| Metric | Count |
DefinitionsmapSquare, mapSquare, Square, comp, id, ฯโ, ฯโ, ฯโ, ฯโ, Xโ, Xโ, Xโ, Xโ, arrowArrowEquivalence, arrowArrowEquivalence', category, evaluationโ, evaluationโ, evaluationโ, evaluationโ, flip, flipEquivalence, flipFunctor, fromArrowArrowFunctor, fromArrowArrowFunctor', fโโ, fโโ, fโโ, fโโ, isoMk, map, mapFunctor, op, opEquivalence, opFunctor, toArrowArrowFunctor, toArrowArrowFunctor', unop, unopFunctor | 39 |
TheoremsmapSquare_map_ฯโ, mapSquare_map_ฯโ, mapSquare_map_ฯโ, mapSquare_map_ฯโ, mapSquare_obj, mapSquare_app_ฯโ, mapSquare_app_ฯโ, mapSquare_app_ฯโ, mapSquare_app_ฯโ, commโโ, commโโ_assoc, commโโ, commโโ_assoc, commโโ, commโโ_assoc, commโโ, commโโ_assoc, comp_ฯโ, comp_ฯโ, comp_ฯโ, comp_ฯโ, ext, ext_iff, id_ฯโ, id_ฯโ, id_ฯโ, id_ฯโ, arrowArrowEquivalence'_counitIso, arrowArrowEquivalence'_functor, arrowArrowEquivalence'_inverse, arrowArrowEquivalence'_unitIso, arrowArrowEquivalence_counitIso, arrowArrowEquivalence_functor, arrowArrowEquivalence_inverse, arrowArrowEquivalence_unitIso, category_comp_ฯโ, category_comp_ฯโ, category_comp_ฯโ, category_comp_ฯโ, category_id_ฯโ, category_id_ฯโ, category_id_ฯโ, category_id_ฯโ, commSq, evaluationโ_map, evaluationโ_obj, evaluationโ_map, evaluationโ_obj, evaluationโ_map, evaluationโ_obj, evaluationโ_map, evaluationโ_obj, fac, flipEquivalence_counitIso, flipEquivalence_functor, flipEquivalence_inverse, flipEquivalence_unitIso, flipFunctor_map_ฯโ, flipFunctor_map_ฯโ, flipFunctor_map_ฯโ, flipFunctor_map_ฯโ, flipFunctor_obj, flip_Xโ, flip_Xโ, flip_Xโ, flip_Xโ, flip_fโโ, flip_fโโ, flip_fโโ, flip_fโโ, fromArrowArrowFunctor'_map_ฯโ, fromArrowArrowFunctor'_map_ฯโ, fromArrowArrowFunctor'_map_ฯโ, fromArrowArrowFunctor'_map_ฯโ, fromArrowArrowFunctor'_obj_Xโ, fromArrowArrowFunctor'_obj_Xโ, fromArrowArrowFunctor'_obj_Xโ, fromArrowArrowFunctor'_obj_Xโ, fromArrowArrowFunctor'_obj_fโโ, fromArrowArrowFunctor'_obj_fโโ, fromArrowArrowFunctor'_obj_fโโ, fromArrowArrowFunctor'_obj_fโโ, fromArrowArrowFunctor_map_ฯโ, fromArrowArrowFunctor_map_ฯโ, fromArrowArrowFunctor_map_ฯโ, fromArrowArrowFunctor_map_ฯโ, fromArrowArrowFunctor_obj_Xโ, fromArrowArrowFunctor_obj_Xโ, fromArrowArrowFunctor_obj_Xโ, fromArrowArrowFunctor_obj_Xโ, fromArrowArrowFunctor_obj_fโโ, fromArrowArrowFunctor_obj_fโโ, fromArrowArrowFunctor_obj_fโโ, fromArrowArrowFunctor_obj_fโโ, hom_ext, hom_ext_iff, mapFunctor_map, mapFunctor_obj, map_Xโ, map_Xโ, map_Xโ, map_Xโ, map_fโโ, map_fโโ, map_fโโ, map_fโโ, opFunctor_map_ฯโ, opFunctor_map_ฯโ, opFunctor_map_ฯโ, opFunctor_map_ฯโ, opFunctor_obj, op_Xโ, op_Xโ, op_Xโ, op_Xโ, op_fโโ, op_fโโ, op_fโโ, op_fโโ, toArrowArrowFunctor'_map_left_left, toArrowArrowFunctor'_map_left_right, toArrowArrowFunctor'_map_right_left, toArrowArrowFunctor'_map_right_right, toArrowArrowFunctor'_obj_hom_left, toArrowArrowFunctor'_obj_hom_right, toArrowArrowFunctor'_obj_left_hom, toArrowArrowFunctor'_obj_left_left, toArrowArrowFunctor'_obj_left_right, toArrowArrowFunctor'_obj_right_hom, toArrowArrowFunctor'_obj_right_left, toArrowArrowFunctor'_obj_right_right, toArrowArrowFunctor_map_left_left, toArrowArrowFunctor_map_left_right, toArrowArrowFunctor_map_right_left, toArrowArrowFunctor_map_right_right, toArrowArrowFunctor_obj_hom_left, toArrowArrowFunctor_obj_hom_right, toArrowArrowFunctor_obj_left_hom, toArrowArrowFunctor_obj_left_left, toArrowArrowFunctor_obj_left_right, toArrowArrowFunctor_obj_right_hom, toArrowArrowFunctor_obj_right_left, toArrowArrowFunctor_obj_right_right, unop_Xโ, unop_Xโ, unop_Xโ, unop_Xโ, unop_fโโ, unop_fโโ, unop_fโโ, unop_fโโ | 151 |
| Total | 190 |
| Name | Category | Theorems |
Xโ ๐ | CompOp | 59 mathmath: unop_Xโ, evaluationโ_obj, CategoryTheory.NatTrans.mapSquare_app_ฯโ, toArrowArrowFunctor_obj_hom_right, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.shortComplex_Xโ, Hom.commโโ_assoc, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.mono_fโโ, toArrowArrowFunctor_obj_left_left, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.fromBiprod_ฮด_assoc, Hom.commโโ, op_fโโ, CategoryTheory.Functor.mapSquare_map_ฯโ, toArrowArrowFunctor_map_right_right, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.mkโ_f_comp_biprodAddEquiv_symm_biprodIsoProd_hom, toArrowArrowFunctor'_map_right_left, map_fโโ, category_id_ฯโ, fromArrowArrowFunctor_obj_Xโ, map_Xโ, Opens.coe_mayerVietorisSquare_Xโ, fac, op_Xโ, toArrowArrowFunctor_obj_hom_left, IsPullback.mono_fโโ, category_comp_ฯโ, toArrowArrowFunctor'_map_left_right, Hom.comp_ฯโ, flip_Xโ, commSq, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.ฮด_toBiprod_assoc, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.ฮด_toBiprod, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.sheafCondition_iff_bijective_toPullbackObj, unop_fโโ, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.fromBiprod_biprodIsoProd_inv_apply, Hom.commโโ_assoc, toArrowArrowFunctor_map_left_left, fromArrowArrowFunctor'_obj_Xโ, isPushout_iff, map_fโโ, toArrowArrowFunctor'_map_left_left, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.toBiprod_fromBiprod_assoc, op_Xโ, Hom.commโโ, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.shortComplex_f, IsPullback.mono_fโโ, toArrowArrowFunctor'_map_right_right, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.SheafCondition.bijective_toPullbackObj, toArrowArrowFunctor'_obj_hom_right, toArrowArrowFunctor_map_left_right, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.toBiprod_fromBiprod, toArrowArrowFunctor_map_right_left, toArrowArrowFunctor'_obj_left_left, unop_Xโ, toArrowArrowFunctor'_obj_hom_left, Hom.id_ฯโ, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.fromBiprod_ฮด, opFunctor_map_ฯโ, op_fโโ, unop_fโโ
|
Xโ ๐ | CompOp | 61 mathmath: category_comp_ฯโ, unop_Xโ, Hom.commโโ, toArrowArrowFunctor_obj_hom_right, CategoryTheory.NatTrans.mapSquare_app_ฯโ, op_fโโ, Hom.id_ฯโ, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.biprodAddEquiv_symm_biprodIsoProd_hom_toBiprod_apply, fromArrowArrowFunctor'_obj_Xโ, Hom.comp_ฯโ, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.fromBiprod_ฮด_assoc, unop_fโโ, op_fโโ, fromArrowArrowFunctor_obj_Xโ, toArrowArrowFunctor_map_right_right, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.mkโ_f_comp_biprodAddEquiv_symm_biprodIsoProd_hom, Hom.commโโ_assoc, toArrowArrowFunctor'_map_right_left, Opens.mayerVietorisSquare_Xโ, isPullback_iff, flip_Xโ, fac, toArrowArrowFunctor_obj_hom_left, IsPullback.mono_fโโ, toArrowArrowFunctor'_map_left_right, opFunctor_map_ฯโ, commSq, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.ฮด_toBiprod_assoc, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.ฮด_toBiprod, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.sheafCondition_iff_bijective_toPullbackObj, op_Xโ, unop_fโโ, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.fromBiprod_biprodIsoProd_inv_apply, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.shortComplex_g, Hom.commโโ_assoc, toArrowArrowFunctor_map_left_left, IsPushout.epi_fโโ, isPushout_iff, toArrowArrowFunctor_obj_right_left, map_fโโ, toArrowArrowFunctor'_map_left_left, flip_Xโ, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.toBiprod_fromBiprod_assoc, CategoryTheory.Functor.mapSquare_map_ฯโ, evaluationโ_obj, Hom.commโโ, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.shortComplex_f, map_Xโ, toArrowArrowFunctor'_map_right_right, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.SheafCondition.bijective_toPullbackObj, toArrowArrowFunctor'_obj_hom_right, toArrowArrowFunctor_map_left_right, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.toBiprod_fromBiprod, toArrowArrowFunctor_map_right_left, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.shortComplex_Xโ, category_id_ฯโ, toArrowArrowFunctor'_obj_hom_left, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.fromBiprod_ฮด, toArrowArrowFunctor'_obj_left_right, map_fโโ, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.toBiprod_apply
|
Xโ ๐ | CompOp | 62 mathmath: category_id_ฯโ, Opens.mayerVietorisSquare_Xโ, toArrowArrowFunctor_obj_hom_right, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.biprodAddEquiv_symm_biprodIsoProd_hom_toBiprod_apply, Hom.commโโ_assoc, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.mono_fโโ, fromArrowArrowFunctor'_obj_Xโ, Hom.id_ฯโ, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.fromBiprod_ฮด_assoc, Hom.commโโ, fromArrowArrowFunctor_obj_Xโ, op_Xโ, toArrowArrowFunctor_map_right_right, Hom.commโโ, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.mkโ_f_comp_biprodAddEquiv_symm_biprodIsoProd_hom, unop_Xโ, toArrowArrowFunctor'_map_right_left, map_fโโ, map_fโโ, isPullback_iff, flip_Xโ, fac, category_comp_ฯโ, toArrowArrowFunctor_obj_hom_left, unop_fโโ, toArrowArrowFunctor'_map_left_right, commSq, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.ฮด_toBiprod_assoc, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.ฮด_toBiprod, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.sheafCondition_iff_bijective_toPullbackObj, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.fromBiprod_biprodIsoProd_inv_apply, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.shortComplex_g, toArrowArrowFunctor_map_left_left, isPushout_iff, toArrowArrowFunctor_obj_left_right, opFunctor_map_ฯโ, Hom.commโโ_assoc, toArrowArrowFunctor'_map_left_left, flip_Xโ, op_fโโ, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.toBiprod_fromBiprod_assoc, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.shortComplex_f, IsPushout.epi_fโโ, map_Xโ, IsPullback.mono_fโโ, toArrowArrowFunctor'_map_right_right, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.SheafCondition.bijective_toPullbackObj, CategoryTheory.Functor.mapSquare_map_ฯโ, toArrowArrowFunctor'_obj_hom_right, toArrowArrowFunctor_map_left_right, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.toBiprod_fromBiprod, toArrowArrowFunctor_map_right_left, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.shortComplex_Xโ, toArrowArrowFunctor'_obj_hom_left, CategoryTheory.NatTrans.mapSquare_app_ฯโ, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.fromBiprod_ฮด, toArrowArrowFunctor'_obj_right_left, op_fโโ, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.toBiprod_apply, evaluationโ_obj, unop_fโโ, Hom.comp_ฯโ
|
Xโ ๐ | CompOp | 60 mathmath: CategoryTheory.GrothendieckTopology.MayerVietorisSquare.shortComplex_Xโ, map_Xโ, unop_Xโ, flip_Xโ, Hom.commโโ, toArrowArrowFunctor_obj_hom_right, op_fโโ, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.SheafCondition.map_fโโ_op_glue, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.biprodAddEquiv_symm_biprodIsoProd_hom_toBiprod_apply, Hom.id_ฯโ, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.fromBiprod_ฮด_assoc, unop_fโโ, category_id_ฯโ, toArrowArrowFunctor'_obj_right_right, toArrowArrowFunctor_map_right_right, Hom.commโโ, Hom.commโโ_assoc, toArrowArrowFunctor'_map_right_left, toArrowArrowFunctor_obj_right_right, map_fโโ, isPullback_iff, fac, op_Xโ, toArrowArrowFunctor_obj_hom_left, opFunctor_map_ฯโ, unop_fโโ, toArrowArrowFunctor'_map_left_right, CategoryTheory.Functor.mapSquare_map_ฯโ, commSq, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.ฮด_toBiprod_assoc, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.ฮด_toBiprod, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.sheafCondition_iff_bijective_toPullbackObj, fromArrowArrowFunctor_obj_Xโ, Hom.comp_ฯโ, fromArrowArrowFunctor'_obj_Xโ, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.shortComplex_g, evaluationโ_obj, toArrowArrowFunctor_map_left_left, IsPushout.epi_fโโ, Hom.commโโ_assoc, toArrowArrowFunctor'_map_left_left, op_fโโ, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.toBiprod_fromBiprod_assoc, op_Xโ, IsPushout.epi_fโโ, CategoryTheory.NatTrans.mapSquare_app_ฯโ, Opens.coe_mayerVietorisSquare_Xโ, toArrowArrowFunctor'_map_right_right, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.SheafCondition.bijective_toPullbackObj, toArrowArrowFunctor'_obj_hom_right, toArrowArrowFunctor_map_left_right, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.toBiprod_fromBiprod, toArrowArrowFunctor_map_right_left, unop_Xโ, toArrowArrowFunctor'_obj_hom_left, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.fromBiprod_ฮด, category_comp_ฯโ, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.SheafCondition.map_fโโ_op_glue, map_fโโ, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.toBiprod_apply
|
arrowArrowEquivalence ๐ | CompOp | 4 mathmath: arrowArrowEquivalence_functor, arrowArrowEquivalence_inverse, arrowArrowEquivalence_unitIso, arrowArrowEquivalence_counitIso
|
arrowArrowEquivalence' ๐ | CompOp | 4 mathmath: arrowArrowEquivalence'_inverse, arrowArrowEquivalence'_unitIso, arrowArrowEquivalence'_functor, arrowArrowEquivalence'_counitIso
|
category ๐ | CompOp | 97 mathmath: category_id_ฯโ, category_comp_ฯโ, mapFunctor_obj, arrowArrowEquivalence_functor, evaluationโ_obj, CategoryTheory.NatTrans.mapSquare_app_ฯโ, fromArrowArrowFunctor_map_ฯโ, mapFunctor_map, toArrowArrowFunctor_obj_hom_right, CategoryTheory.NatTrans.mapSquare_app_ฯโ, toArrowArrowFunctor'_obj_left_hom, fromArrowArrowFunctor_obj_fโโ, flipEquivalence_unitIso, fromArrowArrowFunctor'_obj_Xโ, fromArrowArrowFunctor'_obj_Xโ, evaluationโ_map, toArrowArrowFunctor_obj_left_left, fromArrowArrowFunctor_obj_Xโ, flipFunctor_map_ฯโ, fromArrowArrowFunctor'_map_ฯโ, fromArrowArrowFunctor_obj_Xโ, CategoryTheory.Functor.mapSquare_map_ฯโ, category_id_ฯโ, toArrowArrowFunctor'_obj_right_right, toArrowArrowFunctor_map_right_right, flipEquivalence_inverse, evaluationโ_map, toArrowArrowFunctor'_map_right_left, toArrowArrowFunctor_obj_right_right, fromArrowArrowFunctor_obj_fโโ, arrowArrowEquivalence_inverse, category_id_ฯโ, fromArrowArrowFunctor_obj_Xโ, evaluationโ_map, category_comp_ฯโ, toArrowArrowFunctor_obj_hom_left, opFunctor_map_ฯโ, flipFunctor_map_ฯโ, opFunctor_obj, category_comp_ฯโ, toArrowArrowFunctor'_map_left_right, fromArrowArrowFunctor'_obj_fโโ, CategoryTheory.Functor.mapSquare_map_ฯโ, opFunctor_map_ฯโ, flipFunctor_obj, arrowArrowEquivalence'_inverse, fromArrowArrowFunctor_obj_Xโ, fromArrowArrowFunctor'_obj_Xโ, CategoryTheory.Functor.mapSquare_obj, evaluationโ_obj, evaluationโ_map, fromArrowArrowFunctor_obj_fโโ, toArrowArrowFunctor_map_left_left, fromArrowArrowFunctor'_obj_Xโ, toArrowArrowFunctor_obj_right_hom, toArrowArrowFunctor_obj_right_left, fromArrowArrowFunctor'_map_ฯโ, toArrowArrowFunctor_obj_left_right, opFunctor_map_ฯโ, toArrowArrowFunctor'_map_left_left, fromArrowArrowFunctor_obj_fโโ, CategoryTheory.Functor.mapSquare_map_ฯโ, evaluationโ_obj, fromArrowArrowFunctor'_map_ฯโ, fromArrowArrowFunctor_map_ฯโ, arrowArrowEquivalence'_unitIso, arrowArrowEquivalence'_functor, CategoryTheory.NatTrans.mapSquare_app_ฯโ, fromArrowArrowFunctor'_map_ฯโ, toArrowArrowFunctor'_map_right_right, CategoryTheory.Functor.mapSquare_map_ฯโ, fromArrowArrowFunctor_map_ฯโ, toArrowArrowFunctor'_obj_hom_right, toArrowArrowFunctor_map_left_right, toArrowArrowFunctor_map_right_left, toArrowArrowFunctor'_obj_left_left, arrowArrowEquivalence'_counitIso, category_id_ฯโ, toArrowArrowFunctor'_obj_hom_left, arrowArrowEquivalence_unitIso, CategoryTheory.NatTrans.mapSquare_app_ฯโ, category_comp_ฯโ, opFunctor_map_ฯโ, flipFunctor_map_ฯโ, toArrowArrowFunctor'_obj_right_left, fromArrowArrowFunctor'_obj_fโโ, flipFunctor_map_ฯโ, toArrowArrowFunctor'_obj_right_hom, toArrowArrowFunctor'_obj_left_right, toArrowArrowFunctor_obj_left_hom, fromArrowArrowFunctor'_obj_fโโ, flipEquivalence_functor, evaluationโ_obj, arrowArrowEquivalence_counitIso, fromArrowArrowFunctor'_obj_fโโ, flipEquivalence_counitIso, fromArrowArrowFunctor_map_ฯโ
|
evaluationโ ๐ | CompOp | 2 mathmath: evaluationโ_obj, evaluationโ_map
|
evaluationโ ๐ | CompOp | 2 mathmath: evaluationโ_map, evaluationโ_obj
|
evaluationโ ๐ | CompOp | 2 mathmath: evaluationโ_map, evaluationโ_obj
|
evaluationโ ๐ | CompOp | 2 mathmath: evaluationโ_map, evaluationโ_obj
|
flip ๐ | CompOp | 15 mathmath: flip_Xโ, flip_fโโ, IsPullback.flip, flipFunctor_map_ฯโ, flip_Xโ, flipFunctor_map_ฯโ, flip_Xโ, flipFunctor_obj, flip_Xโ, flip_fโโ, flip_fโโ, IsPushout.flip, flip_fโโ, flipFunctor_map_ฯโ, flipFunctor_map_ฯโ
|
flipEquivalence ๐ | CompOp | 4 mathmath: flipEquivalence_unitIso, flipEquivalence_inverse, flipEquivalence_functor, flipEquivalence_counitIso
|
flipFunctor ๐ | CompOp | 8 mathmath: flipFunctor_map_ฯโ, flipEquivalence_inverse, flipFunctor_map_ฯโ, flipFunctor_obj, flipFunctor_map_ฯโ, flipFunctor_map_ฯโ, flipEquivalence_functor, flipEquivalence_counitIso
|
fromArrowArrowFunctor ๐ | CompOp | 14 mathmath: fromArrowArrowFunctor_map_ฯโ, fromArrowArrowFunctor_obj_fโโ, fromArrowArrowFunctor_obj_Xโ, fromArrowArrowFunctor_obj_Xโ, fromArrowArrowFunctor_obj_fโโ, arrowArrowEquivalence_inverse, fromArrowArrowFunctor_obj_Xโ, fromArrowArrowFunctor_obj_Xโ, fromArrowArrowFunctor_obj_fโโ, fromArrowArrowFunctor_obj_fโโ, fromArrowArrowFunctor_map_ฯโ, fromArrowArrowFunctor_map_ฯโ, arrowArrowEquivalence_counitIso, fromArrowArrowFunctor_map_ฯโ
|
fromArrowArrowFunctor' ๐ | CompOp | 14 mathmath: fromArrowArrowFunctor'_obj_Xโ, fromArrowArrowFunctor'_obj_Xโ, fromArrowArrowFunctor'_map_ฯโ, fromArrowArrowFunctor'_obj_fโโ, arrowArrowEquivalence'_inverse, fromArrowArrowFunctor'_obj_Xโ, fromArrowArrowFunctor'_obj_Xโ, fromArrowArrowFunctor'_map_ฯโ, fromArrowArrowFunctor'_map_ฯโ, fromArrowArrowFunctor'_map_ฯโ, arrowArrowEquivalence'_counitIso, fromArrowArrowFunctor'_obj_fโโ, fromArrowArrowFunctor'_obj_fโโ, fromArrowArrowFunctor'_obj_fโโ
|
fโโ ๐ | CompOp | 31 mathmath: op_fโโ, toArrowArrowFunctor'_obj_left_hom, unop_fโโ, op_fโโ, toArrowArrowFunctor_map_right_right, toArrowArrowFunctor'_map_right_left, fac, toArrowArrowFunctor_obj_hom_left, IsPullback.mono_fโโ, toArrowArrowFunctor'_map_left_right, commSq, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.sheafCondition_iff_bijective_toPullbackObj, unop_fโโ, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.fromBiprod_biprodIsoProd_inv_apply, Hom.commโโ_assoc, fromArrowArrowFunctor_obj_fโโ, toArrowArrowFunctor_map_left_left, isPushout_iff, map_fโโ, toArrowArrowFunctor'_map_left_left, flip_fโโ, Hom.commโโ, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.shortComplex_f, toArrowArrowFunctor'_map_right_right, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.SheafCondition.bijective_toPullbackObj, toArrowArrowFunctor'_obj_hom_right, toArrowArrowFunctor_map_left_right, toArrowArrowFunctor_map_right_left, flip_fโโ, toArrowArrowFunctor'_obj_hom_left, fromArrowArrowFunctor'_obj_fโโ
|
fโโ ๐ | CompOp | 32 mathmath: toArrowArrowFunctor_obj_hom_right, Hom.commโโ_assoc, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.mono_fโโ, Hom.commโโ, toArrowArrowFunctor_map_right_right, toArrowArrowFunctor'_map_right_left, map_fโโ, fromArrowArrowFunctor_obj_fโโ, fac, toArrowArrowFunctor_obj_hom_left, unop_fโโ, toArrowArrowFunctor'_map_left_right, fromArrowArrowFunctor'_obj_fโโ, commSq, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.sheafCondition_iff_bijective_toPullbackObj, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.fromBiprod_biprodIsoProd_inv_apply, toArrowArrowFunctor_map_left_left, isPushout_iff, toArrowArrowFunctor'_map_left_left, op_fโโ, flip_fโโ, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.shortComplex_f, IsPullback.mono_fโโ, toArrowArrowFunctor'_map_right_right, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.SheafCondition.bijective_toPullbackObj, toArrowArrowFunctor_map_left_right, toArrowArrowFunctor_map_right_left, flip_fโโ, toArrowArrowFunctor'_obj_hom_left, op_fโโ, toArrowArrowFunctor_obj_left_hom, unop_fโโ
|
fโโ ๐ | CompOp | 30 mathmath: flip_fโโ, Hom.commโโ, toArrowArrowFunctor_obj_hom_right, op_fโโ, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.SheafCondition.map_fโโ_op_glue, unop_fโโ, op_fโโ, toArrowArrowFunctor_map_right_right, Hom.commโโ_assoc, toArrowArrowFunctor'_map_right_left, isPullback_iff, fac, toArrowArrowFunctor_obj_hom_left, toArrowArrowFunctor'_map_left_right, commSq, unop_fโโ, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.shortComplex_g, toArrowArrowFunctor_map_left_left, IsPushout.epi_fโโ, toArrowArrowFunctor_obj_right_hom, toArrowArrowFunctor'_map_left_left, fromArrowArrowFunctor_obj_fโโ, flip_fโโ, toArrowArrowFunctor'_map_right_right, toArrowArrowFunctor'_obj_hom_right, toArrowArrowFunctor_map_left_right, toArrowArrowFunctor_map_right_left, fromArrowArrowFunctor'_obj_fโโ, map_fโโ, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.toBiprod_apply
|
fโโ ๐ | CompOp | 30 mathmath: flip_fโโ, toArrowArrowFunctor_obj_hom_right, fromArrowArrowFunctor_obj_fโโ, toArrowArrowFunctor_map_right_right, Hom.commโโ, toArrowArrowFunctor'_map_right_left, map_fโโ, isPullback_iff, fac, unop_fโโ, toArrowArrowFunctor'_map_left_right, commSq, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.shortComplex_g, toArrowArrowFunctor_map_left_left, Hom.commโโ_assoc, toArrowArrowFunctor'_map_left_left, op_fโโ, IsPushout.epi_fโโ, flip_fโโ, toArrowArrowFunctor'_map_right_right, toArrowArrowFunctor'_obj_hom_right, toArrowArrowFunctor_map_left_right, toArrowArrowFunctor_map_right_left, toArrowArrowFunctor'_obj_hom_left, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.SheafCondition.map_fโโ_op_glue, op_fโโ, toArrowArrowFunctor'_obj_right_hom, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.toBiprod_apply, unop_fโโ, fromArrowArrowFunctor'_obj_fโโ
|
isoMk ๐ | CompOp | โ |
map ๐ | CompOp | 23 mathmath: map_Xโ, IsPullback.map_iff, CategoryTheory.Sheaf.isPullback_square_op_map_yoneda_presheafToSheaf_yoneda_iff, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.isPushout, CategoryTheory.Functor.mapSquare_map_ฯโ, map_fโโ, map_fโโ, map_Xโ, CategoryTheory.Functor.mapSquare_map_ฯโ, IsPushout.map_iff, CategoryTheory.Functor.mapSquare_obj, IsPullback.map, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.isPushoutAddCommGrpFreeSheaf, map_fโโ, CategoryTheory.Functor.mapSquare_map_ฯโ, isPullback_iff_map_coyoneda_isPullback, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.shortComplex_f, map_Xโ, map_Xโ, CategoryTheory.Functor.mapSquare_map_ฯโ, IsPushout.map, map_fโโ, isPushout_iff_op_map_yoneda_isPullback
|
mapFunctor ๐ | CompOp | 2 mathmath: mapFunctor_obj, mapFunctor_map
|
op ๐ | CompOp | 17 mathmath: op_fโโ, CategoryTheory.Sheaf.isPullback_square_op_map_yoneda_presheafToSheaf_yoneda_iff, op_fโโ, op_Xโ, op_Xโ, opFunctor_map_ฯโ, opFunctor_obj, opFunctor_map_ฯโ, op_Xโ, IsPullback.op, opFunctor_map_ฯโ, op_fโโ, op_Xโ, IsPushout.op, opFunctor_map_ฯโ, op_fโโ, isPushout_iff_op_map_yoneda_isPullback
|
opEquivalence ๐ | CompOp | โ |
opFunctor ๐ | CompOp | 5 mathmath: opFunctor_map_ฯโ, opFunctor_obj, opFunctor_map_ฯโ, opFunctor_map_ฯโ, opFunctor_map_ฯโ
|
toArrowArrowFunctor ๐ | CompOp | 14 mathmath: arrowArrowEquivalence_functor, toArrowArrowFunctor_obj_hom_right, toArrowArrowFunctor_obj_left_left, toArrowArrowFunctor_map_right_right, toArrowArrowFunctor_obj_right_right, toArrowArrowFunctor_obj_hom_left, toArrowArrowFunctor_map_left_left, toArrowArrowFunctor_obj_right_hom, toArrowArrowFunctor_obj_right_left, toArrowArrowFunctor_obj_left_right, toArrowArrowFunctor_map_left_right, toArrowArrowFunctor_map_right_left, toArrowArrowFunctor_obj_left_hom, arrowArrowEquivalence_counitIso
|
toArrowArrowFunctor' ๐ | CompOp | 14 mathmath: toArrowArrowFunctor'_obj_left_hom, toArrowArrowFunctor'_obj_right_right, toArrowArrowFunctor'_map_right_left, toArrowArrowFunctor'_map_left_right, toArrowArrowFunctor'_map_left_left, arrowArrowEquivalence'_functor, toArrowArrowFunctor'_map_right_right, toArrowArrowFunctor'_obj_hom_right, toArrowArrowFunctor'_obj_left_left, arrowArrowEquivalence'_counitIso, toArrowArrowFunctor'_obj_hom_left, toArrowArrowFunctor'_obj_right_left, toArrowArrowFunctor'_obj_right_hom, toArrowArrowFunctor'_obj_left_right
|
unop ๐ | CompOp | 10 mathmath: unop_Xโ, unop_Xโ, unop_fโโ, unop_Xโ, unop_fโโ, unop_fโโ, IsPullback.unop, unop_Xโ, IsPushout.unop, unop_fโโ
|
unopFunctor ๐ | CompOp | โ |