor.obj
CategoryTheory.Square
CategoryTheory.Square.category
CategoryTheory.Functor.mapSquare
app
mapSquare
CategoryTheory.Square.Xโ‚
โ€”โ€”
mapSquare_app_ฯ„โ‚‚ ๐Ÿ“–mathematicalโ€”CategoryTheory.Square.Hom.ฯ„โ‚‚
CategoryTheory.Functor.obj
CategoryTheory.Square
CategoryTheory.Square.category
CategoryTheory.Functor.mapSquare
app
mapSquare
CategoryTheory.Square.Xโ‚‚
โ€”โ€”
mapSquare_app_ฯ„โ‚ƒ ๐Ÿ“–mathematicalโ€”CategoryTheory.Square.Hom.ฯ„โ‚ƒ
CategoryTheory.Functor.obj
CategoryTheory.Square
CategoryTheory.Square.category
CategoryTheory.Functor.mapSquare
app
mapSquare
CategoryTheory.Square.Xโ‚ƒ
โ€”โ€”
mapSquare_app_ฯ„โ‚„ ๐Ÿ“–mathematicalโ€”CategoryTheory.Square.Hom.ฯ„โ‚„
CategoryTheory.Functor.obj
CategoryTheory.Square
CategoryTheory.Square.category
CategoryTheory.Functor.mapSquare
app
mapSquare
CategoryTheory.Square.Xโ‚„
โ€”โ€”

CategoryTheory.Square

Definitions

NameCategoryTheorems
Xโ‚ ๐Ÿ“–CompOp
59 mathmath: unop_Xโ‚, evaluationโ‚_obj, CategoryTheory.NatTrans.mapSquare_app_ฯ„โ‚, toArrowArrowFunctor_obj_hom_right, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.shortComplex_Xโ‚, Hom.commโ‚โ‚ƒ_assoc, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.mono_fโ‚โ‚ƒ, toArrowArrowFunctor_obj_left_left, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.fromBiprod_ฮด_assoc, Hom.commโ‚โ‚ƒ, op_fโ‚‚โ‚„, CategoryTheory.Functor.mapSquare_map_ฯ„โ‚, toArrowArrowFunctor_map_right_right, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.mkโ‚€_f_comp_biprodAddEquiv_symm_biprodIsoProd_hom, toArrowArrowFunctor'_map_right_left, map_fโ‚โ‚ƒ, category_id_ฯ„โ‚, fromArrowArrowFunctor_obj_Xโ‚, map_Xโ‚, Opens.coe_mayerVietorisSquare_Xโ‚, fac, op_Xโ‚, toArrowArrowFunctor_obj_hom_left, IsPullback.mono_fโ‚โ‚‚, category_comp_ฯ„โ‚, toArrowArrowFunctor'_map_left_right, Hom.comp_ฯ„โ‚, flip_Xโ‚, commSq, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.ฮด_toBiprod_assoc, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.ฮด_toBiprod, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.sheafCondition_iff_bijective_toPullbackObj, unop_fโ‚‚โ‚„, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.fromBiprod_biprodIsoProd_inv_apply, Hom.commโ‚โ‚‚_assoc, toArrowArrowFunctor_map_left_left, fromArrowArrowFunctor'_obj_Xโ‚, isPushout_iff, map_fโ‚โ‚‚, toArrowArrowFunctor'_map_left_left, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.toBiprod_fromBiprod_assoc, op_Xโ‚„, Hom.commโ‚โ‚‚, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.shortComplex_f, IsPullback.mono_fโ‚โ‚ƒ, toArrowArrowFunctor'_map_right_right, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.SheafCondition.bijective_toPullbackObj, toArrowArrowFunctor'_obj_hom_right, toArrowArrowFunctor_map_left_right, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.toBiprod_fromBiprod, toArrowArrowFunctor_map_right_left, toArrowArrowFunctor'_obj_left_left, unop_Xโ‚„, toArrowArrowFunctor'_obj_hom_left, Hom.id_ฯ„โ‚, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.fromBiprod_ฮด, opFunctor_map_ฯ„โ‚„, op_fโ‚ƒโ‚„, unop_fโ‚ƒโ‚„
Xโ‚‚ ๐Ÿ“–CompOp
61 mathmath: category_comp_ฯ„โ‚‚, unop_Xโ‚‚, Hom.commโ‚‚โ‚„, toArrowArrowFunctor_obj_hom_right, CategoryTheory.NatTrans.mapSquare_app_ฯ„โ‚‚, op_fโ‚โ‚‚, Hom.id_ฯ„โ‚‚, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.biprodAddEquiv_symm_biprodIsoProd_hom_toBiprod_apply, fromArrowArrowFunctor'_obj_Xโ‚‚, Hom.comp_ฯ„โ‚‚, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.fromBiprod_ฮด_assoc, unop_fโ‚โ‚‚, op_fโ‚‚โ‚„, fromArrowArrowFunctor_obj_Xโ‚‚, toArrowArrowFunctor_map_right_right, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.mkโ‚€_f_comp_biprodAddEquiv_symm_biprodIsoProd_hom, Hom.commโ‚‚โ‚„_assoc, toArrowArrowFunctor'_map_right_left, Opens.mayerVietorisSquare_Xโ‚‚, isPullback_iff, flip_Xโ‚ƒ, fac, toArrowArrowFunctor_obj_hom_left, IsPullback.mono_fโ‚โ‚‚, toArrowArrowFunctor'_map_left_right, opFunctor_map_ฯ„โ‚‚, commSq, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.ฮด_toBiprod_assoc, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.ฮด_toBiprod, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.sheafCondition_iff_bijective_toPullbackObj, op_Xโ‚‚, unop_fโ‚‚โ‚„, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.fromBiprod_biprodIsoProd_inv_apply, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.shortComplex_g, Hom.commโ‚โ‚‚_assoc, toArrowArrowFunctor_map_left_left, IsPushout.epi_fโ‚‚โ‚„, isPushout_iff, toArrowArrowFunctor_obj_right_left, map_fโ‚โ‚‚, toArrowArrowFunctor'_map_left_left, flip_Xโ‚‚, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.toBiprod_fromBiprod_assoc, CategoryTheory.Functor.mapSquare_map_ฯ„โ‚‚, evaluationโ‚‚_obj, Hom.commโ‚โ‚‚, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.shortComplex_f, map_Xโ‚‚, toArrowArrowFunctor'_map_right_right, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.SheafCondition.bijective_toPullbackObj, toArrowArrowFunctor'_obj_hom_right, toArrowArrowFunctor_map_left_right, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.toBiprod_fromBiprod, toArrowArrowFunctor_map_right_left, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.shortComplex_Xโ‚‚, category_id_ฯ„โ‚‚, toArrowArrowFunctor'_obj_hom_left, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.fromBiprod_ฮด, toArrowArrowFunctor'_obj_left_right, map_fโ‚‚โ‚„, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.toBiprod_apply
Xโ‚ƒ ๐Ÿ“–CompOp
62 mathmath: category_id_ฯ„โ‚ƒ, Opens.mayerVietorisSquare_Xโ‚ƒ, toArrowArrowFunctor_obj_hom_right, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.biprodAddEquiv_symm_biprodIsoProd_hom_toBiprod_apply, Hom.commโ‚โ‚ƒ_assoc, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.mono_fโ‚โ‚ƒ, fromArrowArrowFunctor'_obj_Xโ‚ƒ, Hom.id_ฯ„โ‚ƒ, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.fromBiprod_ฮด_assoc, Hom.commโ‚โ‚ƒ, fromArrowArrowFunctor_obj_Xโ‚ƒ, op_Xโ‚ƒ, toArrowArrowFunctor_map_right_right, Hom.commโ‚ƒโ‚„, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.mkโ‚€_f_comp_biprodAddEquiv_symm_biprodIsoProd_hom, unop_Xโ‚ƒ, toArrowArrowFunctor'_map_right_left, map_fโ‚โ‚ƒ, map_fโ‚ƒโ‚„, isPullback_iff, flip_Xโ‚ƒ, fac, category_comp_ฯ„โ‚ƒ, toArrowArrowFunctor_obj_hom_left, unop_fโ‚โ‚ƒ, toArrowArrowFunctor'_map_left_right, commSq, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.ฮด_toBiprod_assoc, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.ฮด_toBiprod, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.sheafCondition_iff_bijective_toPullbackObj, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.fromBiprod_biprodIsoProd_inv_apply, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.shortComplex_g, toArrowArrowFunctor_map_left_left, isPushout_iff, toArrowArrowFunctor_obj_left_right, opFunctor_map_ฯ„โ‚ƒ, Hom.commโ‚ƒโ‚„_assoc, toArrowArrowFunctor'_map_left_left, flip_Xโ‚‚, op_fโ‚โ‚ƒ, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.toBiprod_fromBiprod_assoc, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.shortComplex_f, IsPushout.epi_fโ‚ƒโ‚„, map_Xโ‚ƒ, IsPullback.mono_fโ‚โ‚ƒ, toArrowArrowFunctor'_map_right_right, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.SheafCondition.bijective_toPullbackObj, CategoryTheory.Functor.mapSquare_map_ฯ„โ‚ƒ, toArrowArrowFunctor'_obj_hom_right, toArrowArrowFunctor_map_left_right, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.toBiprod_fromBiprod, toArrowArrowFunctor_map_right_left, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.shortComplex_Xโ‚‚, toArrowArrowFunctor'_obj_hom_left, CategoryTheory.NatTrans.mapSquare_app_ฯ„โ‚ƒ, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.fromBiprod_ฮด, toArrowArrowFunctor'_obj_right_left, op_fโ‚ƒโ‚„, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.toBiprod_apply, evaluationโ‚ƒ_obj, unop_fโ‚ƒโ‚„, Hom.comp_ฯ„โ‚ƒ
Xโ‚„ ๐Ÿ“–CompOp
60 mathmath: CategoryTheory.GrothendieckTopology.MayerVietorisSquare.shortComplex_Xโ‚ƒ, map_Xโ‚„, unop_Xโ‚, flip_Xโ‚„, Hom.commโ‚‚โ‚„, toArrowArrowFunctor_obj_hom_right, op_fโ‚โ‚‚, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.SheafCondition.map_fโ‚‚โ‚„_op_glue, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.biprodAddEquiv_symm_biprodIsoProd_hom_toBiprod_apply, Hom.id_ฯ„โ‚„, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.fromBiprod_ฮด_assoc, unop_fโ‚โ‚‚, category_id_ฯ„โ‚„, toArrowArrowFunctor'_obj_right_right, toArrowArrowFunctor_map_right_right, Hom.commโ‚ƒโ‚„, Hom.commโ‚‚โ‚„_assoc, toArrowArrowFunctor'_map_right_left, toArrowArrowFunctor_obj_right_right, map_fโ‚ƒโ‚„, isPullback_iff, fac, op_Xโ‚, toArrowArrowFunctor_obj_hom_left, opFunctor_map_ฯ„โ‚, unop_fโ‚โ‚ƒ, toArrowArrowFunctor'_map_left_right, CategoryTheory.Functor.mapSquare_map_ฯ„โ‚„, commSq, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.ฮด_toBiprod_assoc, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.ฮด_toBiprod, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.sheafCondition_iff_bijective_toPullbackObj, fromArrowArrowFunctor_obj_Xโ‚„, Hom.comp_ฯ„โ‚„, fromArrowArrowFunctor'_obj_Xโ‚„, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.shortComplex_g, evaluationโ‚„_obj, toArrowArrowFunctor_map_left_left, IsPushout.epi_fโ‚‚โ‚„, Hom.commโ‚ƒโ‚„_assoc, toArrowArrowFunctor'_map_left_left, op_fโ‚โ‚ƒ, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.toBiprod_fromBiprod_assoc, op_Xโ‚„, IsPushout.epi_fโ‚ƒโ‚„, CategoryTheory.NatTrans.mapSquare_app_ฯ„โ‚„, Opens.coe_mayerVietorisSquare_Xโ‚„, toArrowArrowFunctor'_map_right_right, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.SheafCondition.bijective_toPullbackObj, toArrowArrowFunctor'_obj_hom_right, toArrowArrowFunctor_map_left_right, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.toBiprod_fromBiprod, toArrowArrowFunctor_map_right_left, unop_Xโ‚„, toArrowArrowFunctor'_obj_hom_left, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.fromBiprod_ฮด, category_comp_ฯ„โ‚„, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.SheafCondition.map_fโ‚ƒโ‚„_op_glue, map_fโ‚‚โ‚„, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.toBiprod_apply
arrowArrowEquivalence ๐Ÿ“–CompOp
4 mathmath: arrowArrowEquivalence_functor, arrowArrowEquivalence_inverse, arrowArrowEquivalence_unitIso, arrowArrowEquivalence_counitIso
arrowArrowEquivalence' ๐Ÿ“–CompOp
4 mathmath: arrowArrowEquivalence'_inverse, arrowArrowEquivalence'_unitIso, arrowArrowEquivalence'_functor, arrowArrowEquivalence'_counitIso
category ๐Ÿ“–CompOp
97 mathmath: category_id_ฯ„โ‚ƒ, category_comp_ฯ„โ‚‚, mapFunctor_obj, arrowArrowEquivalence_functor, evaluationโ‚_obj, CategoryTheory.NatTrans.mapSquare_app_ฯ„โ‚, fromArrowArrowFunctor_map_ฯ„โ‚ƒ, mapFunctor_map, toArrowArrowFunctor_obj_hom_right, CategoryTheory.NatTrans.mapSquare_app_ฯ„โ‚‚, toArrowArrowFunctor'_obj_left_hom, fromArrowArrowFunctor_obj_fโ‚ƒโ‚„, flipEquivalence_unitIso, fromArrowArrowFunctor'_obj_Xโ‚‚, fromArrowArrowFunctor'_obj_Xโ‚ƒ, evaluationโ‚„_map, toArrowArrowFunctor_obj_left_left, fromArrowArrowFunctor_obj_Xโ‚ƒ, flipFunctor_map_ฯ„โ‚ƒ, fromArrowArrowFunctor'_map_ฯ„โ‚ƒ, fromArrowArrowFunctor_obj_Xโ‚‚, CategoryTheory.Functor.mapSquare_map_ฯ„โ‚, category_id_ฯ„โ‚„, toArrowArrowFunctor'_obj_right_right, toArrowArrowFunctor_map_right_right, flipEquivalence_inverse, evaluationโ‚‚_map, toArrowArrowFunctor'_map_right_left, toArrowArrowFunctor_obj_right_right, fromArrowArrowFunctor_obj_fโ‚โ‚ƒ, arrowArrowEquivalence_inverse, category_id_ฯ„โ‚, fromArrowArrowFunctor_obj_Xโ‚, evaluationโ‚_map, category_comp_ฯ„โ‚ƒ, toArrowArrowFunctor_obj_hom_left, opFunctor_map_ฯ„โ‚, flipFunctor_map_ฯ„โ‚, opFunctor_obj, category_comp_ฯ„โ‚, toArrowArrowFunctor'_map_left_right, fromArrowArrowFunctor'_obj_fโ‚โ‚ƒ, CategoryTheory.Functor.mapSquare_map_ฯ„โ‚„, opFunctor_map_ฯ„โ‚‚, flipFunctor_obj, arrowArrowEquivalence'_inverse, fromArrowArrowFunctor_obj_Xโ‚„, fromArrowArrowFunctor'_obj_Xโ‚„, CategoryTheory.Functor.mapSquare_obj, evaluationโ‚„_obj, evaluationโ‚ƒ_map, fromArrowArrowFunctor_obj_fโ‚โ‚‚, toArrowArrowFunctor_map_left_left, fromArrowArrowFunctor'_obj_Xโ‚, toArrowArrowFunctor_obj_right_hom, toArrowArrowFunctor_obj_right_left, fromArrowArrowFunctor'_map_ฯ„โ‚„, toArrowArrowFunctor_obj_left_right, opFunctor_map_ฯ„โ‚ƒ, toArrowArrowFunctor'_map_left_left, fromArrowArrowFunctor_obj_fโ‚‚โ‚„, CategoryTheory.Functor.mapSquare_map_ฯ„โ‚‚, evaluationโ‚‚_obj, fromArrowArrowFunctor'_map_ฯ„โ‚‚, fromArrowArrowFunctor_map_ฯ„โ‚, arrowArrowEquivalence'_unitIso, arrowArrowEquivalence'_functor, CategoryTheory.NatTrans.mapSquare_app_ฯ„โ‚„, fromArrowArrowFunctor'_map_ฯ„โ‚, toArrowArrowFunctor'_map_right_right, CategoryTheory.Functor.mapSquare_map_ฯ„โ‚ƒ, fromArrowArrowFunctor_map_ฯ„โ‚‚, toArrowArrowFunctor'_obj_hom_right, toArrowArrowFunctor_map_left_right, toArrowArrowFunctor_map_right_left, toArrowArrowFunctor'_obj_left_left, arrowArrowEquivalence'_counitIso, category_id_ฯ„โ‚‚, toArrowArrowFunctor'_obj_hom_left, arrowArrowEquivalence_unitIso, CategoryTheory.NatTrans.mapSquare_app_ฯ„โ‚ƒ, category_comp_ฯ„โ‚„, opFunctor_map_ฯ„โ‚„, flipFunctor_map_ฯ„โ‚‚, toArrowArrowFunctor'_obj_right_left, fromArrowArrowFunctor'_obj_fโ‚‚โ‚„, flipFunctor_map_ฯ„โ‚„, toArrowArrowFunctor'_obj_right_hom, toArrowArrowFunctor'_obj_left_right, toArrowArrowFunctor_obj_left_hom, fromArrowArrowFunctor'_obj_fโ‚โ‚‚, flipEquivalence_functor, evaluationโ‚ƒ_obj, arrowArrowEquivalence_counitIso, fromArrowArrowFunctor'_obj_fโ‚ƒโ‚„, flipEquivalence_counitIso, fromArrowArrowFunctor_map_ฯ„โ‚„
evaluationโ‚ ๐Ÿ“–CompOp
2 mathmath: evaluationโ‚_obj, evaluationโ‚_map
evaluationโ‚‚ ๐Ÿ“–CompOp
2 mathmath: evaluationโ‚‚_map, evaluationโ‚‚_obj
evaluationโ‚ƒ ๐Ÿ“–CompOp
2 mathmath: evaluationโ‚ƒ_map, evaluationโ‚ƒ_obj
evaluationโ‚„ ๐Ÿ“–CompOp
2 mathmath: evaluationโ‚„_map, evaluationโ‚„_obj
flip ๐Ÿ“–CompOp
15 mathmath: flip_Xโ‚„, flip_fโ‚ƒโ‚„, IsPullback.flip, flipFunctor_map_ฯ„โ‚ƒ, flip_Xโ‚ƒ, flipFunctor_map_ฯ„โ‚, flip_Xโ‚, flipFunctor_obj, flip_Xโ‚‚, flip_fโ‚โ‚‚, flip_fโ‚‚โ‚„, IsPushout.flip, flip_fโ‚โ‚ƒ, flipFunctor_map_ฯ„โ‚‚, flipFunctor_map_ฯ„โ‚„
flipEquivalence ๐Ÿ“–CompOp
4 mathmath: flipEquivalence_unitIso, flipEquivalence_inverse, flipEquivalence_functor, flipEquivalence_counitIso
flipFunctor ๐Ÿ“–CompOp
8 mathmath: flipFunctor_map_ฯ„โ‚ƒ, flipEquivalence_inverse, flipFunctor_map_ฯ„โ‚, flipFunctor_obj, flipFunctor_map_ฯ„โ‚‚, flipFunctor_map_ฯ„โ‚„, flipEquivalence_functor, flipEquivalence_counitIso
fromArrowArrowFunctor ๐Ÿ“–CompOp
14 mathmath: fromArrowArrowFunctor_map_ฯ„โ‚ƒ, fromArrowArrowFunctor_obj_fโ‚ƒโ‚„, fromArrowArrowFunctor_obj_Xโ‚ƒ, fromArrowArrowFunctor_obj_Xโ‚‚, fromArrowArrowFunctor_obj_fโ‚โ‚ƒ, arrowArrowEquivalence_inverse, fromArrowArrowFunctor_obj_Xโ‚, fromArrowArrowFunctor_obj_Xโ‚„, fromArrowArrowFunctor_obj_fโ‚โ‚‚, fromArrowArrowFunctor_obj_fโ‚‚โ‚„, fromArrowArrowFunctor_map_ฯ„โ‚, fromArrowArrowFunctor_map_ฯ„โ‚‚, arrowArrowEquivalence_counitIso, fromArrowArrowFunctor_map_ฯ„โ‚„
fromArrowArrowFunctor' ๐Ÿ“–CompOp
14 mathmath: fromArrowArrowFunctor'_obj_Xโ‚‚, fromArrowArrowFunctor'_obj_Xโ‚ƒ, fromArrowArrowFunctor'_map_ฯ„โ‚ƒ, fromArrowArrowFunctor'_obj_fโ‚โ‚ƒ, arrowArrowEquivalence'_inverse, fromArrowArrowFunctor'_obj_Xโ‚„, fromArrowArrowFunctor'_obj_Xโ‚, fromArrowArrowFunctor'_map_ฯ„โ‚„, fromArrowArrowFunctor'_map_ฯ„โ‚‚, fromArrowArrowFunctor'_map_ฯ„โ‚, arrowArrowEquivalence'_counitIso, fromArrowArrowFunctor'_obj_fโ‚‚โ‚„, fromArrowArrowFunctor'_obj_fโ‚โ‚‚, fromArrowArrowFunctor'_obj_fโ‚ƒโ‚„
fโ‚โ‚‚ ๐Ÿ“–CompOp
31 mathmath: op_fโ‚โ‚‚, toArrowArrowFunctor'_obj_left_hom, unop_fโ‚โ‚‚, op_fโ‚‚โ‚„, toArrowArrowFunctor_map_right_right, toArrowArrowFunctor'_map_right_left, fac, toArrowArrowFunctor_obj_hom_left, IsPullback.mono_fโ‚โ‚‚, toArrowArrowFunctor'_map_left_right, commSq, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.sheafCondition_iff_bijective_toPullbackObj, unop_fโ‚‚โ‚„, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.fromBiprod_biprodIsoProd_inv_apply, Hom.commโ‚โ‚‚_assoc, fromArrowArrowFunctor_obj_fโ‚โ‚‚, toArrowArrowFunctor_map_left_left, isPushout_iff, map_fโ‚โ‚‚, toArrowArrowFunctor'_map_left_left, flip_fโ‚โ‚‚, Hom.commโ‚โ‚‚, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.shortComplex_f, toArrowArrowFunctor'_map_right_right, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.SheafCondition.bijective_toPullbackObj, toArrowArrowFunctor'_obj_hom_right, toArrowArrowFunctor_map_left_right, toArrowArrowFunctor_map_right_left, flip_fโ‚โ‚ƒ, toArrowArrowFunctor'_obj_hom_left, fromArrowArrowFunctor'_obj_fโ‚โ‚‚
fโ‚โ‚ƒ ๐Ÿ“–CompOp
32 mathmath: toArrowArrowFunctor_obj_hom_right, Hom.commโ‚โ‚ƒ_assoc, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.mono_fโ‚โ‚ƒ, Hom.commโ‚โ‚ƒ, toArrowArrowFunctor_map_right_right, toArrowArrowFunctor'_map_right_left, map_fโ‚โ‚ƒ, fromArrowArrowFunctor_obj_fโ‚โ‚ƒ, fac, toArrowArrowFunctor_obj_hom_left, unop_fโ‚โ‚ƒ, toArrowArrowFunctor'_map_left_right, fromArrowArrowFunctor'_obj_fโ‚โ‚ƒ, commSq, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.sheafCondition_iff_bijective_toPullbackObj, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.fromBiprod_biprodIsoProd_inv_apply, toArrowArrowFunctor_map_left_left, isPushout_iff, toArrowArrowFunctor'_map_left_left, op_fโ‚โ‚ƒ, flip_fโ‚โ‚‚, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.shortComplex_f, IsPullback.mono_fโ‚โ‚ƒ, toArrowArrowFunctor'_map_right_right, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.SheafCondition.bijective_toPullbackObj, toArrowArrowFunctor_map_left_right, toArrowArrowFunctor_map_right_left, flip_fโ‚โ‚ƒ, toArrowArrowFunctor'_obj_hom_left, op_fโ‚ƒโ‚„, toArrowArrowFunctor_obj_left_hom, unop_fโ‚ƒโ‚„
fโ‚‚โ‚„ ๐Ÿ“–CompOp
30 mathmath: flip_fโ‚ƒโ‚„, Hom.commโ‚‚โ‚„, toArrowArrowFunctor_obj_hom_right, op_fโ‚โ‚‚, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.SheafCondition.map_fโ‚‚โ‚„_op_glue, unop_fโ‚โ‚‚, op_fโ‚‚โ‚„, toArrowArrowFunctor_map_right_right, Hom.commโ‚‚โ‚„_assoc, toArrowArrowFunctor'_map_right_left, isPullback_iff, fac, toArrowArrowFunctor_obj_hom_left, toArrowArrowFunctor'_map_left_right, commSq, unop_fโ‚‚โ‚„, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.shortComplex_g, toArrowArrowFunctor_map_left_left, IsPushout.epi_fโ‚‚โ‚„, toArrowArrowFunctor_obj_right_hom, toArrowArrowFunctor'_map_left_left, fromArrowArrowFunctor_obj_fโ‚‚โ‚„, flip_fโ‚‚โ‚„, toArrowArrowFunctor'_map_right_right, toArrowArrowFunctor'_obj_hom_right, toArrowArrowFunctor_map_left_right, toArrowArrowFunctor_map_right_left, fromArrowArrowFunctor'_obj_fโ‚‚โ‚„, map_fโ‚‚โ‚„, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.toBiprod_apply
fโ‚ƒโ‚„ ๐Ÿ“–CompOp
30 mathmath: flip_fโ‚ƒโ‚„, toArrowArrowFunctor_obj_hom_right, fromArrowArrowFunctor_obj_fโ‚ƒโ‚„, toArrowArrowFunctor_map_right_right, Hom.commโ‚ƒโ‚„, toArrowArrowFunctor'_map_right_left, map_fโ‚ƒโ‚„, isPullback_iff, fac, unop_fโ‚โ‚ƒ, toArrowArrowFunctor'_map_left_right, commSq, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.shortComplex_g, toArrowArrowFunctor_map_left_left, Hom.commโ‚ƒโ‚„_assoc, toArrowArrowFunctor'_map_left_left, op_fโ‚โ‚ƒ, IsPushout.epi_fโ‚ƒโ‚„, flip_fโ‚‚โ‚„, toArrowArrowFunctor'_map_right_right, toArrowArrowFunctor'_obj_hom_right, toArrowArrowFunctor_map_left_right, toArrowArrowFunctor_map_right_left, toArrowArrowFunctor'_obj_hom_left, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.SheafCondition.map_fโ‚ƒโ‚„_op_glue, op_fโ‚ƒโ‚„, toArrowArrowFunctor'_obj_right_hom, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.toBiprod_apply, unop_fโ‚ƒโ‚„, fromArrowArrowFunctor'_obj_fโ‚ƒโ‚„
isoMk ๐Ÿ“–CompOpโ€”
map ๐Ÿ“–CompOp
23 mathmath: map_Xโ‚„, IsPullback.map_iff, CategoryTheory.Sheaf.isPullback_square_op_map_yoneda_presheafToSheaf_yoneda_iff, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.isPushout, CategoryTheory.Functor.mapSquare_map_ฯ„โ‚, map_fโ‚โ‚ƒ, map_fโ‚ƒโ‚„, map_Xโ‚, CategoryTheory.Functor.mapSquare_map_ฯ„โ‚„, IsPushout.map_iff, CategoryTheory.Functor.mapSquare_obj, IsPullback.map, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.isPushoutAddCommGrpFreeSheaf, map_fโ‚โ‚‚, CategoryTheory.Functor.mapSquare_map_ฯ„โ‚‚, isPullback_iff_map_coyoneda_isPullback, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.shortComplex_f, map_Xโ‚‚, map_Xโ‚ƒ, CategoryTheory.Functor.mapSquare_map_ฯ„โ‚ƒ, IsPushout.map, map_fโ‚‚โ‚„, isPushout_iff_op_map_yoneda_isPullback
mapFunctor ๐Ÿ“–CompOp
2 mathmath: mapFunctor_obj, mapFunctor_map
op ๐Ÿ“–CompOp
17 mathmath: op_fโ‚โ‚‚, CategoryTheory.Sheaf.isPullback_square_op_map_yoneda_presheafToSheaf_yoneda_iff, op_fโ‚‚โ‚„, op_Xโ‚ƒ, op_Xโ‚, opFunctor_map_ฯ„โ‚, opFunctor_obj, opFunctor_map_ฯ„โ‚‚, op_Xโ‚‚, IsPullback.op, opFunctor_map_ฯ„โ‚ƒ, op_fโ‚โ‚ƒ, op_Xโ‚„, IsPushout.op, opFunctor_map_ฯ„โ‚„, op_fโ‚ƒโ‚„, isPushout_iff_op_map_yoneda_isPullback
opEquivalence ๐Ÿ“–CompOpโ€”
opFunctor ๐Ÿ“–CompOp
5 mathmath: opFunctor_map_ฯ„โ‚, opFunctor_obj, opFunctor_map_ฯ„โ‚‚, opFunctor_map_ฯ„โ‚ƒ, opFunctor_map_ฯ„โ‚„
toArrowArrowFunctor ๐Ÿ“–CompOp
14 mathmath: arrowArrowEquivalence_functor, toArrowArrowFunctor_obj_hom_right, toArrowArrowFunctor_obj_left_left, toArrowArrowFunctor_map_right_right, toArrowArrowFunctor_obj_right_right, toArrowArrowFunctor_obj_hom_left, toArrowArrowFunctor_map_left_left, toArrowArrowFunctor_obj_right_hom, toArrowArrowFunctor_obj_right_left, toArrowArrowFunctor_obj_left_right, toArrowArrowFunctor_map_left_right, toArrowArrowFunctor_map_right_left, toArrowArrowFunctor_obj_left_hom, arrowArrowEquivalence_counitIso
toArrowArrowFunctor' ๐Ÿ“–CompOp
14 mathmath: toArrowArrowFunctor'_obj_left_hom, toArrowArrowFunctor'_obj_right_right, toArrowArrowFunctor'_map_right_left, toArrowArrowFunctor'_map_left_right, toArrowArrowFunctor'_map_left_left, arrowArrowEquivalence'_functor, toArrowArrowFunctor'_map_right_right, toArrowArrowFunctor'_obj_hom_right, toArrowArrowFunctor'_obj_left_left, arrowArrowEquivalence'_counitIso, toArrowArrowFunctor'_obj_hom_left, toArrowArrowFunctor'_obj_right_left, toArrowArrowFunctor'_obj_right_hom, toArrowArrowFunctor'_obj_left_right
unop ๐Ÿ“–CompOp
10 mathmath: unop_Xโ‚‚, unop_Xโ‚, unop_fโ‚โ‚‚, unop_Xโ‚ƒ, unop_fโ‚โ‚ƒ, unop_fโ‚‚โ‚„, IsPullback.unop, unop_Xโ‚„, IsPushout.unop, unop_fโ‚ƒโ‚„
unopFunctor ๐Ÿ“–CompOpโ€”

Theorems

NameKindAssumesProvesValidatesDepends On
arrowArrowEquivalence'_counitIso ๐Ÿ“–mathematicalโ€”CategoryTheory.Equivalence.counitIso
CategoryTheory.Square
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
category
arrowArrowEquivalence'
CategoryTheory.Iso.refl
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
fromArrowArrowFunctor'
toArrowArrowFunctor'
โ€”โ€”
arrowArrowEquivalence'_functor ๐Ÿ“–mathematicalโ€”CategoryTheory.Equivalence.functor
CategoryTheory.Square
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
category
arrowArrowEquivalence'
toArrowArrowFunctor'
โ€”โ€”
arrowArrowEquivalence'_inverse ๐Ÿ“–mathematicalโ€”CategoryTheory.Equivalence.inverse
CategoryTheory.Square
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
category
arrowArrowEquivalence'
fromArrowArrowFunctor'
โ€”โ€”
arrowArrowEquivalence'_unitIso ๐Ÿ“–mathematicalโ€”CategoryTheory.Equivalence.unitIso
CategoryTheory.Square
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
category
arrowArrowEquivalence'
CategoryTheory.Iso.refl
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.id
โ€”โ€”
arrowArrowEquivalence_counitIso ๐Ÿ“–mathematicalโ€”CategoryTheory.Equivalence.counitIso
CategoryTheory.Square
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
category
arrowArrowEquivalence
CategoryTheory.Iso.refl
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
fromArrowArrowFunctor
toArrowArrowFunctor
โ€”โ€”
arrowArrowEquivalence_functor ๐Ÿ“–mathematicalโ€”CategoryTheory.Equivalence.functor
CategoryTheory.Square
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
category
arrowArrowEquivalence
toArrowArrowFunctor
โ€”โ€”
arrowArrowEquivalence_inverse ๐Ÿ“–mathematicalโ€”CategoryTheory.Equivalence.inverse
CategoryTheory.Square
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
category
arrowArrowEquivalence
fromArrowArrowFunctor
โ€”โ€”
arrowArrowEquivalence_unitIso ๐Ÿ“–mathematicalโ€”CategoryTheory.Equivalence.unitIso
CategoryTheory.Square
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
category
arrowArrowEquivalence
CategoryTheory.Iso.refl
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.id
โ€”โ€”
category_comp_ฯ„โ‚ ๐Ÿ“–mathematicalโ€”Hom.ฯ„โ‚
CategoryTheory.CategoryStruct.comp
CategoryTheory.Square
CategoryTheory.Category.toCategoryStruct
category
Xโ‚
โ€”โ€”
category_comp_ฯ„โ‚‚ ๐Ÿ“–mathematicalโ€”Hom.ฯ„โ‚‚
CategoryTheory.CategoryStruct.comp
CategoryTheory.Square
CategoryTheory.Category.toCategoryStruct
category
Xโ‚‚
โ€”โ€”
category_comp_ฯ„โ‚ƒ ๐Ÿ“–mathematicalโ€”Hom.ฯ„โ‚ƒ
CategoryTheory.CategoryStruct.comp
CategoryTheory.Square
CategoryTheory.Category.toCategoryStruct
category
Xโ‚ƒ
โ€”โ€”
category_comp_ฯ„โ‚„ ๐Ÿ“–mathematicalโ€”Hom.ฯ„โ‚„
CategoryTheory.CategoryStruct.comp
CategoryTheory.Square
CategoryTheory.Category.toCategoryStruct
category
Xโ‚„
โ€”โ€”
category_id_ฯ„โ‚ ๐Ÿ“–mathematicalโ€”Hom.ฯ„โ‚
CategoryTheory.CategoryStruct.id
CategoryTheory.Square
CategoryTheory.Category.toCategoryStruct
category
Xโ‚
โ€”โ€”
category_id_ฯ„โ‚‚ ๐Ÿ“–mathematicalโ€”Hom.ฯ„โ‚‚
CategoryTheory.CategoryStruct.id
CategoryTheory.Square
CategoryTheory.Category.toCategoryStruct
category
Xโ‚‚
โ€”โ€”
category_id_ฯ„โ‚ƒ ๐Ÿ“–mathematicalโ€”Hom.ฯ„โ‚ƒ
CategoryTheory.CategoryStruct.id
CategoryTheory.Square
CategoryTheory.Category.toCategoryStruct
category
Xโ‚ƒ
โ€”โ€”
category_id_ฯ„โ‚„ ๐Ÿ“–mathematicalโ€”Hom.ฯ„โ‚„
CategoryTheory.CategoryStruct.id
CategoryTheory.Square
CategoryTheory.Category.toCategoryStruct
category
Xโ‚„
โ€”โ€”
commSq ๐Ÿ“–mathematicalโ€”CategoryTheory.CommSq
Xโ‚
Xโ‚‚
Xโ‚ƒ
Xโ‚„
fโ‚โ‚‚
fโ‚โ‚ƒ
fโ‚‚โ‚„
fโ‚ƒโ‚„
โ€”fac
evaluationโ‚_map ๐Ÿ“–mathematicalโ€”CategoryTheory.Functor.map
CategoryTheory.Square
category
evaluationโ‚
Hom.ฯ„โ‚
โ€”โ€”
evaluationโ‚_obj ๐Ÿ“–mathematicalโ€”CategoryTheory.Functor.obj
CategoryTheory.Square
category
evaluationโ‚
Xโ‚
โ€”โ€”
evaluationโ‚‚_map ๐Ÿ“–mathematicalโ€”CategoryTheory.Functor.map
CategoryTheory.Square
category
evaluationโ‚‚
Hom.ฯ„โ‚‚
โ€”โ€”
evaluationโ‚‚_obj ๐Ÿ“–mathematicalโ€”CategoryTheory.Functor.obj
CategoryTheory.Square
category
evaluationโ‚‚
Xโ‚‚
โ€”โ€”
evaluationโ‚ƒ_map ๐Ÿ“–mathematicalโ€”CategoryTheory.Functor.map
CategoryTheory.Square
category
evaluationโ‚ƒ
Hom.ฯ„โ‚ƒ
โ€”โ€”
evaluationโ‚ƒ_obj ๐Ÿ“–mathematicalโ€”CategoryTheory.Functor.obj
CategoryTheory.Square
category
evaluationโ‚ƒ
Xโ‚ƒ
โ€”โ€”
evaluationโ‚„_map ๐Ÿ“–mathematicalโ€”CategoryTheory.Functor.map
CategoryTheory.Square
category
evaluationโ‚„
Hom.ฯ„โ‚„
โ€”โ€”
evaluationโ‚„_obj ๐Ÿ“–mathematicalโ€”CategoryTheory.Functor.obj
CategoryTheory.Square
category
evaluationโ‚„
Xโ‚„
โ€”โ€”
fac ๐Ÿ“–mathematicalโ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Xโ‚
Xโ‚‚
Xโ‚„
fโ‚โ‚‚
fโ‚‚โ‚„
Xโ‚ƒ
fโ‚โ‚ƒ
fโ‚ƒโ‚„
โ€”โ€”
flipEquivalence_counitIso ๐Ÿ“–mathematicalโ€”CategoryTheory.Equivalence.counitIso
CategoryTheory.Square
category
flipEquivalence
CategoryTheory.Iso.refl
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
flipFunctor
โ€”โ€”
flipEquivalence_functor ๐Ÿ“–mathematicalโ€”CategoryTheory.Equivalence.functor
CategoryTheory.Square
category
flipEquivalence
flipFunctor
โ€”โ€”
flipEquivalence_inverse ๐Ÿ“–mathematicalโ€”CategoryTheory.Equivalence.inverse
CategoryTheory.Square
category
flipEquivalence
flipFunctor
โ€”โ€”
flipEquivalence_unitIso ๐Ÿ“–mathematicalโ€”CategoryTheory.Equivalence.unitIso
CategoryTheory.Square
category
flipEquivalence
CategoryTheory.Iso.refl
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.id
โ€”โ€”
flipFunctor_map_ฯ„โ‚ ๐Ÿ“–mathematicalโ€”Hom.ฯ„โ‚
flip
CategoryTheory.Functor.map
CategoryTheory.Square
category
flipFunctor
โ€”โ€”
flipFunctor_map_ฯ„โ‚‚ ๐Ÿ“–mathematicalโ€”Hom.ฯ„โ‚‚
flip
CategoryTheory.Functor.map
CategoryTheory.Square
category
flipFunctor
Hom.ฯ„โ‚ƒ
โ€”โ€”
flipFunctor_map_ฯ„โ‚ƒ ๐Ÿ“–mathematicalโ€”Hom.ฯ„โ‚ƒ
flip
CategoryTheory.Functor.map
CategoryTheory.Square
category
flipFunctor
Hom.ฯ„โ‚‚
โ€”โ€”
flipFunctor_map_ฯ„โ‚„ ๐Ÿ“–mathematicalโ€”Hom.ฯ„โ‚„
flip
CategoryTheory.Functor.map
CategoryTheory.Square
category
flipFunctor
โ€”โ€”
flipFunctor_obj ๐Ÿ“–mathematicalโ€”CategoryTheory.Functor.obj
CategoryTheory.Square
category
flipFunctor
flip
โ€”โ€”
flip_Xโ‚ ๐Ÿ“–mathematicalโ€”Xโ‚
flip
โ€”โ€”
flip_Xโ‚‚ ๐Ÿ“–mathematicalโ€”Xโ‚‚
flip
Xโ‚ƒ
โ€”โ€”
flip_Xโ‚ƒ ๐Ÿ“–mathematicalโ€”Xโ‚ƒ
flip
Xโ‚‚
โ€”โ€”
flip_Xโ‚„ ๐Ÿ“–mathematicalโ€”Xโ‚„
flip
โ€”โ€”
flip_fโ‚โ‚‚ ๐Ÿ“–mathematicalโ€”fโ‚โ‚‚
flip
fโ‚โ‚ƒ
โ€”โ€”
flip_fโ‚โ‚ƒ ๐Ÿ“–mathematicalโ€”fโ‚โ‚ƒ
flip
fโ‚โ‚‚
โ€”โ€”
flip_fโ‚‚โ‚„ ๐Ÿ“–mathematicalโ€”fโ‚‚โ‚„
flip
fโ‚ƒโ‚„
โ€”โ€”
flip_fโ‚ƒโ‚„ ๐Ÿ“–mathematicalโ€”fโ‚ƒโ‚„
flip
fโ‚‚โ‚„
โ€”โ€”
fromArrowArrowFunctor'_map_ฯ„โ‚ ๐Ÿ“–mathematicalโ€”Hom.ฯ„โ‚
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.Comma.left
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
CategoryTheory.Functor.map
CategoryTheory.CommaMorphism.left
CategoryTheory.CommaMorphism.right
CategoryTheory.Square
category
fromArrowArrowFunctor'
โ€”โ€”
fromArrowArrowFunctor'_map_ฯ„โ‚‚ ๐Ÿ“–mathematicalโ€”Hom.ฯ„โ‚‚
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.Comma.left
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
CategoryTheory.Functor.map
CategoryTheory.CommaMorphism.left
CategoryTheory.CommaMorphism.right
CategoryTheory.Square
category
fromArrowArrowFunctor'
โ€”โ€”
fromArrowArrowFunctor'_map_ฯ„โ‚ƒ ๐Ÿ“–mathematicalโ€”Hom.ฯ„โ‚ƒ
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.Comma.left
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
CategoryTheory.Functor.map
CategoryTheory.CommaMorphism.left
CategoryTheory.CommaMorphism.right
CategoryTheory.Square
category
fromArrowArrowFunctor'
โ€”โ€”
fromArrowArrowFunctor'_map_ฯ„โ‚„ ๐Ÿ“–mathematicalโ€”Hom.ฯ„โ‚„
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.Comma.left
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
CategoryTheory.Functor.map
CategoryTheory.CommaMorphism.left
CategoryTheory.CommaMorphism.right
CategoryTheory.Square
category
fromArrowArrowFunctor'
โ€”โ€”
fromArrowArrowFunctor'_obj_Xโ‚ ๐Ÿ“–mathematicalโ€”Xโ‚
CategoryTheory.Functor.obj
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
CategoryTheory.Square
category
fromArrowArrowFunctor'
CategoryTheory.Comma.left
CategoryTheory.Functor.id
โ€”โ€”
fromArrowArrowFunctor'_obj_Xโ‚‚ ๐Ÿ“–mathematicalโ€”Xโ‚‚
CategoryTheory.Functor.obj
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
CategoryTheory.Square
category
fromArrowArrowFunctor'
CategoryTheory.Comma.right
CategoryTheory.Functor.id
CategoryTheory.Comma.left
โ€”โ€”
fromArrowArrowFunctor'_obj_Xโ‚ƒ ๐Ÿ“–mathematicalโ€”Xโ‚ƒ
CategoryTheory.Functor.obj
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
CategoryTheory.Square
category
fromArrowArrowFunctor'
CategoryTheory.Comma.left
CategoryTheory.Functor.id
CategoryTheory.Comma.right
โ€”โ€”
fromArrowArrowFunctor'_obj_Xโ‚„ ๐Ÿ“–mathematicalโ€”Xโ‚„
CategoryTheory.Functor.obj
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
CategoryTheory.Square
category
fromArrowArrowFunctor'
CategoryTheory.Comma.right
CategoryTheory.Functor.id
โ€”โ€”
fromArrowArrowFunctor'_obj_fโ‚โ‚‚ ๐Ÿ“–mathematicalโ€”fโ‚โ‚‚
CategoryTheory.Functor.obj
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
CategoryTheory.Square
category
fromArrowArrowFunctor'
CategoryTheory.Comma.hom
CategoryTheory.Functor.id
CategoryTheory.Comma.left
โ€”โ€”
fromArrowArrowFunctor'_obj_fโ‚โ‚ƒ ๐Ÿ“–mathematicalโ€”fโ‚โ‚ƒ
CategoryTheory.Functor.obj
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
CategoryTheory.Square
category
fromArrowArrowFunctor'
CategoryTheory.CommaMorphism.left
CategoryTheory.Functor.id
CategoryTheory.Comma.left
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
โ€”โ€”
fromArrowArrowFunctor'_obj_fโ‚‚โ‚„ ๐Ÿ“–mathematicalโ€”fโ‚‚โ‚„
CategoryTheory.Functor.obj
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
CategoryTheory.Square
category
fromArrowArrowFunctor'
CategoryTheory.CommaMorphism.right
CategoryTheory.Functor.id
CategoryTheory.Comma.left
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
โ€”โ€”
fromArrowArrowFunctor'_obj_fโ‚ƒโ‚„ ๐Ÿ“–mathematicalโ€”fโ‚ƒโ‚„
CategoryTheory.Functor.obj
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
CategoryTheory.Square
category
fromArrowArrowFunctor'
CategoryTheory.Comma.hom
CategoryTheory.Functor.id
CategoryTheory.Comma.right
โ€”โ€”
fromArrowArrowFunctor_map_ฯ„โ‚ ๐Ÿ“–mathematicalโ€”Hom.ฯ„โ‚
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.Comma.left
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
CategoryTheory.Comma.right
CategoryTheory.Functor.map
CategoryTheory.CommaMorphism.left
CategoryTheory.Comma.hom
CategoryTheory.CommaMorphism.right
CategoryTheory.Square
category
fromArrowArrowFunctor
โ€”โ€”
fromArrowArrowFunctor_map_ฯ„โ‚‚ ๐Ÿ“–mathematicalโ€”Hom.ฯ„โ‚‚
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.Comma.left
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
CategoryTheory.Comma.right
CategoryTheory.Functor.map
CategoryTheory.CommaMorphism.left
CategoryTheory.Comma.hom
CategoryTheory.CommaMorphism.right
CategoryTheory.Square
category
fromArrowArrowFunctor
โ€”โ€”
fromArrowArrowFunctor_map_ฯ„โ‚ƒ ๐Ÿ“–mathematicalโ€”Hom.ฯ„โ‚ƒ
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.Comma.left
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
CategoryTheory.Comma.right
CategoryTheory.Functor.map
CategoryTheory.CommaMorphism.left
CategoryTheory.Comma.hom
CategoryTheory.CommaMorphism.right
CategoryTheory.Square
category
fromArrowArrowFunctor
โ€”โ€”
fromArrowArrowFunctor_map_ฯ„โ‚„ ๐Ÿ“–mathematicalโ€”Hom.ฯ„โ‚„
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.Comma.left
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
CategoryTheory.Comma.right
CategoryTheory.Functor.map
CategoryTheory.CommaMorphism.left
CategoryTheory.Comma.hom
CategoryTheory.CommaMorphism.right
CategoryTheory.Square
category
fromArrowArrowFunctor
โ€”โ€”
fromArrowArrowFunctor_obj_Xโ‚ ๐Ÿ“–mathematicalโ€”Xโ‚
CategoryTheory.Functor.obj
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
CategoryTheory.Square
category
fromArrowArrowFunctor
CategoryTheory.Comma.left
CategoryTheory.Functor.id
โ€”โ€”
fromArrowArrowFunctor_obj_Xโ‚‚ ๐Ÿ“–mathematicalโ€”Xโ‚‚
CategoryTheory.Functor.obj
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
CategoryTheory.Square
category
fromArrowArrowFunctor
CategoryTheory.Comma.left
CategoryTheory.Functor.id
CategoryTheory.Comma.right
โ€”โ€”
fromArrowArrowFunctor_obj_Xโ‚ƒ ๐Ÿ“–mathematicalโ€”Xโ‚ƒ
CategoryTheory.Functor.obj
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
CategoryTheory.Square
category
fromArrowArrowFunctor
CategoryTheory.Comma.right
CategoryTheory.Functor.id
CategoryTheory.Comma.left
โ€”โ€”
fromArrowArrowFunctor_obj_Xโ‚„ ๐Ÿ“–mathematicalโ€”Xโ‚„
CategoryTheory.Functor.obj
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
CategoryTheory.Square
category
fromArrowArrowFunctor
CategoryTheory.Comma.right
CategoryTheory.Functor.id
โ€”โ€”
fromArrowArrowFunctor_obj_fโ‚โ‚‚ ๐Ÿ“–mathematicalโ€”fโ‚โ‚‚
CategoryTheory.Functor.obj
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
CategoryTheory.Square
category
fromArrowArrowFunctor
CategoryTheory.CommaMorphism.left
CategoryTheory.Functor.id
CategoryTheory.Comma.left
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
โ€”โ€”
fromArrowArrowFunctor_obj_fโ‚โ‚ƒ ๐Ÿ“–mathematicalโ€”fโ‚โ‚ƒ
CategoryTheory.Functor.obj
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
CategoryTheory.Square
category
fromArrowArrowFunctor
CategoryTheory.Comma.hom
CategoryTheory.Functor.id
CategoryTheory.Comma.left
โ€”โ€”
fromArrowArrowFunctor_obj_fโ‚‚โ‚„ ๐Ÿ“–mathematicalโ€”fโ‚‚โ‚„
CategoryTheory.Functor.obj
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
CategoryTheory.Square
category
fromArrowArrowFunctor
CategoryTheory.Comma.hom
CategoryTheory.Functor.id
CategoryTheory.Comma.right
โ€”โ€”
fromArrowArrowFunctor_obj_fโ‚ƒโ‚„ ๐Ÿ“–mathematicalโ€”fโ‚ƒโ‚„
CategoryTheory.Functor.obj
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
CategoryTheory.Square
category
fromArrowArrowFunctor
CategoryTheory.CommaMorphism.right
CategoryTheory.Functor.id
CategoryTheory.Comma.left
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
โ€”โ€”
hom_ext ๐Ÿ“–โ€”Hom.ฯ„โ‚
Hom.ฯ„โ‚‚
Hom.ฯ„โ‚ƒ
Hom.ฯ„โ‚„
โ€”โ€”Hom.ext
hom_ext_iff ๐Ÿ“–mathematicalโ€”Hom.ฯ„โ‚
Hom.ฯ„โ‚‚
Hom.ฯ„โ‚ƒ
Hom.ฯ„โ‚„
โ€”hom_ext
mapFunctor_map ๐Ÿ“–mathematicalโ€”CategoryTheory.Functor.map
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Square
category
mapFunctor
CategoryTheory.NatTrans.mapSquare
โ€”โ€”
mapFunctor_obj ๐Ÿ“–mathematicalโ€”CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Square
category
mapFunctor
CategoryTheory.Functor.mapSquare
โ€”โ€”
map_Xโ‚ ๐Ÿ“–mathematicalโ€”Xโ‚
map
CategoryTheory.Functor.obj
โ€”โ€”
map_Xโ‚‚ ๐Ÿ“–mathematicalโ€”Xโ‚‚
map
CategoryTheory.Functor.obj
โ€”โ€”
map_Xโ‚ƒ ๐Ÿ“–mathematicalโ€”Xโ‚ƒ
map
CategoryTheory.Functor.obj
โ€”โ€”
map_Xโ‚„ ๐Ÿ“–mathematicalโ€”Xโ‚„
map
CategoryTheory.Functor.obj
โ€”โ€”
map_fโ‚โ‚‚ ๐Ÿ“–mathematicalโ€”fโ‚โ‚‚
map
CategoryTheory.Functor.map
Xโ‚
Xโ‚‚
โ€”โ€”
map_fโ‚โ‚ƒ ๐Ÿ“–mathematicalโ€”fโ‚โ‚ƒ
map
CategoryTheory.Functor.map
Xโ‚
Xโ‚ƒ
โ€”โ€”
map_fโ‚‚โ‚„ ๐Ÿ“–mathematicalโ€”fโ‚‚โ‚„
map
CategoryTheory.Functor.map
Xโ‚‚
Xโ‚„
โ€”โ€”
map_fโ‚ƒโ‚„ ๐Ÿ“–mathematicalโ€”fโ‚ƒโ‚„
map
CategoryTheory.Functor.map
Xโ‚ƒ
Xโ‚„
โ€”โ€”
opFunctor_map_ฯ„โ‚ ๐Ÿ“–mathematicalโ€”Hom.ฯ„โ‚
Opposite
CategoryTheory.Category.opposite
op
Opposite.unop
CategoryTheory.Square
CategoryTheory.Functor.map
category
opFunctor
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Xโ‚„
Hom.ฯ„โ‚„
Quiver.Hom.unop
โ€”โ€”
opFunctor_map_ฯ„โ‚‚ ๐Ÿ“–mathematicalโ€”Hom.ฯ„โ‚‚
Opposite
CategoryTheory.Category.opposite
op
Opposite.unop
CategoryTheory.Square
CategoryTheory.Functor.map
category
opFunctor
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Xโ‚‚
Quiver.Hom.unop
โ€”โ€”
opFunctor_map_ฯ„โ‚ƒ ๐Ÿ“–mathematicalโ€”Hom.ฯ„โ‚ƒ
Opposite
CategoryTheory.Category.opposite
op
Opposite.unop
CategoryTheory.Square
CategoryTheory.Functor.map
category
opFunctor
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Xโ‚ƒ
Quiver.Hom.unop
โ€”โ€”
opFunctor_map_ฯ„โ‚„ ๐Ÿ“–mathematicalโ€”Hom.ฯ„โ‚„
Opposite
CategoryTheory.Category.opposite
op
Opposite.unop
CategoryTheory.Square
CategoryTheory.Functor.map
category
opFunctor
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Xโ‚
Hom.ฯ„โ‚
Quiver.Hom.unop
โ€”โ€”
opFunctor_obj ๐Ÿ“–mathematicalโ€”CategoryTheory.Functor.obj
Opposite
CategoryTheory.Square
CategoryTheory.Category.opposite
category
opFunctor
op
Opposite.unop
โ€”โ€”
op_Xโ‚ ๐Ÿ“–mathematicalโ€”Xโ‚
Opposite
CategoryTheory.Category.opposite
op
Opposite.op
Xโ‚„
โ€”โ€”
op_Xโ‚‚ ๐Ÿ“–mathematicalโ€”Xโ‚‚
Opposite
CategoryTheory.Category.opposite
op
Opposite.op
โ€”โ€”
op_Xโ‚ƒ ๐Ÿ“–mathematicalโ€”Xโ‚ƒ
Opposite
CategoryTheory.Category.opposite
op
Opposite.op
โ€”โ€”
op_Xโ‚„ ๐Ÿ“–mathematicalโ€”Xโ‚„
Opposite
CategoryTheory.Category.opposite
op
Opposite.op
Xโ‚
โ€”โ€”
op_fโ‚โ‚‚ ๐Ÿ“–mathematicalโ€”fโ‚โ‚‚
Opposite
CategoryTheory.Category.opposite
op
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Xโ‚‚
Xโ‚„
fโ‚‚โ‚„
โ€”โ€”
op_fโ‚โ‚ƒ ๐Ÿ“–mathematicalโ€”fโ‚โ‚ƒ
Opposite
CategoryTheory.Category.opposite
op
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Xโ‚ƒ
Xโ‚„
fโ‚ƒโ‚„
โ€”โ€”
op_fโ‚‚โ‚„ ๐Ÿ“–mathematicalโ€”fโ‚‚โ‚„
Opposite
CategoryTheory.Category.opposite
op
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Xโ‚
Xโ‚‚
fโ‚โ‚‚
โ€”โ€”
op_fโ‚ƒโ‚„ ๐Ÿ“–mathematicalโ€”fโ‚ƒโ‚„
Opposite
CategoryTheory.Category.opposite
op
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Xโ‚
Xโ‚ƒ
fโ‚โ‚ƒ
โ€”โ€”
toArrowArrowFunctor'_map_left_left ๐Ÿ“–mathematicalโ€”CategoryTheory.CommaMorphism.left
CategoryTheory.Functor.id
CategoryTheory.Comma.left
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
Xโ‚
Xโ‚‚
fโ‚โ‚‚
Xโ‚ƒ
Xโ‚„
fโ‚ƒโ‚„
CategoryTheory.Arrow.homMk
fโ‚โ‚ƒ
fโ‚‚โ‚„
CategoryTheory.Functor.map
CategoryTheory.Square
category
toArrowArrowFunctor'
Hom.ฯ„โ‚
โ€”โ€”
toArrowArrowFunctor'_map_left_right ๐Ÿ“–mathematicalโ€”CategoryTheory.CommaMorphism.right
CategoryTheory.Functor.id
CategoryTheory.Comma.left
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
Xโ‚
Xโ‚‚
fโ‚โ‚‚
Xโ‚ƒ
Xโ‚„
fโ‚ƒโ‚„
CategoryTheory.Arrow.homMk
fโ‚โ‚ƒ
fโ‚‚โ‚„
CategoryTheory.CommaMorphism.left
CategoryTheory.Functor.map
CategoryTheory.Square
category
toArrowArrowFunctor'
Hom.ฯ„โ‚‚
โ€”โ€”
toArrowArrowFunctor'_map_right_left ๐Ÿ“–mathematicalโ€”CategoryTheory.CommaMorphism.left
CategoryTheory.Functor.id
CategoryTheory.Comma.right
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
Xโ‚
Xโ‚‚
fโ‚โ‚‚
Xโ‚ƒ
Xโ‚„
fโ‚ƒโ‚„
CategoryTheory.Arrow.homMk
fโ‚โ‚ƒ
fโ‚‚โ‚„
CategoryTheory.CommaMorphism.right
CategoryTheory.Functor.map
CategoryTheory.Square
category
toArrowArrowFunctor'
Hom.ฯ„โ‚ƒ
โ€”โ€”
toArrowArrowFunctor'_map_right_right ๐Ÿ“–mathematicalโ€”CategoryTheory.CommaMorphism.right
CategoryTheory.Functor.id
CategoryTheory.Comma.right
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
Xโ‚
Xโ‚‚
fโ‚โ‚‚
Xโ‚ƒ
Xโ‚„
fโ‚ƒโ‚„
CategoryTheory.Arrow.homMk
fโ‚โ‚ƒ
fโ‚‚โ‚„
CategoryTheory.Functor.map
CategoryTheory.Square
category
toArrowArrowFunctor'
Hom.ฯ„โ‚„
โ€”โ€”
toArrowArrowFunctor'_obj_hom_left ๐Ÿ“–mathematicalโ€”CategoryTheory.CommaMorphism.left
CategoryTheory.Functor.id
Xโ‚
Xโ‚‚
fโ‚โ‚‚
Xโ‚ƒ
Xโ‚„
fโ‚ƒโ‚„
CategoryTheory.Comma.hom
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
CategoryTheory.Functor.obj
CategoryTheory.Square
category
toArrowArrowFunctor'
fโ‚โ‚ƒ
โ€”โ€”
toArrowArrowFunctor'_obj_hom_right ๐Ÿ“–mathematicalโ€”CategoryTheory.CommaMorphism.right
CategoryTheory.Functor.id
Xโ‚
Xโ‚‚
fโ‚โ‚‚
Xโ‚ƒ
Xโ‚„
fโ‚ƒโ‚„
CategoryTheory.Comma.hom
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
CategoryTheory.Functor.obj
CategoryTheory.Square
category
toArrowArrowFunctor'
fโ‚‚โ‚„
โ€”โ€”
toArrowArrowFunctor'_obj_left_hom ๐Ÿ“–mathematicalโ€”CategoryTheory.Comma.hom
CategoryTheory.Functor.id
CategoryTheory.Comma.left
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
CategoryTheory.Functor.obj
CategoryTheory.Square
category
toArrowArrowFunctor'
fโ‚โ‚‚
โ€”โ€”
toArrowArrowFunctor'_obj_left_left ๐Ÿ“–mathematicalโ€”CategoryTheory.Comma.left
CategoryTheory.Functor.id
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
CategoryTheory.Functor.obj
CategoryTheory.Square
category
toArrowArrowFunctor'
Xโ‚
โ€”โ€”
toArrowArrowFunctor'_obj_left_right ๐Ÿ“–mathematicalโ€”CategoryTheory.Comma.right
CategoryTheory.Functor.id
CategoryTheory.Comma.left
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
CategoryTheory.Functor.obj
CategoryTheory.Square
category
toArrowArrowFunctor'
Xโ‚‚
โ€”โ€”
toArrowArrowFunctor'_obj_right_hom ๐Ÿ“–mathematicalโ€”CategoryTheory.Comma.hom
CategoryTheory.Functor.id
CategoryTheory.Comma.right
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
CategoryTheory.Functor.obj
CategoryTheory.Square
category
toArrowArrowFunctor'
fโ‚ƒโ‚„
โ€”โ€”
toArrowArrowFunctor'_obj_right_left ๐Ÿ“–mathematicalโ€”CategoryTheory.Comma.left
CategoryTheory.Functor.id
CategoryTheory.Comma.right
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
CategoryTheory.Functor.obj
CategoryTheory.Square
category
toArrowArrowFunctor'
Xโ‚ƒ
โ€”โ€”
toArrowArrowFunctor'_obj_right_right ๐Ÿ“–mathematicalโ€”CategoryTheory.Comma.right
CategoryTheory.Functor.id
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
CategoryTheory.Functor.obj
CategoryTheory.Square
category
toArrowArrowFunctor'
Xโ‚„
โ€”โ€”
toArrowArrowFunctor_map_left_left ๐Ÿ“–mathematicalโ€”CategoryTheory.CommaMorphism.left
CategoryTheory.Functor.id
CategoryTheory.Comma.left
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
Xโ‚
Xโ‚ƒ
fโ‚โ‚ƒ
Xโ‚‚
Xโ‚„
fโ‚‚โ‚„
CategoryTheory.Arrow.homMk
fโ‚โ‚‚
fโ‚ƒโ‚„
fac
CategoryTheory.Functor.map
CategoryTheory.Square
category
toArrowArrowFunctor
Hom.ฯ„โ‚
โ€”fac
toArrowArrowFunctor_map_left_right ๐Ÿ“–mathematicalโ€”CategoryTheory.CommaMorphism.right
CategoryTheory.Functor.id
CategoryTheory.Comma.left
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
Xโ‚
Xโ‚ƒ
fโ‚โ‚ƒ
Xโ‚‚
Xโ‚„
fโ‚‚โ‚„
CategoryTheory.Arrow.homMk
fโ‚โ‚‚
fโ‚ƒโ‚„
fac
CategoryTheory.CommaMorphism.left
CategoryTheory.Functor.map
CategoryTheory.Square
category
toArrowArrowFunctor
Hom.ฯ„โ‚ƒ
โ€”fac
toArrowArrowFunctor_map_right_left ๐Ÿ“–mathematicalโ€”CategoryTheory.CommaMorphism.left
CategoryTheory.Functor.id
CategoryTheory.Comma.right
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
Xโ‚
Xโ‚ƒ
fโ‚โ‚ƒ
Xโ‚‚
Xโ‚„
fโ‚‚โ‚„
CategoryTheory.Arrow.homMk
fโ‚โ‚‚
fโ‚ƒโ‚„
fac
CategoryTheory.CommaMorphism.right
CategoryTheory.Functor.map
CategoryTheory.Square
category
toArrowArrowFunctor
Hom.ฯ„โ‚‚
โ€”fac
toArrowArrowFunctor_map_right_right ๐Ÿ“–mathematicalโ€”CategoryTheory.CommaMorphism.right
CategoryTheory.Functor.id
CategoryTheory.Comma.right
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
Xโ‚
Xโ‚ƒ
fโ‚โ‚ƒ
Xโ‚‚
Xโ‚„
fโ‚‚โ‚„
CategoryTheory.Arrow.homMk
fโ‚โ‚‚
fโ‚ƒโ‚„
fac
CategoryTheory.Functor.map
CategoryTheory.Square
category
toArrowArrowFunctor
Hom.ฯ„โ‚„
โ€”fac
toArrowArrowFunctor_obj_hom_left ๐Ÿ“–mathematicalโ€”CategoryTheory.CommaMorphism.left
CategoryTheory.Functor.id
Xโ‚
Xโ‚ƒ
fโ‚โ‚ƒ
Xโ‚‚
Xโ‚„
fโ‚‚โ‚„
CategoryTheory.Comma.hom
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
CategoryTheory.Functor.obj
CategoryTheory.Square
category
toArrowArrowFunctor
fโ‚โ‚‚
โ€”โ€”
toArrowArrowFunctor_obj_hom_right ๐Ÿ“–mathematicalโ€”CategoryTheory.CommaMorphism.right
CategoryTheory.Functor.id
Xโ‚
Xโ‚ƒ
fโ‚โ‚ƒ
Xโ‚‚
Xโ‚„
fโ‚‚โ‚„
CategoryTheory.Comma.hom
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
CategoryTheory.Functor.obj
CategoryTheory.Square
category
toArrowArrowFunctor
fโ‚ƒโ‚„
โ€”โ€”
toArrowArrowFunctor_obj_left_hom ๐Ÿ“–mathematicalโ€”CategoryTheory.Comma.hom
CategoryTheory.Functor.id
CategoryTheory.Comma.left
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
CategoryTheory.Functor.obj
CategoryTheory.Square
category
toArrowArrowFunctor
fโ‚โ‚ƒ
โ€”โ€”
toArrowArrowFunctor_obj_left_left ๐Ÿ“–mathematicalโ€”CategoryTheory.Comma.left
CategoryTheory.Functor.id
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
CategoryTheory.Functor.obj
CategoryTheory.Square
category
toArrowArrowFunctor
Xโ‚
โ€”โ€”
toArrowArrowFunctor_obj_left_right ๐Ÿ“–mathematicalโ€”CategoryTheory.Comma.right
CategoryTheory.Functor.id
CategoryTheory.Comma.left
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
CategoryTheory.Functor.obj
CategoryTheory.Square
category
toArrowArrowFunctor
Xโ‚ƒ
โ€”โ€”
toArrowArrowFunctor_obj_right_hom ๐Ÿ“–mathematicalโ€”CategoryTheory.Comma.hom
CategoryTheory.Functor.id
CategoryTheory.Comma.right
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
CategoryTheory.Functor.obj
CategoryTheory.Square
category
toArrowArrowFunctor
fโ‚‚โ‚„
โ€”โ€”
toArrowArrowFunctor_obj_right_left ๐Ÿ“–mathematicalโ€”CategoryTheory.Comma.left
CategoryTheory.Functor.id
CategoryTheory.Comma.right
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
CategoryTheory.Functor.obj
CategoryTheory.Square
category
toArrowArrowFunctor
Xโ‚‚
โ€”โ€”
toArrowArrowFunctor_obj_right_right ๐Ÿ“–mathematicalโ€”CategoryTheory.Comma.right
CategoryTheory.Functor.id
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
CategoryTheory.Functor.obj
CategoryTheory.Square
category
toArrowArrowFunctor
Xโ‚„
โ€”โ€”
unop_Xโ‚ ๐Ÿ“–mathematicalโ€”Xโ‚
unop
Opposite.unop
Xโ‚„
Opposite
CategoryTheory.Category.opposite
โ€”โ€”
unop_Xโ‚‚ ๐Ÿ“–mathematicalโ€”Xโ‚‚
unop
Opposite.unop
Opposite
CategoryTheory.Category.opposite
โ€”โ€”
unop_Xโ‚ƒ ๐Ÿ“–mathematicalโ€”Xโ‚ƒ
unop
Opposite.unop
Opposite
CategoryTheory.Category.opposite
โ€”โ€”
unop_Xโ‚„ ๐Ÿ“–mathematicalโ€”Xโ‚„
unop
Opposite.unop
Xโ‚
Opposite
CategoryTheory.Category.opposite
โ€”โ€”
unop_fโ‚โ‚‚ ๐Ÿ“–mathematicalโ€”fโ‚โ‚‚
unop
Quiver.Hom.unop
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Xโ‚‚
Opposite
CategoryTheory.Category.opposite
Xโ‚„
fโ‚‚โ‚„
โ€”โ€”
unop_fโ‚โ‚ƒ ๐Ÿ“–mathematicalโ€”fโ‚โ‚ƒ
unop
Quiver.Hom.unop
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Xโ‚ƒ
Opposite
CategoryTheory.Category.opposite
Xโ‚„
fโ‚ƒโ‚„
โ€”โ€”
unop_fโ‚‚โ‚„ ๐Ÿ“–mathematicalโ€”fโ‚‚โ‚„
unop
Quiver.Hom.unop
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Xโ‚
Opposite
CategoryTheory.Category.opposite
Xโ‚‚
fโ‚โ‚‚
โ€”โ€”
unop_fโ‚ƒโ‚„ ๐Ÿ“–mathematicalโ€”fโ‚ƒโ‚„
unop
Quiver.Hom.unop
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Xโ‚
Opposite
CategoryTheory.Category.opposite
Xโ‚ƒ
fโ‚โ‚ƒ
โ€”โ€”

CategoryTheory.Square.Hom

Definitions

NameCategoryTheorems
comp ๐Ÿ“–CompOp
4 mathmath: comp_ฯ„โ‚‚, comp_ฯ„โ‚, comp_ฯ„โ‚„, comp_ฯ„โ‚ƒ
id ๐Ÿ“–CompOp
4 mathmath: id_ฯ„โ‚‚, id_ฯ„โ‚„, id_ฯ„โ‚ƒ, id_ฯ„โ‚
ฯ„โ‚ ๐Ÿ“–CompOp
20 mathmath: CategoryTheory.NatTrans.mapSquare_app_ฯ„โ‚, commโ‚โ‚ƒ_assoc, commโ‚โ‚ƒ, CategoryTheory.Square.hom_ext_iff, CategoryTheory.Functor.mapSquare_map_ฯ„โ‚, CategoryTheory.Square.category_id_ฯ„โ‚, CategoryTheory.Square.evaluationโ‚_map, CategoryTheory.Square.opFunctor_map_ฯ„โ‚, CategoryTheory.Square.flipFunctor_map_ฯ„โ‚, CategoryTheory.Square.category_comp_ฯ„โ‚, comp_ฯ„โ‚, commโ‚โ‚‚_assoc, CategoryTheory.Square.toArrowArrowFunctor_map_left_left, ext_iff, CategoryTheory.Square.toArrowArrowFunctor'_map_left_left, CategoryTheory.Square.fromArrowArrowFunctor_map_ฯ„โ‚, commโ‚โ‚‚, CategoryTheory.Square.fromArrowArrowFunctor'_map_ฯ„โ‚, id_ฯ„โ‚, CategoryTheory.Square.opFunctor_map_ฯ„โ‚„
ฯ„โ‚‚ ๐Ÿ“–CompOp
20 mathmath: CategoryTheory.Square.category_comp_ฯ„โ‚‚, commโ‚‚โ‚„, CategoryTheory.NatTrans.mapSquare_app_ฯ„โ‚‚, id_ฯ„โ‚‚, comp_ฯ„โ‚‚, CategoryTheory.Square.hom_ext_iff, CategoryTheory.Square.flipFunctor_map_ฯ„โ‚ƒ, commโ‚‚โ‚„_assoc, CategoryTheory.Square.evaluationโ‚‚_map, CategoryTheory.Square.toArrowArrowFunctor'_map_left_right, CategoryTheory.Square.opFunctor_map_ฯ„โ‚‚, commโ‚โ‚‚_assoc, ext_iff, CategoryTheory.Functor.mapSquare_map_ฯ„โ‚‚, CategoryTheory.Square.fromArrowArrowFunctor'_map_ฯ„โ‚‚, commโ‚โ‚‚, CategoryTheory.Square.fromArrowArrowFunctor_map_ฯ„โ‚‚, CategoryTheory.Square.toArrowArrowFunctor_map_right_left, CategoryTheory.Square.category_id_ฯ„โ‚‚, CategoryTheory.Square.flipFunctor_map_ฯ„โ‚‚
ฯ„โ‚ƒ ๐Ÿ“–CompOp
20 mathmath: CategoryTheory.Square.category_id_ฯ„โ‚ƒ, CategoryTheory.Square.fromArrowArrowFunctor_map_ฯ„โ‚ƒ, commโ‚โ‚ƒ_assoc, id_ฯ„โ‚ƒ, commโ‚โ‚ƒ, CategoryTheory.Square.hom_ext_iff, CategoryTheory.Square.flipFunctor_map_ฯ„โ‚ƒ, CategoryTheory.Square.fromArrowArrowFunctor'_map_ฯ„โ‚ƒ, commโ‚ƒโ‚„, CategoryTheory.Square.toArrowArrowFunctor'_map_right_left, CategoryTheory.Square.category_comp_ฯ„โ‚ƒ, CategoryTheory.Square.evaluationโ‚ƒ_map, ext_iff, CategoryTheory.Square.opFunctor_map_ฯ„โ‚ƒ, commโ‚ƒโ‚„_assoc, CategoryTheory.Functor.mapSquare_map_ฯ„โ‚ƒ, CategoryTheory.Square.toArrowArrowFunctor_map_left_right, CategoryTheory.NatTrans.mapSquare_app_ฯ„โ‚ƒ, CategoryTheory.Square.flipFunctor_map_ฯ„โ‚‚, comp_ฯ„โ‚ƒ
ฯ„โ‚„ ๐Ÿ“–CompOp
20 mathmath: commโ‚‚โ‚„, id_ฯ„โ‚„, CategoryTheory.Square.evaluationโ‚„_map, CategoryTheory.Square.hom_ext_iff, CategoryTheory.Square.category_id_ฯ„โ‚„, CategoryTheory.Square.toArrowArrowFunctor_map_right_right, commโ‚ƒโ‚„, commโ‚‚โ‚„_assoc, CategoryTheory.Square.opFunctor_map_ฯ„โ‚, CategoryTheory.Functor.mapSquare_map_ฯ„โ‚„, comp_ฯ„โ‚„, ext_iff, CategoryTheory.Square.fromArrowArrowFunctor'_map_ฯ„โ‚„, commโ‚ƒโ‚„_assoc, CategoryTheory.NatTrans.mapSquare_app_ฯ„โ‚„, CategoryTheory.Square.toArrowArrowFunctor'_map_right_right, CategoryTheory.Square.category_comp_ฯ„โ‚„, CategoryTheory.Square.opFunctor_map_ฯ„โ‚„, CategoryTheory.Square.flipFunctor_map_ฯ„โ‚„, CategoryTheory.Square.fromArrowArrowFunctor_map_ฯ„โ‚„

Theorems

NameKindAssumesProvesValidatesDepends On
commโ‚โ‚‚ ๐Ÿ“–mathematicalโ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Square.Xโ‚
CategoryTheory.Square.Xโ‚‚
CategoryTheory.Square.fโ‚โ‚‚
ฯ„โ‚‚
ฯ„โ‚
โ€”โ€”
commโ‚โ‚‚_assoc ๐Ÿ“–mathematicalโ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Square.Xโ‚
CategoryTheory.Square.Xโ‚‚
CategoryTheory.Square.fโ‚โ‚‚
ฯ„โ‚‚
ฯ„โ‚
โ€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
commโ‚โ‚‚
commโ‚โ‚ƒ ๐Ÿ“–mathematicalโ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Square.Xโ‚
CategoryTheory.Square.Xโ‚ƒ
CategoryTheory.Square.fโ‚โ‚ƒ
ฯ„โ‚ƒ
ฯ„โ‚
โ€”โ€”
commโ‚โ‚ƒ_assoc ๐Ÿ“–mathematicalโ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Square.Xโ‚
CategoryTheory.Square.Xโ‚ƒ
CategoryTheory.Square.fโ‚โ‚ƒ
ฯ„โ‚ƒ
ฯ„โ‚
โ€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
commโ‚โ‚ƒ
commโ‚‚โ‚„ ๐Ÿ“–mathematicalโ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Square.Xโ‚‚
CategoryTheory.Square.Xโ‚„
CategoryTheory.Square.fโ‚‚โ‚„
ฯ„โ‚„
ฯ„โ‚‚
โ€”โ€”
commโ‚‚โ‚„_assoc ๐Ÿ“–mathematicalโ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Square.Xโ‚‚
CategoryTheory.Square.Xโ‚„
CategoryTheory.Square.fโ‚‚โ‚„
ฯ„โ‚„
ฯ„โ‚‚
โ€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
commโ‚‚โ‚„
commโ‚ƒโ‚„ ๐Ÿ“–mathematicalโ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Square.Xโ‚ƒ
CategoryTheory.Square.Xโ‚„
CategoryTheory.Square.fโ‚ƒโ‚„
ฯ„โ‚„
ฯ„โ‚ƒ
โ€”โ€”
commโ‚ƒโ‚„_assoc ๐Ÿ“–mathematicalโ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Square.Xโ‚ƒ
CategoryTheory.Square.Xโ‚„
CategoryTheory.Square.fโ‚ƒโ‚„
ฯ„โ‚„
ฯ„โ‚ƒ
โ€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
commโ‚ƒโ‚„
comp_ฯ„โ‚ ๐Ÿ“–mathematicalโ€”ฯ„โ‚
comp
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Square.Xโ‚
โ€”โ€”
comp_ฯ„โ‚‚ ๐Ÿ“–mathematicalโ€”ฯ„โ‚‚
comp
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Square.Xโ‚‚
โ€”โ€”
comp_ฯ„โ‚ƒ ๐Ÿ“–mathematicalโ€”ฯ„โ‚ƒ
comp
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Square.Xโ‚ƒ
โ€”โ€”
comp_ฯ„โ‚„ ๐Ÿ“–mathematicalโ€”ฯ„โ‚„
comp
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Square.Xโ‚„
โ€”โ€”
ext ๐Ÿ“–โ€”ฯ„โ‚
ฯ„โ‚‚
ฯ„โ‚ƒ
ฯ„โ‚„
โ€”โ€”โ€”
ext_iff ๐Ÿ“–mathematicalโ€”ฯ„โ‚
ฯ„โ‚‚
ฯ„โ‚ƒ
ฯ„โ‚„
โ€”ext
id_ฯ„โ‚ ๐Ÿ“–mathematicalโ€”ฯ„โ‚
id
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Square.Xโ‚
โ€”โ€”
id_ฯ„โ‚‚ ๐Ÿ“–mathematicalโ€”ฯ„โ‚‚
id
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Square.Xโ‚‚
โ€”โ€”
id_ฯ„โ‚ƒ ๐Ÿ“–mathematicalโ€”ฯ„โ‚ƒ
id
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Square.Xโ‚ƒ
โ€”โ€”
id_ฯ„โ‚„ ๐Ÿ“–mathematicalโ€”ฯ„โ‚„
id
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Square.Xโ‚„
โ€”โ€”

---

โ† Back to Index