| Name | Category | Theorems |
arrow π | CompOp | 106 mathmath: CategoryTheory.Limits.kernelSubobjectMap_arrow_assoc, CategoryTheory.Limits.imageSubobject_arrow_assoc, CategoryTheory.Limits.imageSubobjectCompIso_hom_arrow, underlyingIso_hom_comp_eq_mk_assoc, imageFactorisation_F_m, underlyingIso_arrow_assoc, ofLE_arrow, AlgebraicTopology.NormalizedMooreComplex.obj_d, CategoryTheory.Limits.equalizerSubobject_arrow'_assoc, isPullback_aux, CategoryTheory.Limits.kernelSubobject_arrow'_apply, CategoryTheory.Classifier.SubobjectRepresentableBy.iso_inv_hom_left_comp, top_arrow_isIso, wideCospan_map_term, CategoryTheory.Regular.frobeniusStrongEpiMonoFactorisation_I, CategoryTheory.Limits.kernelSubobjectIsoComp_hom_arrow, CategoryTheory.Limits.imageSubobject_arrow_comp_eq_zero, ofMkLE_arrow, ofLE_arrow_assoc, inf_comp_left, CategoryTheory.Limits.kernelSubobject_arrow_assoc, inf_arrow_factors_right, CategoryTheory.Limits.equalizerSubobject_arrow_comp, ofLEMk_comp, CategoryTheory.Limits.factorThruKernelSubobject_comp_arrow, imageToKernel_arrow_assoc, pullback_obj, CategoryTheory.Classifier.Ο_pullback_obj_mk_truth_arrow, factorThru_arrow_assoc, arrow_mono, isIso_top_arrow, factors_comp_arrow, factors_self, CategoryTheory.Limits.imageSubobject_zero_arrow, CategoryTheory.Limits.kernelSubobjectIsoComp_inv_arrow, CategoryTheory.Classifier.SubobjectRepresentableBy.isPullback, imageToKernel_arrow, inf_isPullback, mk_arrow, CategoryTheory.Limits.imageSubobject_arrow_comp_apply, CategoryTheory.Limits.kernelSubobject_arrow_comp_apply, underlyingIso_arrow, eq_of_comp_arrow_eq_iff, CategoryTheory.Limits.imageSubobjectCompIso_inv_arrow_assoc, CategoryTheory.Limits.imageSubobjectMap_arrow, CategoryTheory.Limits.imageSubobjectMap_arrow_assoc, CategoryTheory.Limits.kernelSubobject_arrow, CategoryTheory.Regular.frobeniusStrongEpiMonoFactorisation_e, CategoryTheory.Limits.imageSubobject_arrow, imageFactorisation_F_I, CategoryTheory.Limits.equalizerSubobject_arrow, CategoryTheory.Limits.imageSubobject_arrow_comp_assoc, CategoryTheory.Limits.isIso_kernelSubobject_zero_arrow, bot_arrow, AlgebraicTopology.NormalizedMooreComplex.map_f, CategoryTheory.IsGrothendieckAbelian.generatingMonomorphisms.functorToMonoOver_map, CategoryTheory.Limits.imageSubobject_arrow'_assoc, factorThru_arrow, inf_arrow_factors_left, CategoryTheory.Classifier.SubobjectRepresentableBy.iso_inv_hom_left_comp_assoc, CategoryTheory.Limits.imageSubobjectCompIso_hom_arrow_assoc, CategoryTheory.Regular.frobeniusMorphism_isPullback, imageToKernel_arrow_apply, CategoryTheory.Limits.equalizerSubobject_arrow', underlying_arrow_assoc, CategoryTheory.Limits.equalizerSubobject_arrow_comp_assoc, CategoryTheory.Limits.kernelSubobject_arrow'_assoc, imageToKernel_zero_right, underlyingIso_inv_top_arrow_assoc, isPullback, CategoryTheory.Limits.equalizerSubobject_arrow_assoc, isIso_arrow_iff_eq_top, CategoryTheory.Subfunctor.orderIsoSubobject_symm_apply, underlyingIso_inv_top_arrow, CategoryTheory.Classifier.SubobjectRepresentableBy.iso_inv_left_comp, underlyingIso_top_hom, CategoryTheory.Subfunctor.range_subobjectMk_ΞΉ, CategoryTheory.Regular.frobeniusStrongEpiMonoFactorisation_m, arrow_congr, leInfCone_Ο_app_none, inf_comp_left_assoc, CategoryTheory.StructuredArrow.projectSubobject_factors, underlyingIso_hom_comp_eq_mk, CategoryTheory.Limits.imageSubobjectCompIso_inv_arrow, CategoryTheory.Limits.kernelSubobject_arrow_comp_assoc, CategoryTheory.IsGrothendieckAbelian.generatingMonomorphisms.functorToMonoOver_obj, inf_comp_right, CategoryTheory.Limits.kernelSubobject_arrow_apply, CategoryTheory.Limits.imageSubobject_arrow_comp, CategoryTheory.Subfunctor.Subpresheaf.subobjectMk_range_arrow, inf_comp_right_assoc, CategoryTheory.Subfunctor.Subpresheaf.range_subobjectMk_ΞΉ, finset_inf_arrow_factors, AlgebraicTopology.inclusionOfMooreComplexMap_f, CategoryTheory.CostructuredArrow.projectQuotient_factors, CategoryTheory.Limits.kernelSubobject_arrow_comp, CategoryTheory.CostructuredArrow.unop_left_comp_underlyingIso_hom_unop, underlyingIso_arrow_apply, underlying_arrow, representative_arrow, CategoryTheory.Limits.kernelSubobjectMap_arrow, ModuleCat.toKernelSubobject_arrow, CategoryTheory.Limits.imageSubobject_arrow', CategoryTheory.Limits.kernelSubobject_arrow', CategoryTheory.Subfunctor.subobjectMk_range_arrow, CategoryTheory.Limits.kernelSubobjectMap_arrow_apply
|
equivMonoOver π | CompOp | β |
exists π | CompOp | 8 mathmath: imageFactorisation_F_m, CategoryTheory.Regular.frobeniusStrongEpiMonoFactorisation_I, exists_iso_map, CategoryTheory.Regular.instIsRegularEpiFrobeniusMorphism, imageFactorisation_F_I, CategoryTheory.Regular.exists_inf_pullback_eq_exists_inf, CategoryTheory.Regular.frobeniusMorphism_isPullback, CategoryTheory.Regular.frobeniusStrongEpiMonoFactorisation_m
|
existsCompRepresentativeIso π | CompOp | β |
existsIsoImage π | CompOp | β |
existsPullbackAdj π | CompOp | β |
imageFactorisation π | CompOp | 3 mathmath: imageFactorisation_F_m, imageFactorisation_F_I, CategoryTheory.Regular.frobeniusMorphism_isPullback
|
instCoeOut π | CompOp | β |
isoOfEq π | CompOp | 3 mathmath: isoOfEq_hom, isoOfEq_inv, imageToKernel_comp_mono
|
isoOfEqMk π | CompOp | 2 mathmath: isoOfEqMk_inv, isoOfEqMk_hom
|
isoOfMkEq π | CompOp | 2 mathmath: isoOfMkEq_inv, isoOfMkEq_hom
|
isoOfMkEqMk π | CompOp | 2 mathmath: isoOfMkEqMk_hom, isoOfMkEqMk_inv
|
lower π | CompOp | 6 mathmath: lower_iso, lower_comm, lowerEquivalence_counitIso, lowerEquivalence_unitIso, lowerEquivalence_inverse, lowerEquivalence_functor
|
lowerAdjunction π | CompOp | β |
lowerCompRepresentativeIso π | CompOp | β |
lowerEquivalence π | CompOp | 4 mathmath: lowerEquivalence_counitIso, lowerEquivalence_unitIso, lowerEquivalence_inverse, lowerEquivalence_functor
|
lowerβ π | CompOp | β |
map π | CompOp | 14 mathmath: map_mk, map_comp, map_top, exists_iso_map, map_pullback, inf_eq_map_pullback', mapIsoToOrderIso_apply, map_bot, inf_map, pullback_map_self, mapIsoToOrderIso_symm_apply, inf_eq_map_pullback, map_obj_injective, map_id
|
mapIso π | CompOp | β |
mapIsoToOrderIso π | CompOp | 2 mathmath: mapIsoToOrderIso_apply, mapIsoToOrderIso_symm_apply
|
mapPullbackAdj π | CompOp | β |
mk π | CompOp | β |
ofLE π | CompOp | 31 mathmath: ofLE_arrow, ofLE_arrow_assoc, inf_comp_left, CategoryTheory.Limits.kernelSubobject_comp_mono_isIso, ofLE_comp_ofLEMk_assoc, imageToKernel_comp_right, ofLEMk_comp_ofMkLE, CategoryTheory.IsGrothendieckAbelian.generatingMonomorphisms.exists_larger_subobject, imageToKernel_epi_comp, instMonoOfLE, subobject_ofLE_as_imageToKernel, isoOfEq_hom, inf_isPullback, ofLE_comp_ofLE_assoc, imageToKernel_comp_left, ofLE_refl, CategoryTheory.Limits.imageSubobject_comp_le_epi_of_epi, factorThru_ofLE, CategoryTheory.IsGrothendieckAbelian.generatingMonomorphisms.functorToMonoOver_map, ofLE_comp_ofLEMk, isoOfEq_inv, CategoryTheory.Regular.frobeniusMorphism_isPullback, ofLE_comp_ofLE, ofMkLE_comp_ofLE, ofLE_mk_le_mk_of_comm, ofMkLE_comp_ofLE_assoc, inf_comp_left_assoc, inf_comp_right, ofLEMk_comp_ofMkLE_assoc, inf_comp_right_assoc, CategoryTheory.IsGrothendieckAbelian.generatingMonomorphisms.pushouts_ofLE_le_largerSubobject
|
ofLEMk π | CompOp | 12 mathmath: ofLEMk_comp_ofMkLEMk, ofMkLE_comp_ofLEMk_assoc, ofLE_comp_ofLEMk_assoc, ofLEMk_comp, ofLEMk_comp_ofMkLE, isoOfMkEq_inv, instMonoOfLEMk, ofMkLE_comp_ofLEMk, ofLEMk_comp_ofMkLEMk_assoc, ofLE_comp_ofLEMk, ofLEMk_comp_ofMkLE_assoc, isoOfEqMk_hom
|
ofMkLE π | CompOp | 12 mathmath: ofMkLEMk_comp_ofMkLE, ofMkLE_arrow, ofMkLE_comp_ofLEMk_assoc, ofMkLEMk_comp_ofMkLE_assoc, ofLEMk_comp_ofMkLE, isoOfEqMk_inv, ofMkLE_comp_ofLEMk, instMonoOfMkLE, isoOfMkEq_hom, ofMkLE_comp_ofLE, ofMkLE_comp_ofLE_assoc, ofLEMk_comp_ofMkLE_assoc
|
ofMkLEMk π | CompOp | 14 mathmath: ofMkLEMk_comp_ofMkLEMk_assoc, ofLEMk_comp_ofMkLEMk, ofMkLEMk_comp_ofMkLE, CategoryTheory.CostructuredArrow.unop_left_comp_ofMkLEMk_unop, ofMkLE_comp_ofLEMk_assoc, ofMkLEMk_comp_ofMkLE_assoc, ofMkLEMk_comp, ofMkLE_comp_ofLEMk, ofMkLEMk_comp_ofMkLEMk, ofMkLEMk_refl, ofLEMk_comp_ofMkLEMk_assoc, isoOfMkEqMk_hom, instMonoOfMkLEMk, isoOfMkEqMk_inv
|
pullback π | CompOp | 38 mathmath: CategoryTheory.Classifier.pullback_Ο_obj_mk_truth, CategoryTheory.Classifier.SubobjectRepresentableBy.pullback_homEquiv_symm_obj_Ξ©β, CategoryTheory.Dial.tensorObjImpl_rel, isPullback_aux, CategoryTheory.Classifier.SubobjectRepresentableBy.iso_inv_hom_left_comp, CategoryTheory.Regular.frobeniusStrongEpiMonoFactorisation_I, CategoryTheory.Classifier.SubobjectRepresentableBy.homEquiv_eq, CategoryTheory.Dial.comp_le_lemma, pullback_id, pullback_obj, map_pullback, inf_eq_map_pullback', CategoryTheory.Classifier.Ο_pullback_obj_mk_truth_arrow, CategoryTheory.Limits.pullback_factors_iff, CategoryTheory.Dial.Hom.le, CategoryTheory.Regular.instIsRegularEpiFrobeniusMorphism, CategoryTheory.Regular.frobeniusStrongEpiMonoFactorisation_e, CategoryTheory.Classifier.SubobjectRepresentableBy.iso_inv_left_Ο_assoc, CategoryTheory.Limits.pullback_factors, CategoryTheory.Regular.exists_inf_pullback_eq_exists_inf, pullback_map_self, CategoryTheory.Classifier.SubobjectRepresentableBy.iso_inv_hom_left_comp_assoc, CategoryTheory.Regular.frobeniusMorphism_isPullback, pullback_obj_mk, isPullback, CategoryTheory.Classifier.SubobjectRepresentableBy.iso_inv_left_comp, CategoryTheory.Regular.frobeniusStrongEpiMonoFactorisation_m, CategoryTheory.Classifier.SubobjectRepresentableBy.iso_inv_left_Ο, pullback_top, pullback_comp, pullback_self, inf_eq_map_pullback, inf_pullback, functor_map, instFaithfulPullback, CategoryTheory.Dial.tensorObj_rel, Subobject.presheaf_map, CategoryTheory.Limits.pullback_equalizer
|
pullbackΟ π | CompOp | 3 mathmath: CategoryTheory.Classifier.SubobjectRepresentableBy.iso_inv_left_Ο_assoc, isPullback, CategoryTheory.Classifier.SubobjectRepresentableBy.iso_inv_left_Ο
|
representative π | CompOp | 9 mathmath: factors_iff, CategoryTheory.Classifier.SubobjectRepresentableBy.iso_inv_hom_left_comp, instIsEquivalenceMonoOverRepresentative, CategoryTheory.Classifier.SubobjectRepresentableBy.iso_inv_left_Ο_assoc, CategoryTheory.Classifier.SubobjectRepresentableBy.iso_inv_hom_left_comp_assoc, CategoryTheory.Classifier.SubobjectRepresentableBy.iso_inv_left_comp, CategoryTheory.Classifier.SubobjectRepresentableBy.iso_inv_left_Ο, representative_coe, representative_arrow
|
representativeIso π | CompOp | β |
underlying π | CompOp | 173 mathmath: CategoryTheory.Limits.kernelSubobjectMap_arrow_assoc, CategoryTheory.Limits.imageSubobject_arrow_assoc, factorThru_right, CategoryTheory.Limits.imageSubobjectCompIso_hom_arrow, underlyingIso_hom_comp_eq_mk_assoc, imageFactorisation_F_m, underlyingIso_arrow_assoc, ofLE_arrow, AlgebraicTopology.NormalizedMooreComplex.obj_d, imageToKernel_unop, CategoryTheory.Limits.equalizerSubobject_arrow'_assoc, imageToKernel'_kernelSubobjectIso, isPullback_aux, CategoryTheory.Limits.kernelSubobject_arrow'_apply, factorThru_eq_zero, ofLEMk_comp_ofMkLEMk, ofMkLEMk_comp_ofMkLE, top_arrow_isIso, CategoryTheory.Regular.frobeniusStrongEpiMonoFactorisation_I, CategoryTheory.Limits.kernelSubobjectIsoComp_hom_arrow, CategoryTheory.Limits.imageSubobject_arrow_comp_eq_zero, ofMkLE_arrow, imageToKernel_op, factorThruImageSubobject_comp_imageToKernel, ofLE_arrow_assoc, ofMkLE_comp_ofLEMk_assoc, inf_comp_left, CategoryTheory.Limits.kernelSubobject_arrow_assoc, ofMkLEMk_comp_ofMkLE_assoc, CategoryTheory.Limits.kernelSubobjectMap_comp, CategoryTheory.Limits.kernelSubobject_comp_mono_isIso, inf_arrow_factors_right, CategoryTheory.Limits.equalizerSubobject_arrow_comp, ofLE_comp_ofLEMk_assoc, ofLEMk_comp, imageToKernel_comp_right, imageToKernel_comp_hom_inv_comp, CategoryTheory.Limits.factorThruKernelSubobject_comp_arrow, CategoryTheory.ShortComplex.Exact.isIso_imageToKernel, factorThru_mk_self, ofLEMk_comp_ofMkLE, imageToKernel_arrow_assoc, CategoryTheory.ShortComplex.exact_iff_isIso_imageToKernel, CategoryTheory.IsGrothendieckAbelian.generatingMonomorphisms.exists_larger_subobject, CategoryTheory.Limits.factorThruImageSubobject_comp_self_assoc, pullback_obj, imageToKernel_epi_comp, instMonoOfLE, CategoryTheory.Classifier.Ο_pullback_obj_mk_truth_arrow, factorThru_arrow_assoc, CategoryTheory.Limits.kernelSubobjectIso_comp_kernel_map, arrow_mono, isIso_top_arrow, factors_comp_arrow, CategoryTheory.Limits.imageSubobjectIso_comp_image_map, factors_self, CategoryTheory.Limits.imageSubobject_zero_arrow, CategoryTheory.subobject_simple_iff_isAtom, CategoryTheory.Limits.kernelSubobjectIsoComp_inv_arrow, CategoryTheory.Classifier.SubobjectRepresentableBy.isPullback, factorThru_add_sub_factorThru_right, isoOfEq_hom, imageToKernel_arrow, inf_isPullback, mk_arrow, CategoryTheory.Limits.imageSubobject_arrow_comp_apply, isoOfEqMk_inv, CategoryTheory.Limits.kernelSubobject_arrow_comp_apply, isoOfMkEq_inv, underlyingIso_arrow, ofLE_comp_ofLE_assoc, instMonoOfLEMk, imageToKernel_epi_of_zero_of_mono, CategoryTheory.Limits.kernelSubobjectIso_comp_kernel_map_assoc, ofMkLE_comp_ofLEMk, imageToKernel_comp_left, eq_of_comp_arrow_eq_iff, CategoryTheory.Limits.imageSubobjectCompIso_inv_arrow_assoc, CategoryTheory.Regular.instIsRegularEpiFrobeniusMorphism, CategoryTheory.Limits.imageSubobjectMap_arrow, CategoryTheory.Limits.imageSubobjectMap_arrow_assoc, CategoryTheory.Limits.kernelSubobject_arrow, ofLE_refl, CategoryTheory.Regular.frobeniusStrongEpiMonoFactorisation_e, ofLEMk_comp_ofMkLEMk_assoc, AlgebraicTopology.NormalizedMooreComplex.d_squared, imageSubobjectIso_imageToKernel', CategoryTheory.Limits.imageSubobject_arrow, CategoryTheory.Limits.imageSubobject_comp_le_epi_of_epi, imageFactorisation_F_I, instMonoImageToKernel, factorThru_ofLE, CategoryTheory.Classifier.SubobjectRepresentableBy.iso_inv_left_Ο_assoc, CategoryTheory.Limits.equalizerSubobject_arrow, instMonoOfMkLE, CategoryTheory.Limits.imageSubobject_arrow_comp_assoc, CategoryTheory.Limits.isIso_kernelSubobject_zero_arrow, bot_arrow, AlgebraicTopology.NormalizedMooreComplex.map_f, CategoryTheory.IsGrothendieckAbelian.generatingMonomorphisms.functorToMonoOver_map, ofLE_comp_ofLEMk, factorThru_add_sub_factorThru_left, isoOfMkEq_hom, CategoryTheory.Limits.kernel_map_comp_kernelSubobjectIso_inv, CategoryTheory.Limits.imageSubobject_arrow'_assoc, factorThru_arrow, inf_arrow_factors_left, isoOfEq_inv, factorThru_add, CategoryTheory.Limits.imageSubobjectCompIso_hom_arrow_assoc, CategoryTheory.Regular.frobeniusMorphism_isPullback, imageToKernel_arrow_apply, CategoryTheory.ShortComplex.exact_iff_epi_imageToKernel, CategoryTheory.Limits.equalizerSubobject_arrow', underlying_arrow_assoc, ofLE_comp_ofLE, CategoryTheory.Limits.equalizerSubobject_arrow_comp_assoc, ofMkLE_comp_ofLE, CategoryTheory.Limits.kernelSubobject_arrow'_assoc, imageToKernel_zero_right, underlyingIso_inv_top_arrow_assoc, isPullback, AlgebraicTopology.NormalizedMooreComplex.obj_X, CategoryTheory.Limits.equalizerSubobject_arrow_assoc, isIso_arrow_iff_eq_top, CategoryTheory.Subfunctor.orderIsoSubobject_symm_apply, ofLE_mk_le_mk_of_comm, CategoryTheory.exists_simple_subobject, underlyingIso_inv_top_arrow, underlyingIso_top_hom, ofMkLE_comp_ofLE_assoc, CategoryTheory.Subfunctor.range_subobjectMk_ΞΉ, CategoryTheory.Regular.frobeniusStrongEpiMonoFactorisation_m, CategoryTheory.Classifier.SubobjectRepresentableBy.iso_inv_left_Ο, arrow_congr, inf_comp_left_assoc, CategoryTheory.StructuredArrow.projectSubobject_factors, underlyingIso_hom_comp_eq_mk, CategoryTheory.Limits.imageSubobjectCompIso_inv_arrow, CategoryTheory.Limits.kernelSubobject_arrow_comp_assoc, CategoryTheory.Limits.image_map_comp_imageSubobjectIso_inv, CategoryTheory.IsGrothendieckAbelian.generatingMonomorphisms.functorToMonoOver_obj, inf_comp_right, ofLEMk_comp_ofMkLE_assoc, representative_coe, CategoryTheory.Limits.kernel_map_comp_kernelSubobjectIso_inv_assoc, CategoryTheory.Limits.kernelSubobject_arrow_apply, CategoryTheory.Limits.imageSubobject_arrow_comp, CategoryTheory.Subfunctor.Subpresheaf.subobjectMk_range_arrow, imageToKernel_zero_left, inf_comp_right_assoc, CategoryTheory.Subfunctor.Subpresheaf.range_subobjectMk_ΞΉ, imageToKernel_epi_of_epi_of_zero, CategoryTheory.IsGrothendieckAbelian.generatingMonomorphisms.pushouts_ofLE_le_largerSubobject, finset_inf_arrow_factors, CategoryTheory.CostructuredArrow.projectQuotient_factors, CategoryTheory.Limits.kernelSubobject_arrow_comp, CategoryTheory.Limits.factorThruKernelSubobject_comp_kernelSubobjectIso, CategoryTheory.CostructuredArrow.unop_left_comp_underlyingIso_hom_unop, underlyingIso_arrow_apply, underlying_arrow, CategoryTheory.Limits.kernelSubobjectMap_arrow, ModuleCat.toKernelSubobject_arrow, CategoryTheory.Limits.imageSubobject_arrow', factorThru_zero, imageToKernel_comp_mono, isoOfEqMk_hom, CategoryTheory.Limits.kernelSubobject_arrow', CategoryTheory.Limits.instEpiFactorThruImageSubobjectOfHasEqualizers, CategoryTheory.Limits.factorThruImageSubobject_comp_self, CategoryTheory.Subfunctor.subobjectMk_range_arrow, CategoryTheory.Limits.kernelSubobjectMap_arrow_apply, CategoryTheory.Limits.kernelSubobjectMap_id
|
underlyingIso π | CompOp | 11 mathmath: underlyingIso_hom_comp_eq_mk_assoc, underlyingIso_arrow_assoc, factorThru_mk_self, underlyingIso_arrow, underlyingIso_inv_top_arrow_assoc, ofLE_mk_le_mk_of_comm, underlyingIso_inv_top_arrow, underlyingIso_top_hom, underlyingIso_hom_comp_eq_mk, CategoryTheory.CostructuredArrow.unop_left_comp_underlyingIso_hom_unop, underlyingIso_arrow_apply
|