Documentation Verification Report

Subobject

📁 Source: Mathlib/CategoryTheory/Subfunctor/Subobject.lean

Statistics

MetricCount
DefinitionsequivalenceMonoOver, orderIsoSubobject, equivalenceMonoOver, orderIsoSubobject
4
Theoremsrange_subobjectMk_ι, subobjectMk_range_arrow, equivalenceMonoOver_counitIso, equivalenceMonoOver_functor_map, equivalenceMonoOver_functor_obj, equivalenceMonoOver_inverse_map, equivalenceMonoOver_inverse_obj, equivalenceMonoOver_unitIso, orderIsoSubobject_apply, orderIsoSubobject_symm_apply, range_subobjectMk_ι, subobjectMk_range_arrow
12
Total16

CategoryTheory.Subfunctor

Definitions

NameCategoryTheorems
equivalenceMonoOver 📖CompOp
6 mathmath: equivalenceMonoOver_inverse_map, equivalenceMonoOver_functor_map, equivalenceMonoOver_inverse_obj, equivalenceMonoOver_functor_obj, equivalenceMonoOver_unitIso, equivalenceMonoOver_counitIso
orderIsoSubobject 📖CompOp
2 mathmath: orderIsoSubobject_apply, orderIsoSubobject_symm_apply

Theorems

NameKindAssumesProvesValidatesDepends On
equivalenceMonoOver_counitIso 📖mathematicalCategoryTheory.Equivalence.counitIso
CategoryTheory.Subfunctor
CategoryTheory.MonoOver
CategoryTheory.Functor
CategoryTheory.types
CategoryTheory.Functor.category
Preorder.smallCategory
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubfunctor
CategoryTheory.ObjectProperty.FullSubcategory.category
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Over.isMono
equivalenceMonoOver
CategoryTheory.NatIso.ofComponents
CategoryTheory.Functor.comp
range
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
CategoryTheory.ObjectProperty.FullSubcategory.obj
CategoryTheory.MonoOver.arrow
CategoryTheory.homOfLE
toFunctor
ι
instMonoFunctorTypeι
CategoryTheory.MonoOver.homMk
homOfLe
CategoryTheory.MonoOver.isoMk
CategoryTheory.Functor.obj
CategoryTheory.Iso.symm
CategoryTheory.asIso
toRange
instMonoFunctorTypeι
equivalenceMonoOver_functor_map 📖mathematicalCategoryTheory.Functor.map
CategoryTheory.Subfunctor
Preorder.smallCategory
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubfunctor
CategoryTheory.MonoOver
CategoryTheory.Functor
CategoryTheory.types
CategoryTheory.Functor.category
CategoryTheory.ObjectProperty.FullSubcategory.category
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Over.isMono
CategoryTheory.Equivalence.functor
equivalenceMonoOver
CategoryTheory.MonoOver.homMk
toFunctor
ι
instMonoFunctorTypeι
homOfLe
instMonoFunctorTypeι
equivalenceMonoOver_functor_obj 📖mathematicalCategoryTheory.Functor.obj
CategoryTheory.Subfunctor
Preorder.smallCategory
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubfunctor
CategoryTheory.MonoOver
CategoryTheory.Functor
CategoryTheory.types
CategoryTheory.Functor.category
CategoryTheory.ObjectProperty.FullSubcategory.category
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Over.isMono
CategoryTheory.Equivalence.functor
equivalenceMonoOver
toFunctor
ι
instMonoFunctorTypeι
equivalenceMonoOver_inverse_map 📖mathematicalCategoryTheory.Functor.map
CategoryTheory.MonoOver
CategoryTheory.Functor
CategoryTheory.types
CategoryTheory.Functor.category
CategoryTheory.ObjectProperty.FullSubcategory.category
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Over.isMono
CategoryTheory.Subfunctor
Preorder.smallCategory
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubfunctor
CategoryTheory.Equivalence.inverse
equivalenceMonoOver
CategoryTheory.homOfLE
range
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
CategoryTheory.ObjectProperty.FullSubcategory.obj
CategoryTheory.MonoOver.arrow
equivalenceMonoOver_inverse_obj 📖mathematicalCategoryTheory.Functor.obj
CategoryTheory.MonoOver
CategoryTheory.Functor
CategoryTheory.types
CategoryTheory.Functor.category
CategoryTheory.ObjectProperty.FullSubcategory.category
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Over.isMono
CategoryTheory.Subfunctor
Preorder.smallCategory
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubfunctor
CategoryTheory.Equivalence.inverse
equivalenceMonoOver
range
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
CategoryTheory.ObjectProperty.FullSubcategory.obj
CategoryTheory.MonoOver.arrow
equivalenceMonoOver_unitIso 📖mathematicalCategoryTheory.Equivalence.unitIso
CategoryTheory.Subfunctor
CategoryTheory.MonoOver
CategoryTheory.Functor
CategoryTheory.types
CategoryTheory.Functor.category
Preorder.smallCategory
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubfunctor
CategoryTheory.ObjectProperty.FullSubcategory.category
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Over.isMono
equivalenceMonoOver
CategoryTheory.NatIso.ofComponents
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
toFunctor
ι
instMonoFunctorTypeι
CategoryTheory.MonoOver.homMk
homOfLe
range
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.ObjectProperty.FullSubcategory.obj
CategoryTheory.MonoOver.arrow
CategoryTheory.homOfLE
CategoryTheory.eqToIso
CategoryTheory.Functor.obj
instMonoFunctorTypeι
orderIsoSubobject_apply 📖mathematicalDFunLike.coe
RelIso
CategoryTheory.Subfunctor
CategoryTheory.Subobject
CategoryTheory.Functor
CategoryTheory.types
CategoryTheory.Functor.category
Preorder.toLE
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubfunctor
CategoryTheory.instPartialOrderSubobject
RelIso.instFunLike
orderIsoSubobject
toFunctor
ι
instMonoFunctorTypeι
orderIsoSubobject_symm_apply 📖mathematicalDFunLike.coe
RelIso
CategoryTheory.Subobject
CategoryTheory.Functor
CategoryTheory.types
CategoryTheory.Functor.category
CategoryTheory.Subfunctor
Preorder.toLE
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
CategoryTheory.instPartialOrderSubfunctor
RelIso.instFunLike
RelIso.symm
orderIsoSubobject
range
CategoryTheory.Functor.obj
Preorder.smallCategory
CategoryTheory.Subobject.underlying
CategoryTheory.Subobject.arrow
range_subobjectMk_ι 📖mathematicalrange
CategoryTheory.Functor.obj
CategoryTheory.Subobject
CategoryTheory.Functor
CategoryTheory.types
CategoryTheory.Functor.category
Preorder.smallCategory
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
CategoryTheory.Subobject.underlying
toFunctor
ι
instMonoFunctorTypeι
CategoryTheory.Subobject.arrow
CategoryTheory.MonoOver.isThin
CategoryTheory.Iso.to_eq
subobjectMk_range_arrow 📖mathematicalCategoryTheory.Functor
CategoryTheory.types
CategoryTheory.Functor.category
toFunctor
range
CategoryTheory.Functor.obj
CategoryTheory.Subobject
Preorder.smallCategory
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
CategoryTheory.Subobject.underlying
CategoryTheory.Subobject.arrow
ι
instMonoFunctorTypeι
CategoryTheory.Iso.to_eq
CategoryTheory.MonoOver.isThin

CategoryTheory.Subfunctor.Subpresheaf

Definitions

NameCategoryTheorems
equivalenceMonoOver 📖CompOp
orderIsoSubobject 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
range_subobjectMk_ι 📖mathematicalCategoryTheory.Subfunctor.range
CategoryTheory.Functor.obj
CategoryTheory.Subobject
CategoryTheory.Functor
CategoryTheory.types
CategoryTheory.Functor.category
Preorder.smallCategory
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
CategoryTheory.Subobject.underlying
CategoryTheory.Subfunctor.toFunctor
CategoryTheory.Subfunctor.ι
CategoryTheory.Subfunctor.instMonoFunctorTypeι
CategoryTheory.Subobject.arrow
CategoryTheory.Subfunctor.range_subobjectMk_ι
subobjectMk_range_arrow 📖mathematicalCategoryTheory.Functor
CategoryTheory.types
CategoryTheory.Functor.category
CategoryTheory.Subfunctor.toFunctor
CategoryTheory.Subfunctor.range
CategoryTheory.Functor.obj
CategoryTheory.Subobject
Preorder.smallCategory
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
CategoryTheory.Subobject.underlying
CategoryTheory.Subobject.arrow
CategoryTheory.Subfunctor.ι
CategoryTheory.Subfunctor.instMonoFunctorTypeι
CategoryTheory.Subfunctor.subobjectMk_range_arrow

---

← Back to Index