Documentation Verification Report

Basic

πŸ“ Source: Mathlib/CategoryTheory/Subobject/Basic.lean

Statistics

MetricCount
Definitionsarrow, equivMonoOver, exists, existsCompRepresentativeIso, existsIsoImage, existsPullbackAdj, imageFactorisation, instCoeOut, isoOfEq, isoOfEqMk, isoOfMkEq, isoOfMkEqMk, lower, lowerAdjunction, lowerCompRepresentativeIso, lowerEquivalence, lowerβ‚‚, map, mapIso, mapIsoToOrderIso, mapPullbackAdj, mk, ofLE, ofLEMk, ofMkLE, ofMkLEMk, pullback, pullbackΟ€, representative, representativeIso, underlying, underlyingIso, instPartialOrderSubobject
33
Theoremsext, ext_iff, isIso_hom_left_iff_subobjectMk_eq, isIso_iff_subobjectMk_eq, isIso_left_iff_subobjectMk_eq, subobjectMk_le_mk_of_hom, arrow_congr, arrow_mono, eq_mk_of_comm, eq_of_comm, eq_of_comp_arrow_eq, eq_of_comp_arrow_eq_iff, exists_iso_map, hasColimitsOfSize, hasFiniteLimits, hasLimitsOfShape, hasLimitsOfSize, imageFactorisation_F_I, imageFactorisation_F_m, ind, indβ‚‚, instFaithfulPullback, instIsEquivalenceMonoOverRepresentative, instMonoOfLE, instMonoOfLEMk, instMonoOfMkLE, instMonoOfMkLEMk, isPullback, isPullback_aux, isoOfEqMk_hom, isoOfEqMk_inv, isoOfEq_hom, isoOfEq_inv, isoOfMkEqMk_hom, isoOfMkEqMk_inv, isoOfMkEq_hom, isoOfMkEq_inv, le_mk_of_comm, le_of_comm, lift_mk, lowerEquivalence_counitIso, lowerEquivalence_functor, lowerEquivalence_inverse, lowerEquivalence_unitIso, lower_comm, lower_iso, mapIsoToOrderIso_apply, mapIsoToOrderIso_symm_apply, map_comp, map_id, map_mk, map_obj_injective, map_pullback, mk_arrow, mk_eq_mk_of_comm, mk_eq_of_comm, mk_le_mk_of_comm, mk_le_of_comm, mk_lt_mk_iff_of_comm, mk_lt_mk_of_comm, mk_surjective, ofLEMk_comp, ofLEMk_comp_ofMkLE, ofLEMk_comp_ofMkLEMk, ofLEMk_comp_ofMkLEMk_assoc, ofLEMk_comp_ofMkLE_assoc, ofLE_arrow, ofLE_arrow_assoc, ofLE_comp_ofLE, ofLE_comp_ofLEMk, ofLE_comp_ofLEMk_assoc, ofLE_comp_ofLE_assoc, ofLE_mk_le_mk_of_comm, ofLE_refl, ofMkLEMk_comp, ofMkLEMk_comp_ofMkLE, ofMkLEMk_comp_ofMkLEMk, ofMkLEMk_comp_ofMkLEMk_assoc, ofMkLEMk_comp_ofMkLE_assoc, ofMkLEMk_refl, ofMkLE_arrow, ofMkLE_comp_ofLE, ofMkLE_comp_ofLEMk, ofMkLE_comp_ofLEMk_assoc, ofMkLE_comp_ofLE_assoc, pullback_comp, pullback_id, pullback_map_self, pullback_obj, pullback_obj_mk, representative_arrow, representative_coe, skeletal, underlyingIso_arrow, underlyingIso_arrow_apply, underlyingIso_arrow_assoc, underlyingIso_hom_comp_eq_mk, underlyingIso_hom_comp_eq_mk_assoc, underlying_arrow, underlying_arrow_assoc
100
Total133

CategoryTheory

Definitions

NameCategoryTheorems
instPartialOrderSubobject πŸ“–CompOp
257 mathmath: Classifier.pullback_Ο‡_obj_mk_truth, Limits.kernelSubobjectMap_arrow_assoc, Subobject.map_mk, Limits.imageSubobject_arrow_assoc, Subobject.factorThru_right, Subobject.factors_iff, Limits.imageSubobjectCompIso_hom_arrow, Subobject.underlyingIso_hom_comp_eq_mk_assoc, Subobject.imageFactorisation_F_m, Subobject.underlyingIso_arrow_assoc, Subobject.hasColimitsOfSize, Classifier.SubobjectRepresentableBy.pullback_homEquiv_symm_obj_Ξ©β‚€, AlgebraicTopology.NormalizedMooreComplex.obj_d, Dial.tensorObjImpl_rel, imageToKernel_unop, Limits.equalizerSubobject_arrow'_assoc, Subobject.inf_le_left, Subobject.map_comp, imageToKernel'_kernelSubobjectIso, Subobject.isPullback_aux, instIsSimpleOrderSubobjectOfSimple, Limits.kernelSubobject_arrow'_apply, Subobject.factorThru_eq_zero, Subobject.ofMkLEMk_comp_ofMkLEMk_assoc, Classifier.SubobjectRepresentableBy.iso_inv_hom_left_comp, isArtinianObject_iff_not_strictAnti, Subobject.top_arrow_isIso, IsGrothendieckAbelian.generatingMonomorphisms.exists_ordinal, Regular.frobeniusStrongEpiMonoFactorisation_I, Limits.kernelSubobjectIsoComp_hom_arrow, Limits.imageSubobject_arrow_comp_eq_zero, Subobject.map_top, imageToKernel_op, factorThruImageSubobject_comp_imageToKernel, Subobject.inf_comp_left, Limits.kernelSubobject_arrow_assoc, Subobject.bot_eq_initial_to, Limits.kernelSubobjectMap_comp, Limits.kernelSubobject_comp_mono_isIso, Subobject.mk_lt_mk_of_comm, Subobject.inf_arrow_factors_right, Limits.equalizerSubobject_arrow_comp, Subobject.prod_eq_inf, instWellFoundedGTSubobjectOfIsNoetherianObject, Classifier.SubobjectRepresentableBy.homEquiv_eq, imageToKernel_comp_right, imageToKernel_comp_hom_inv_comp, Limits.factorThruKernelSubobject_comp_arrow, ShortComplex.Exact.isIso_imageToKernel, Subobject.sInf_le, not_strictMono_of_isNoetherianObject, Subobject.factorThru_mk_self, imageToKernel_arrow_assoc, Abelian.subobjectIsoSubobjectOp_apply, ShortComplex.exact_iff_isIso_imageToKernel, Subobject.mk_le_mk_of_comm, Dial.comp_le_lemma, simple_iff_subobject_isSimpleOrder, IsGrothendieckAbelian.generatingMonomorphisms.exists_larger_subobject, Subobject.bot_factors_iff_zero, Subobject.pullback_id, Limits.factorThruImageSubobject_comp_self_assoc, Subobject.pullback_obj, Subobject.map_pullback, Subobject.inf_eq_map_pullback', Subobject.le_sSup, imageToKernel_epi_comp, Subobject.mapIsoToOrderIso_apply, Classifier.Ο‡_pullback_obj_mk_truth_arrow, Subobject.factorThru_arrow_assoc, Limits.kernelSubobjectIso_comp_kernel_map, Limits.pullback_factors_iff, Subobject.arrow_mono, Subobject.isIso_top_arrow, Subobject.hasLimitsOfShape, Subobject.factors_comp_arrow, Limits.imageSubobjectIso_comp_image_map, Subobject.factors_self, Limits.imageSubobject_zero_arrow, Limits.imageSubobject_zero, subobject_simple_iff_isAtom, Limits.kernelSubobjectIsoComp_inv_arrow, Subobject.map_bot, Classifier.SubobjectRepresentableBy.isPullback, Limits.imageSubobject_le_mk, Subobject.factorThru_add_sub_factorThru_right, Subobject.mk_eq_bot_iff_zero, Subobject.isoOfEq_hom, Subobject.lower_comm, imageToKernel_arrow, antitone_chain_condition_of_isArtinianObject, Limits.kernelOrderHom_coe, Subobject.inf_isPullback, image_le_kernel, Subobject.mk_arrow, Limits.imageSubobject_arrow_comp_apply, Subobject.isoOfEqMk_inv, ObjectProperty.IsStrongGenerator.subobject_eq_top, Limits.kernelSubobject_arrow_comp_apply, Subobject.isoOfMkEq_inv, Subobject.underlyingIso_arrow, Subfunctor.orderIsoSubobject_apply, Dial.Hom.le, imageToKernel_epi_of_zero_of_mono, Limits.kernelSubobjectIso_comp_kernel_map_assoc, Subobject.instIsEquivalenceMonoOverRepresentative, monotone_chain_condition_of_isNoetherianObject, imageToKernel_comp_left, Subobject.ofMkLEMk_comp_ofMkLEMk, Subobject.eq_of_comp_arrow_eq_iff, Limits.imageSubobjectCompIso_inv_arrow_assoc, Regular.instIsRegularEpiFrobeniusMorphism, Limits.imageSubobjectMap_arrow, Limits.imageSubobjectMap_arrow_assoc, Limits.kernelSubobject_arrow, isNoetherianObject_iff_monotone_chain_condition, Subobject.ofLE_refl, Regular.frobeniusStrongEpiMonoFactorisation_e, Subobject.ofMkLEMk_refl, ExtremalEpi.subobject_eq_top, Limits.imageSubobject_comp_le, AlgebraicTopology.NormalizedMooreComplex.d_squared, imageSubobjectIso_imageToKernel', Subobject.mk_lt_mk_iff_of_comm, Limits.imageSubobject_arrow, Limits.imageSubobject_comp_le_epi_of_epi, Dial.tensorUnit_rel, Subobject.imageFactorisation_F_I, Subobject.inf_map, instMonoImageToKernel, Classifier.SubobjectRepresentableBy.iso_inv_left_Ο€_assoc, IsGrothendieckAbelian.generatingMonomorphisms.lt_largerSubobject, Limits.equalizerSubobject_arrow, Limits.imageSubobject_arrow_comp_assoc, Limits.isIso_kernelSubobject_zero_arrow, Subobject.bot_arrow, AlgebraicTopology.NormalizedMooreComplex.map_f, Subobject.lowerEquivalence_counitIso, IsGrothendieckAbelian.generatingMonomorphisms.functorToMonoOver_map, Subobject.mk_eq_top_of_isIso, Limits.pullback_factors, Subobject.factorThru_add_sub_factorThru_left, Regular.exists_inf_pullback_eq_exists_inf, Subobject.inf_def, Subobject.bot_eq_zero, Subobject.isoOfMkEq_hom, Subobject.top_eq_id, Limits.kernel_map_comp_kernelSubobjectIso_inv, Subobject.skeletal, Subobject.pullback_map_self, Limits.imageSubobject_arrow'_assoc, Subobject.factorThru_arrow, Subobject.inf_arrow_factors_left, Classifier.SubobjectRepresentableBy.iso_inv_hom_left_comp_assoc, Subobject.isoOfEq_inv, Subobject.mapIsoToOrderIso_symm_apply, isArtinianObject_iff_antitone_chain_condition, Subobject.factorThru_add, Limits.equalizerSubobject_of_self, Limits.imageSubobjectCompIso_hom_arrow_assoc, Regular.frobeniusMorphism_isPullback, Subobject.lowerEquivalence_unitIso, imageToKernel_arrow_apply, Subobject.top_factors, ShortComplex.exact_iff_epi_imageToKernel, MonoOver.subobjectMk_le_mk_of_hom, Subobject.eq_top_of_isIso_arrow, Limits.equalizerSubobject_arrow', Subobject.underlying_arrow_assoc, IsGrothendieckAbelian.generatingMonomorphisms.top_mem_range, Subobject.pullback_obj_mk, Limits.equalizerSubobject_arrow_comp_assoc, Limits.kernelSubobject_arrow'_assoc, imageToKernel_zero_right, instWellFoundedLTSubobjectOfIsArtinianObject, Subobject.underlyingIso_inv_top_arrow_assoc, Subobject.isPullback, AlgebraicTopology.NormalizedMooreComplex.obj_X, Limits.equalizerSubobject_arrow_assoc, Subobject.isIso_arrow_iff_eq_top, Subfunctor.orderIsoSubobject_symm_apply, Subobject.ofLE_mk_le_mk_of_comm, exists_simple_subobject, Subobject.underlyingIso_inv_top_arrow, Classifier.SubobjectRepresentableBy.iso_inv_left_comp, Subobject.inf_le_right, Subobject.underlyingIso_top_hom, Subfunctor.range_subobjectMk_ΞΉ, AlgebraicTopology.NormalizedMooreComplex.objX_zero, Regular.frobeniusStrongEpiMonoFactorisation_m, Classifier.SubobjectRepresentableBy.iso_inv_left_Ο€, Subobject.arrow_congr, Subobject.inf_comp_left_assoc, Subobject.pullback_top, Subobject.epi_iff_mk_eq_top, StructuredArrow.projectSubobject_factors, Subobject.underlyingIso_hom_comp_eq_mk, Subobject.pullback_comp, Limits.imageSubobjectCompIso_inv_arrow, Subobject.isIso_iff_mk_eq_top, Limits.kernelSubobject_arrow_comp_assoc, Subobject.pullback_self, Limits.image_map_comp_imageSubobjectIso_inv, IsGrothendieckAbelian.generatingMonomorphisms.functorToMonoOver_obj, Subobject.inf_comp_right, Subobject.representative_coe, Limits.kernel_map_comp_kernelSubobjectIso_inv_assoc, Limits.kernelSubobject_arrow_apply, Subobject.inf_eq_map_pullback, Limits.imageSubobject_arrow_comp, Subfunctor.Subpresheaf.subobjectMk_range_arrow, imageToKernel_zero_left, Subobject.inf_pullback, Subobject.inf_comp_right_assoc, Subobject.lowerEquivalence_inverse, Subobject.lowerEquivalence_functor, Subfunctor.Subpresheaf.range_subobjectMk_ΞΉ, IsGrothendieckAbelian.generatingMonomorphisms.largerSubobject_top, Subobject.functor_map, imageToKernel_epi_of_epi_of_zero, IsGrothendieckAbelian.generatingMonomorphisms.pushouts_ofLE_le_largerSubobject, Subobject.finset_inf_arrow_factors, CostructuredArrow.projectQuotient_factors, Limits.kernelSubobject_arrow_comp, Subobject.map_obj_injective, isNoetherianObject_iff_not_strictMono, IsGrothendieckAbelian.generatingMonomorphisms.le_largerSubobject, Limits.factorThruKernelSubobject_comp_kernelSubobjectIso, CostructuredArrow.unop_left_comp_underlyingIso_hom_unop, Subobject.instFaithfulPullback, Subobject.underlyingIso_arrow_apply, Dial.tensorUnitImpl_rel, Abelian.subobjectIsoSubobjectOp_symm_apply, Subobject.underlying_arrow, Limits.cokernelOrderHom_coe, Subobject.representative_arrow, Limits.kernelSubobjectMap_arrow, ModuleCat.toKernelSubobject_arrow, Limits.imageSubobject_arrow', Subobject.factorThru_zero, imageToKernel_comp_mono, Subobject.isoOfEqMk_hom, Limits.kernelSubobject_arrow', Limits.instEpiFactorThruImageSubobjectOfHasEqualizers, Subobject.hasLimitsOfSize, Limits.factorThruImageSubobject_comp_self, Limits.kernelSubobject_comp_le, Subfunctor.subobjectMk_range_arrow, Dial.tensorObj_rel, Subobject.hasFiniteLimits, Subobject.map_id, Limits.kernelSubobjectMap_arrow_apply, Subobject.presheaf_map, not_strictAnti_of_isArtinianObject, Limits.pullback_equalizer, Limits.kernelSubobjectMap_id, Limits.kernelSubobject_zero

CategoryTheory.Comma

Theorems

NameKindAssumesProvesValidatesDepends On
ext πŸ“–β€”left
right
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
hom
β€”β€”β€”
ext_iff πŸ“–mathematicalβ€”left
right
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
hom
β€”ext

CategoryTheory.MonoOver

Theorems

NameKindAssumesProvesValidatesDepends On
isIso_hom_left_iff_subobjectMk_eq πŸ“–mathematicalβ€”CategoryTheory.IsIso
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
CategoryTheory.ObjectProperty.FullSubcategory.obj
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Over.isMono
CategoryTheory.CommaMorphism.left
CategoryTheory.InducedCategory.Hom.hom
CategoryTheory.ObjectProperty.FullSubcategory
CategoryTheory.Functor.obj
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
mono
β€”mono
CategoryTheory.Subobject.mk_eq_mk_of_comm
CategoryTheory.Over.w
Eq.le
CategoryTheory.cancel_mono
CategoryTheory.Category.assoc
CategoryTheory.Subobject.ofMkLEMk_comp
CategoryTheory.Category.id_comp
isIso_iff_subobjectMk_eq πŸ“–mathematicalβ€”CategoryTheory.IsIso
CategoryTheory.MonoOver
CategoryTheory.ObjectProperty.FullSubcategory.category
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Over.isMono
CategoryTheory.Functor.obj
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Comma.right
CategoryTheory.Functor.id
CategoryTheory.ObjectProperty.FullSubcategory.obj
CategoryTheory.Comma.left
CategoryTheory.Comma.hom
mono
β€”mono
isIso_iff_isIso_hom_left
isIso_hom_left_iff_subobjectMk_eq
isIso_left_iff_subobjectMk_eq πŸ“–mathematicalβ€”CategoryTheory.IsIso
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
CategoryTheory.ObjectProperty.FullSubcategory.obj
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Over.isMono
CategoryTheory.CommaMorphism.left
CategoryTheory.InducedCategory.Hom.hom
CategoryTheory.ObjectProperty.FullSubcategory
CategoryTheory.Functor.obj
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
mono
β€”isIso_hom_left_iff_subobjectMk_eq
subobjectMk_le_mk_of_hom πŸ“–mathematicalβ€”CategoryTheory.Subobject
CategoryTheory.Functor.obj
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Comma.right
CategoryTheory.Functor.id
CategoryTheory.ObjectProperty.FullSubcategory.obj
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Over.isMono
Preorder.toLE
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
CategoryTheory.Comma.left
CategoryTheory.Comma.hom
mono
β€”CategoryTheory.Subobject.mk_le_mk_of_comm
mono
CategoryTheory.Over.w

CategoryTheory.Subobject

Definitions

NameCategoryTheorems
arrow πŸ“–CompOp
106 mathmath: CategoryTheory.Limits.kernelSubobjectMap_arrow_assoc, CategoryTheory.Limits.imageSubobject_arrow_assoc, CategoryTheory.Limits.imageSubobjectCompIso_hom_arrow, underlyingIso_hom_comp_eq_mk_assoc, imageFactorisation_F_m, underlyingIso_arrow_assoc, ofLE_arrow, AlgebraicTopology.NormalizedMooreComplex.obj_d, CategoryTheory.Limits.equalizerSubobject_arrow'_assoc, isPullback_aux, CategoryTheory.Limits.kernelSubobject_arrow'_apply, CategoryTheory.Classifier.SubobjectRepresentableBy.iso_inv_hom_left_comp, top_arrow_isIso, wideCospan_map_term, CategoryTheory.Regular.frobeniusStrongEpiMonoFactorisation_I, CategoryTheory.Limits.kernelSubobjectIsoComp_hom_arrow, CategoryTheory.Limits.imageSubobject_arrow_comp_eq_zero, ofMkLE_arrow, ofLE_arrow_assoc, inf_comp_left, CategoryTheory.Limits.kernelSubobject_arrow_assoc, inf_arrow_factors_right, CategoryTheory.Limits.equalizerSubobject_arrow_comp, ofLEMk_comp, CategoryTheory.Limits.factorThruKernelSubobject_comp_arrow, imageToKernel_arrow_assoc, pullback_obj, CategoryTheory.Classifier.Ο‡_pullback_obj_mk_truth_arrow, factorThru_arrow_assoc, arrow_mono, isIso_top_arrow, factors_comp_arrow, factors_self, CategoryTheory.Limits.imageSubobject_zero_arrow, CategoryTheory.Limits.kernelSubobjectIsoComp_inv_arrow, CategoryTheory.Classifier.SubobjectRepresentableBy.isPullback, imageToKernel_arrow, inf_isPullback, mk_arrow, CategoryTheory.Limits.imageSubobject_arrow_comp_apply, CategoryTheory.Limits.kernelSubobject_arrow_comp_apply, underlyingIso_arrow, eq_of_comp_arrow_eq_iff, CategoryTheory.Limits.imageSubobjectCompIso_inv_arrow_assoc, CategoryTheory.Limits.imageSubobjectMap_arrow, CategoryTheory.Limits.imageSubobjectMap_arrow_assoc, CategoryTheory.Limits.kernelSubobject_arrow, CategoryTheory.Regular.frobeniusStrongEpiMonoFactorisation_e, CategoryTheory.Limits.imageSubobject_arrow, imageFactorisation_F_I, CategoryTheory.Limits.equalizerSubobject_arrow, CategoryTheory.Limits.imageSubobject_arrow_comp_assoc, CategoryTheory.Limits.isIso_kernelSubobject_zero_arrow, bot_arrow, AlgebraicTopology.NormalizedMooreComplex.map_f, CategoryTheory.IsGrothendieckAbelian.generatingMonomorphisms.functorToMonoOver_map, CategoryTheory.Limits.imageSubobject_arrow'_assoc, factorThru_arrow, inf_arrow_factors_left, CategoryTheory.Classifier.SubobjectRepresentableBy.iso_inv_hom_left_comp_assoc, CategoryTheory.Limits.imageSubobjectCompIso_hom_arrow_assoc, CategoryTheory.Regular.frobeniusMorphism_isPullback, imageToKernel_arrow_apply, CategoryTheory.Limits.equalizerSubobject_arrow', underlying_arrow_assoc, CategoryTheory.Limits.equalizerSubobject_arrow_comp_assoc, CategoryTheory.Limits.kernelSubobject_arrow'_assoc, imageToKernel_zero_right, underlyingIso_inv_top_arrow_assoc, isPullback, CategoryTheory.Limits.equalizerSubobject_arrow_assoc, isIso_arrow_iff_eq_top, CategoryTheory.Subfunctor.orderIsoSubobject_symm_apply, underlyingIso_inv_top_arrow, CategoryTheory.Classifier.SubobjectRepresentableBy.iso_inv_left_comp, underlyingIso_top_hom, CategoryTheory.Subfunctor.range_subobjectMk_ΞΉ, CategoryTheory.Regular.frobeniusStrongEpiMonoFactorisation_m, arrow_congr, leInfCone_Ο€_app_none, inf_comp_left_assoc, CategoryTheory.StructuredArrow.projectSubobject_factors, underlyingIso_hom_comp_eq_mk, CategoryTheory.Limits.imageSubobjectCompIso_inv_arrow, CategoryTheory.Limits.kernelSubobject_arrow_comp_assoc, CategoryTheory.IsGrothendieckAbelian.generatingMonomorphisms.functorToMonoOver_obj, inf_comp_right, CategoryTheory.Limits.kernelSubobject_arrow_apply, CategoryTheory.Limits.imageSubobject_arrow_comp, CategoryTheory.Subfunctor.Subpresheaf.subobjectMk_range_arrow, inf_comp_right_assoc, CategoryTheory.Subfunctor.Subpresheaf.range_subobjectMk_ΞΉ, finset_inf_arrow_factors, AlgebraicTopology.inclusionOfMooreComplexMap_f, CategoryTheory.CostructuredArrow.projectQuotient_factors, CategoryTheory.Limits.kernelSubobject_arrow_comp, CategoryTheory.CostructuredArrow.unop_left_comp_underlyingIso_hom_unop, underlyingIso_arrow_apply, underlying_arrow, representative_arrow, CategoryTheory.Limits.kernelSubobjectMap_arrow, ModuleCat.toKernelSubobject_arrow, CategoryTheory.Limits.imageSubobject_arrow', CategoryTheory.Limits.kernelSubobject_arrow', CategoryTheory.Subfunctor.subobjectMk_range_arrow, CategoryTheory.Limits.kernelSubobjectMap_arrow_apply
equivMonoOver πŸ“–CompOpβ€”
exists πŸ“–CompOp
8 mathmath: imageFactorisation_F_m, CategoryTheory.Regular.frobeniusStrongEpiMonoFactorisation_I, exists_iso_map, CategoryTheory.Regular.instIsRegularEpiFrobeniusMorphism, imageFactorisation_F_I, CategoryTheory.Regular.exists_inf_pullback_eq_exists_inf, CategoryTheory.Regular.frobeniusMorphism_isPullback, CategoryTheory.Regular.frobeniusStrongEpiMonoFactorisation_m
existsCompRepresentativeIso πŸ“–CompOpβ€”
existsIsoImage πŸ“–CompOpβ€”
existsPullbackAdj πŸ“–CompOpβ€”
imageFactorisation πŸ“–CompOp
3 mathmath: imageFactorisation_F_m, imageFactorisation_F_I, CategoryTheory.Regular.frobeniusMorphism_isPullback
instCoeOut πŸ“–CompOpβ€”
isoOfEq πŸ“–CompOp
3 mathmath: isoOfEq_hom, isoOfEq_inv, imageToKernel_comp_mono
isoOfEqMk πŸ“–CompOp
2 mathmath: isoOfEqMk_inv, isoOfEqMk_hom
isoOfMkEq πŸ“–CompOp
2 mathmath: isoOfMkEq_inv, isoOfMkEq_hom
isoOfMkEqMk πŸ“–CompOp
2 mathmath: isoOfMkEqMk_hom, isoOfMkEqMk_inv
lower πŸ“–CompOp
6 mathmath: lower_iso, lower_comm, lowerEquivalence_counitIso, lowerEquivalence_unitIso, lowerEquivalence_inverse, lowerEquivalence_functor
lowerAdjunction πŸ“–CompOpβ€”
lowerCompRepresentativeIso πŸ“–CompOpβ€”
lowerEquivalence πŸ“–CompOp
4 mathmath: lowerEquivalence_counitIso, lowerEquivalence_unitIso, lowerEquivalence_inverse, lowerEquivalence_functor
lowerβ‚‚ πŸ“–CompOpβ€”
map πŸ“–CompOp
14 mathmath: map_mk, map_comp, map_top, exists_iso_map, map_pullback, inf_eq_map_pullback', mapIsoToOrderIso_apply, map_bot, inf_map, pullback_map_self, mapIsoToOrderIso_symm_apply, inf_eq_map_pullback, map_obj_injective, map_id
mapIso πŸ“–CompOpβ€”
mapIsoToOrderIso πŸ“–CompOp
2 mathmath: mapIsoToOrderIso_apply, mapIsoToOrderIso_symm_apply
mapPullbackAdj πŸ“–CompOpβ€”
mk πŸ“–CompOpβ€”
ofLE πŸ“–CompOp
31 mathmath: ofLE_arrow, ofLE_arrow_assoc, inf_comp_left, CategoryTheory.Limits.kernelSubobject_comp_mono_isIso, ofLE_comp_ofLEMk_assoc, imageToKernel_comp_right, ofLEMk_comp_ofMkLE, CategoryTheory.IsGrothendieckAbelian.generatingMonomorphisms.exists_larger_subobject, imageToKernel_epi_comp, instMonoOfLE, subobject_ofLE_as_imageToKernel, isoOfEq_hom, inf_isPullback, ofLE_comp_ofLE_assoc, imageToKernel_comp_left, ofLE_refl, CategoryTheory.Limits.imageSubobject_comp_le_epi_of_epi, factorThru_ofLE, CategoryTheory.IsGrothendieckAbelian.generatingMonomorphisms.functorToMonoOver_map, ofLE_comp_ofLEMk, isoOfEq_inv, CategoryTheory.Regular.frobeniusMorphism_isPullback, ofLE_comp_ofLE, ofMkLE_comp_ofLE, ofLE_mk_le_mk_of_comm, ofMkLE_comp_ofLE_assoc, inf_comp_left_assoc, inf_comp_right, ofLEMk_comp_ofMkLE_assoc, inf_comp_right_assoc, CategoryTheory.IsGrothendieckAbelian.generatingMonomorphisms.pushouts_ofLE_le_largerSubobject
ofLEMk πŸ“–CompOp
12 mathmath: ofLEMk_comp_ofMkLEMk, ofMkLE_comp_ofLEMk_assoc, ofLE_comp_ofLEMk_assoc, ofLEMk_comp, ofLEMk_comp_ofMkLE, isoOfMkEq_inv, instMonoOfLEMk, ofMkLE_comp_ofLEMk, ofLEMk_comp_ofMkLEMk_assoc, ofLE_comp_ofLEMk, ofLEMk_comp_ofMkLE_assoc, isoOfEqMk_hom
ofMkLE πŸ“–CompOp
12 mathmath: ofMkLEMk_comp_ofMkLE, ofMkLE_arrow, ofMkLE_comp_ofLEMk_assoc, ofMkLEMk_comp_ofMkLE_assoc, ofLEMk_comp_ofMkLE, isoOfEqMk_inv, ofMkLE_comp_ofLEMk, instMonoOfMkLE, isoOfMkEq_hom, ofMkLE_comp_ofLE, ofMkLE_comp_ofLE_assoc, ofLEMk_comp_ofMkLE_assoc
ofMkLEMk πŸ“–CompOp
14 mathmath: ofMkLEMk_comp_ofMkLEMk_assoc, ofLEMk_comp_ofMkLEMk, ofMkLEMk_comp_ofMkLE, CategoryTheory.CostructuredArrow.unop_left_comp_ofMkLEMk_unop, ofMkLE_comp_ofLEMk_assoc, ofMkLEMk_comp_ofMkLE_assoc, ofMkLEMk_comp, ofMkLE_comp_ofLEMk, ofMkLEMk_comp_ofMkLEMk, ofMkLEMk_refl, ofLEMk_comp_ofMkLEMk_assoc, isoOfMkEqMk_hom, instMonoOfMkLEMk, isoOfMkEqMk_inv
pullback πŸ“–CompOp
38 mathmath: CategoryTheory.Classifier.pullback_Ο‡_obj_mk_truth, CategoryTheory.Classifier.SubobjectRepresentableBy.pullback_homEquiv_symm_obj_Ξ©β‚€, CategoryTheory.Dial.tensorObjImpl_rel, isPullback_aux, CategoryTheory.Classifier.SubobjectRepresentableBy.iso_inv_hom_left_comp, CategoryTheory.Regular.frobeniusStrongEpiMonoFactorisation_I, CategoryTheory.Classifier.SubobjectRepresentableBy.homEquiv_eq, CategoryTheory.Dial.comp_le_lemma, pullback_id, pullback_obj, map_pullback, inf_eq_map_pullback', CategoryTheory.Classifier.Ο‡_pullback_obj_mk_truth_arrow, CategoryTheory.Limits.pullback_factors_iff, CategoryTheory.Dial.Hom.le, CategoryTheory.Regular.instIsRegularEpiFrobeniusMorphism, CategoryTheory.Regular.frobeniusStrongEpiMonoFactorisation_e, CategoryTheory.Classifier.SubobjectRepresentableBy.iso_inv_left_Ο€_assoc, CategoryTheory.Limits.pullback_factors, CategoryTheory.Regular.exists_inf_pullback_eq_exists_inf, pullback_map_self, CategoryTheory.Classifier.SubobjectRepresentableBy.iso_inv_hom_left_comp_assoc, CategoryTheory.Regular.frobeniusMorphism_isPullback, pullback_obj_mk, isPullback, CategoryTheory.Classifier.SubobjectRepresentableBy.iso_inv_left_comp, CategoryTheory.Regular.frobeniusStrongEpiMonoFactorisation_m, CategoryTheory.Classifier.SubobjectRepresentableBy.iso_inv_left_Ο€, pullback_top, pullback_comp, pullback_self, inf_eq_map_pullback, inf_pullback, functor_map, instFaithfulPullback, CategoryTheory.Dial.tensorObj_rel, Subobject.presheaf_map, CategoryTheory.Limits.pullback_equalizer
pullbackΟ€ πŸ“–CompOp
3 mathmath: CategoryTheory.Classifier.SubobjectRepresentableBy.iso_inv_left_Ο€_assoc, isPullback, CategoryTheory.Classifier.SubobjectRepresentableBy.iso_inv_left_Ο€
representative πŸ“–CompOp
9 mathmath: factors_iff, CategoryTheory.Classifier.SubobjectRepresentableBy.iso_inv_hom_left_comp, instIsEquivalenceMonoOverRepresentative, CategoryTheory.Classifier.SubobjectRepresentableBy.iso_inv_left_Ο€_assoc, CategoryTheory.Classifier.SubobjectRepresentableBy.iso_inv_hom_left_comp_assoc, CategoryTheory.Classifier.SubobjectRepresentableBy.iso_inv_left_comp, CategoryTheory.Classifier.SubobjectRepresentableBy.iso_inv_left_Ο€, representative_coe, representative_arrow
representativeIso πŸ“–CompOpβ€”
underlying πŸ“–CompOp
173 mathmath: CategoryTheory.Limits.kernelSubobjectMap_arrow_assoc, CategoryTheory.Limits.imageSubobject_arrow_assoc, factorThru_right, CategoryTheory.Limits.imageSubobjectCompIso_hom_arrow, underlyingIso_hom_comp_eq_mk_assoc, imageFactorisation_F_m, underlyingIso_arrow_assoc, ofLE_arrow, AlgebraicTopology.NormalizedMooreComplex.obj_d, imageToKernel_unop, CategoryTheory.Limits.equalizerSubobject_arrow'_assoc, imageToKernel'_kernelSubobjectIso, isPullback_aux, CategoryTheory.Limits.kernelSubobject_arrow'_apply, factorThru_eq_zero, ofLEMk_comp_ofMkLEMk, ofMkLEMk_comp_ofMkLE, top_arrow_isIso, CategoryTheory.Regular.frobeniusStrongEpiMonoFactorisation_I, CategoryTheory.Limits.kernelSubobjectIsoComp_hom_arrow, CategoryTheory.Limits.imageSubobject_arrow_comp_eq_zero, ofMkLE_arrow, imageToKernel_op, factorThruImageSubobject_comp_imageToKernel, ofLE_arrow_assoc, ofMkLE_comp_ofLEMk_assoc, inf_comp_left, CategoryTheory.Limits.kernelSubobject_arrow_assoc, ofMkLEMk_comp_ofMkLE_assoc, CategoryTheory.Limits.kernelSubobjectMap_comp, CategoryTheory.Limits.kernelSubobject_comp_mono_isIso, inf_arrow_factors_right, CategoryTheory.Limits.equalizerSubobject_arrow_comp, ofLE_comp_ofLEMk_assoc, ofLEMk_comp, imageToKernel_comp_right, imageToKernel_comp_hom_inv_comp, CategoryTheory.Limits.factorThruKernelSubobject_comp_arrow, CategoryTheory.ShortComplex.Exact.isIso_imageToKernel, factorThru_mk_self, ofLEMk_comp_ofMkLE, imageToKernel_arrow_assoc, CategoryTheory.ShortComplex.exact_iff_isIso_imageToKernel, CategoryTheory.IsGrothendieckAbelian.generatingMonomorphisms.exists_larger_subobject, CategoryTheory.Limits.factorThruImageSubobject_comp_self_assoc, pullback_obj, imageToKernel_epi_comp, instMonoOfLE, CategoryTheory.Classifier.Ο‡_pullback_obj_mk_truth_arrow, factorThru_arrow_assoc, CategoryTheory.Limits.kernelSubobjectIso_comp_kernel_map, arrow_mono, isIso_top_arrow, factors_comp_arrow, CategoryTheory.Limits.imageSubobjectIso_comp_image_map, factors_self, CategoryTheory.Limits.imageSubobject_zero_arrow, CategoryTheory.subobject_simple_iff_isAtom, CategoryTheory.Limits.kernelSubobjectIsoComp_inv_arrow, CategoryTheory.Classifier.SubobjectRepresentableBy.isPullback, factorThru_add_sub_factorThru_right, isoOfEq_hom, imageToKernel_arrow, inf_isPullback, mk_arrow, CategoryTheory.Limits.imageSubobject_arrow_comp_apply, isoOfEqMk_inv, CategoryTheory.Limits.kernelSubobject_arrow_comp_apply, isoOfMkEq_inv, underlyingIso_arrow, ofLE_comp_ofLE_assoc, instMonoOfLEMk, imageToKernel_epi_of_zero_of_mono, CategoryTheory.Limits.kernelSubobjectIso_comp_kernel_map_assoc, ofMkLE_comp_ofLEMk, imageToKernel_comp_left, eq_of_comp_arrow_eq_iff, CategoryTheory.Limits.imageSubobjectCompIso_inv_arrow_assoc, CategoryTheory.Regular.instIsRegularEpiFrobeniusMorphism, CategoryTheory.Limits.imageSubobjectMap_arrow, CategoryTheory.Limits.imageSubobjectMap_arrow_assoc, CategoryTheory.Limits.kernelSubobject_arrow, ofLE_refl, CategoryTheory.Regular.frobeniusStrongEpiMonoFactorisation_e, ofLEMk_comp_ofMkLEMk_assoc, AlgebraicTopology.NormalizedMooreComplex.d_squared, imageSubobjectIso_imageToKernel', CategoryTheory.Limits.imageSubobject_arrow, CategoryTheory.Limits.imageSubobject_comp_le_epi_of_epi, imageFactorisation_F_I, instMonoImageToKernel, factorThru_ofLE, CategoryTheory.Classifier.SubobjectRepresentableBy.iso_inv_left_Ο€_assoc, CategoryTheory.Limits.equalizerSubobject_arrow, instMonoOfMkLE, CategoryTheory.Limits.imageSubobject_arrow_comp_assoc, CategoryTheory.Limits.isIso_kernelSubobject_zero_arrow, bot_arrow, AlgebraicTopology.NormalizedMooreComplex.map_f, CategoryTheory.IsGrothendieckAbelian.generatingMonomorphisms.functorToMonoOver_map, ofLE_comp_ofLEMk, factorThru_add_sub_factorThru_left, isoOfMkEq_hom, CategoryTheory.Limits.kernel_map_comp_kernelSubobjectIso_inv, CategoryTheory.Limits.imageSubobject_arrow'_assoc, factorThru_arrow, inf_arrow_factors_left, isoOfEq_inv, factorThru_add, CategoryTheory.Limits.imageSubobjectCompIso_hom_arrow_assoc, CategoryTheory.Regular.frobeniusMorphism_isPullback, imageToKernel_arrow_apply, CategoryTheory.ShortComplex.exact_iff_epi_imageToKernel, CategoryTheory.Limits.equalizerSubobject_arrow', underlying_arrow_assoc, ofLE_comp_ofLE, CategoryTheory.Limits.equalizerSubobject_arrow_comp_assoc, ofMkLE_comp_ofLE, CategoryTheory.Limits.kernelSubobject_arrow'_assoc, imageToKernel_zero_right, underlyingIso_inv_top_arrow_assoc, isPullback, AlgebraicTopology.NormalizedMooreComplex.obj_X, CategoryTheory.Limits.equalizerSubobject_arrow_assoc, isIso_arrow_iff_eq_top, CategoryTheory.Subfunctor.orderIsoSubobject_symm_apply, ofLE_mk_le_mk_of_comm, CategoryTheory.exists_simple_subobject, underlyingIso_inv_top_arrow, underlyingIso_top_hom, ofMkLE_comp_ofLE_assoc, CategoryTheory.Subfunctor.range_subobjectMk_ΞΉ, CategoryTheory.Regular.frobeniusStrongEpiMonoFactorisation_m, CategoryTheory.Classifier.SubobjectRepresentableBy.iso_inv_left_Ο€, arrow_congr, inf_comp_left_assoc, CategoryTheory.StructuredArrow.projectSubobject_factors, underlyingIso_hom_comp_eq_mk, CategoryTheory.Limits.imageSubobjectCompIso_inv_arrow, CategoryTheory.Limits.kernelSubobject_arrow_comp_assoc, CategoryTheory.Limits.image_map_comp_imageSubobjectIso_inv, CategoryTheory.IsGrothendieckAbelian.generatingMonomorphisms.functorToMonoOver_obj, inf_comp_right, ofLEMk_comp_ofMkLE_assoc, representative_coe, CategoryTheory.Limits.kernel_map_comp_kernelSubobjectIso_inv_assoc, CategoryTheory.Limits.kernelSubobject_arrow_apply, CategoryTheory.Limits.imageSubobject_arrow_comp, CategoryTheory.Subfunctor.Subpresheaf.subobjectMk_range_arrow, imageToKernel_zero_left, inf_comp_right_assoc, CategoryTheory.Subfunctor.Subpresheaf.range_subobjectMk_ΞΉ, imageToKernel_epi_of_epi_of_zero, CategoryTheory.IsGrothendieckAbelian.generatingMonomorphisms.pushouts_ofLE_le_largerSubobject, finset_inf_arrow_factors, CategoryTheory.CostructuredArrow.projectQuotient_factors, CategoryTheory.Limits.kernelSubobject_arrow_comp, CategoryTheory.Limits.factorThruKernelSubobject_comp_kernelSubobjectIso, CategoryTheory.CostructuredArrow.unop_left_comp_underlyingIso_hom_unop, underlyingIso_arrow_apply, underlying_arrow, CategoryTheory.Limits.kernelSubobjectMap_arrow, ModuleCat.toKernelSubobject_arrow, CategoryTheory.Limits.imageSubobject_arrow', factorThru_zero, imageToKernel_comp_mono, isoOfEqMk_hom, CategoryTheory.Limits.kernelSubobject_arrow', CategoryTheory.Limits.instEpiFactorThruImageSubobjectOfHasEqualizers, CategoryTheory.Limits.factorThruImageSubobject_comp_self, CategoryTheory.Subfunctor.subobjectMk_range_arrow, CategoryTheory.Limits.kernelSubobjectMap_arrow_apply, CategoryTheory.Limits.kernelSubobjectMap_id
underlyingIso πŸ“–CompOp
11 mathmath: underlyingIso_hom_comp_eq_mk_assoc, underlyingIso_arrow_assoc, factorThru_mk_self, underlyingIso_arrow, underlyingIso_inv_top_arrow_assoc, ofLE_mk_le_mk_of_comm, underlyingIso_inv_top_arrow, underlyingIso_top_hom, underlyingIso_hom_comp_eq_mk, CategoryTheory.CostructuredArrow.unop_left_comp_underlyingIso_hom_unop, underlyingIso_arrow_apply

Theorems

NameKindAssumesProvesValidatesDepends On
arrow_congr πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.eqToHom
CategoryTheory.Subobject
CategoryTheory.Functor.obj
Preorder.smallCategory
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
underlying
arrow
β€”CategoryTheory.Category.id_comp
arrow_mono πŸ“–mathematicalβ€”CategoryTheory.Mono
CategoryTheory.Functor.obj
CategoryTheory.Subobject
Preorder.smallCategory
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
underlying
arrow
β€”CategoryTheory.ObjectProperty.FullSubcategory.property
eq_mk_of_comm πŸ“–β€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Subobject
Preorder.smallCategory
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
underlying
CategoryTheory.Iso.hom
arrow
β€”β€”eq_of_comm
CategoryTheory.Category.assoc
underlyingIso_arrow
eq_of_comm πŸ“–β€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Subobject
Preorder.smallCategory
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
underlying
CategoryTheory.Iso.hom
arrow
β€”β€”le_antisymm
le_of_comm
CategoryTheory.Iso.inv_comp_eq
eq_of_comp_arrow_eq πŸ“–β€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Subobject
Preorder.smallCategory
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
underlying
arrow
β€”β€”CategoryTheory.cancel_mono
arrow_mono
eq_of_comp_arrow_eq_iff πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Subobject
Preorder.smallCategory
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
underlying
arrow
β€”eq_of_comp_arrow_eq
exists_iso_map πŸ“–mathematicalβ€”exists
map
β€”lower_iso
hasColimitsOfSize πŸ“–mathematicalCategoryTheory.Limits.HasCoproductsCategoryTheory.Limits.HasColimitsOfSize
CategoryTheory.Subobject
Preorder.smallCategory
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
β€”CategoryTheory.Limits.hasColimitsOfSize_thinSkeleton
CategoryTheory.MonoOver.isThin
CategoryTheory.MonoOver.hasColimitsOfSize_of_hasStrongEpiMonoFactorisations
hasFiniteLimits πŸ“–mathematicalβ€”CategoryTheory.Limits.HasFiniteLimits
CategoryTheory.Subobject
Preorder.smallCategory
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
β€”hasLimitsOfShape
CategoryTheory.Limits.hasLimitsOfShape_of_hasFiniteLimits
hasLimitsOfShape πŸ“–mathematicalβ€”CategoryTheory.Limits.HasLimitsOfShape
CategoryTheory.Subobject
Preorder.smallCategory
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
β€”CategoryTheory.Limits.hasLimitsOfShape_thinSkeleton
CategoryTheory.MonoOver.isThin
CategoryTheory.MonoOver.hasLimitsOfShape
hasLimitsOfSize πŸ“–mathematicalβ€”CategoryTheory.Limits.HasLimitsOfSize
CategoryTheory.Subobject
Preorder.smallCategory
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
β€”hasLimitsOfShape
CategoryTheory.Limits.hasLimitsOfShapeOfHasLimits
imageFactorisation_F_I πŸ“–mathematicalβ€”CategoryTheory.Limits.MonoFactorisation.I
CategoryTheory.Functor.obj
CategoryTheory.Subobject
Preorder.smallCategory
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
underlying
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
arrow
CategoryTheory.Limits.ImageFactorisation.F
imageFactorisation
exists
β€”β€”
imageFactorisation_F_m πŸ“–mathematicalβ€”CategoryTheory.Limits.MonoFactorisation.m
CategoryTheory.Functor.obj
CategoryTheory.Subobject
Preorder.smallCategory
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
underlying
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
arrow
CategoryTheory.Limits.ImageFactorisation.F
imageFactorisation
exists
β€”β€”
ind πŸ“–β€”β€”β€”β€”Quotient.inductionOn'
CategoryTheory.MonoOver.mono
indβ‚‚ πŸ“–β€”β€”β€”β€”Quotient.inductionOnβ‚‚'
CategoryTheory.MonoOver.mono
instFaithfulPullback πŸ“–mathematicalβ€”CategoryTheory.Functor.Faithful
CategoryTheory.Subobject
Preorder.smallCategory
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
pullback
β€”Preorder.subsingleton_hom
instIsEquivalenceMonoOverRepresentative πŸ“–mathematicalβ€”CategoryTheory.Functor.IsEquivalence
CategoryTheory.Subobject
Preorder.smallCategory
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
CategoryTheory.MonoOver
CategoryTheory.ObjectProperty.FullSubcategory.category
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Over.isMono
representative
β€”CategoryTheory.Equivalence.isEquivalence_functor
instMonoOfLE πŸ“–mathematicalCategoryTheory.Subobject
Preorder.toLE
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
CategoryTheory.Mono
CategoryTheory.Functor.obj
Preorder.smallCategory
underlying
ofLE
β€”CategoryTheory.eq_whisker
eq_of_comp_arrow_eq
CategoryTheory.Category.assoc
ofLE_arrow
instMonoOfLEMk πŸ“–mathematicalCategoryTheory.Subobject
Preorder.toLE
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
CategoryTheory.Mono
CategoryTheory.Functor.obj
Preorder.smallCategory
underlying
ofLEMk
β€”CategoryTheory.mono_comp
instMonoOfLE
CategoryTheory.mono_of_strongMono
CategoryTheory.strongMono_of_isIso
CategoryTheory.Iso.isIso_hom
instMonoOfMkLE πŸ“–mathematicalCategoryTheory.Subobject
Preorder.toLE
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
CategoryTheory.Mono
CategoryTheory.Functor.obj
Preorder.smallCategory
underlying
ofMkLE
β€”CategoryTheory.mono_comp
CategoryTheory.mono_of_strongMono
CategoryTheory.strongMono_of_isIso
CategoryTheory.Iso.isIso_inv
instMonoOfLE
instMonoOfMkLEMk πŸ“–mathematicalβ€”CategoryTheory.Mono
ofMkLEMk
β€”CategoryTheory.mono_comp
CategoryTheory.mono_of_strongMono
CategoryTheory.strongMono_of_isIso
CategoryTheory.Iso.isIso_inv
instMonoOfLE
CategoryTheory.Iso.isIso_hom
isPullback πŸ“–mathematicalβ€”CategoryTheory.IsPullback
CategoryTheory.Functor.obj
CategoryTheory.Subobject
Preorder.smallCategory
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
underlying
pullback
pullbackΟ€
arrow
β€”isPullback_aux
isPullback_aux πŸ“–mathematicalβ€”CategoryTheory.IsPullback
CategoryTheory.Functor.obj
CategoryTheory.Subobject
Preorder.smallCategory
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
underlying
pullback
arrow
β€”mk_surjective
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Limits.pullback.snd_of_mono
arrow_mono
pullback_obj
CategoryTheory.IsPullback.of_iso
CategoryTheory.IsPullback.of_hasPullback
CategoryTheory.Category.comp_id
CategoryTheory.Iso.inv_hom_id_assoc
underlyingIso_arrow
CategoryTheory.Category.id_comp
isoOfEqMk_hom πŸ“–mathematicalβ€”CategoryTheory.Iso.hom
CategoryTheory.Functor.obj
CategoryTheory.Subobject
Preorder.smallCategory
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
underlying
isoOfEqMk
ofLEMk
β€”β€”
isoOfEqMk_inv πŸ“–mathematicalβ€”CategoryTheory.Iso.inv
CategoryTheory.Functor.obj
CategoryTheory.Subobject
Preorder.smallCategory
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
underlying
isoOfEqMk
ofMkLE
β€”β€”
isoOfEq_hom πŸ“–mathematicalβ€”CategoryTheory.Iso.hom
CategoryTheory.Functor.obj
CategoryTheory.Subobject
Preorder.smallCategory
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
underlying
isoOfEq
ofLE
β€”β€”
isoOfEq_inv πŸ“–mathematicalβ€”CategoryTheory.Iso.inv
CategoryTheory.Functor.obj
CategoryTheory.Subobject
Preorder.smallCategory
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
underlying
isoOfEq
ofLE
β€”β€”
isoOfMkEqMk_hom πŸ“–mathematicalβ€”CategoryTheory.Iso.hom
isoOfMkEqMk
ofMkLEMk
β€”β€”
isoOfMkEqMk_inv πŸ“–mathematicalβ€”CategoryTheory.Iso.inv
isoOfMkEqMk
ofMkLEMk
β€”β€”
isoOfMkEq_hom πŸ“–mathematicalβ€”CategoryTheory.Iso.hom
CategoryTheory.Functor.obj
CategoryTheory.Subobject
Preorder.smallCategory
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
underlying
isoOfMkEq
ofMkLE
β€”β€”
isoOfMkEq_inv πŸ“–mathematicalβ€”CategoryTheory.Iso.inv
CategoryTheory.Functor.obj
CategoryTheory.Subobject
Preorder.smallCategory
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
underlying
isoOfMkEq
ofLEMk
β€”β€”
le_mk_of_comm πŸ“–mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Subobject
Preorder.smallCategory
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
underlying
arrow
Preorder.toLEβ€”le_of_comm
CategoryTheory.Category.assoc
underlyingIso_arrow
le_of_comm πŸ“–mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Subobject
Preorder.smallCategory
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
underlying
arrow
Preorder.toLEβ€”arrow_mono
mk_arrow
mk_le_mk_of_comm
lift_mk πŸ“–mathematicalβ€”liftβ€”β€”
lowerEquivalence_counitIso πŸ“–mathematicalβ€”CategoryTheory.Equivalence.counitIso
CategoryTheory.Subobject
Preorder.smallCategory
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
lowerEquivalence
CategoryTheory.eqToIso
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
lower
CategoryTheory.Equivalence.inverse
CategoryTheory.MonoOver
CategoryTheory.ObjectProperty.FullSubcategory.category
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Over.isMono
CategoryTheory.Equivalence.functor
CategoryTheory.Functor.id
β€”β€”
lowerEquivalence_functor πŸ“–mathematicalβ€”CategoryTheory.Equivalence.functor
CategoryTheory.Subobject
Preorder.smallCategory
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
lowerEquivalence
lower
CategoryTheory.MonoOver
CategoryTheory.ObjectProperty.FullSubcategory.category
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Over.isMono
β€”β€”
lowerEquivalence_inverse πŸ“–mathematicalβ€”CategoryTheory.Equivalence.inverse
CategoryTheory.Subobject
Preorder.smallCategory
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
lowerEquivalence
lower
CategoryTheory.MonoOver
CategoryTheory.ObjectProperty.FullSubcategory.category
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Over.isMono
β€”β€”
lowerEquivalence_unitIso πŸ“–mathematicalβ€”CategoryTheory.Equivalence.unitIso
CategoryTheory.Subobject
Preorder.smallCategory
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
lowerEquivalence
CategoryTheory.eqToIso
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
lower
CategoryTheory.Equivalence.functor
CategoryTheory.MonoOver
CategoryTheory.ObjectProperty.FullSubcategory.category
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Over.isMono
CategoryTheory.Equivalence.inverse
β€”β€”
lower_comm πŸ“–mathematicalβ€”CategoryTheory.Functor.comp
CategoryTheory.MonoOver
CategoryTheory.ObjectProperty.FullSubcategory.category
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Over.isMono
CategoryTheory.ThinSkeleton
Preorder.smallCategory
CategoryTheory.ThinSkeleton.preorder
CategoryTheory.Subobject
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
CategoryTheory.toThinSkeleton
lower
β€”β€”
lower_iso πŸ“–mathematicalβ€”lowerβ€”CategoryTheory.ThinSkeleton.map_iso_eq
CategoryTheory.MonoOver.isThin
mapIsoToOrderIso_apply πŸ“–mathematicalβ€”DFunLike.coe
RelIso
CategoryTheory.Subobject
Preorder.toLE
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
RelIso.instFunLike
mapIsoToOrderIso
CategoryTheory.Functor.obj
Preorder.smallCategory
map
CategoryTheory.Iso.hom
β€”β€”
mapIsoToOrderIso_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
RelIso
CategoryTheory.Subobject
Preorder.toLE
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
RelIso.instFunLike
RelIso.symm
mapIsoToOrderIso
CategoryTheory.Functor.obj
Preorder.smallCategory
map
CategoryTheory.Iso.inv
β€”β€”
map_comp πŸ“–mathematicalβ€”CategoryTheory.Functor.obj
CategoryTheory.Subobject
Preorder.smallCategory
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
map
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.mono_comp
β€”Quotient.inductionOn'
CategoryTheory.mono_comp
map_id πŸ“–mathematicalβ€”CategoryTheory.Functor.obj
CategoryTheory.Subobject
Preorder.smallCategory
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
map
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.instMonoId
β€”Quotient.inductionOn'
CategoryTheory.instMonoId
map_mk πŸ“–mathematicalβ€”CategoryTheory.Functor.obj
CategoryTheory.Subobject
Preorder.smallCategory
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
map
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.mono_comp
β€”β€”
map_obj_injective πŸ“–mathematicalβ€”CategoryTheory.Subobject
CategoryTheory.Functor.obj
Preorder.smallCategory
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
map
β€”ind
mk_eq_mk_of_comm
CategoryTheory.mono_comp
CategoryTheory.cancel_mono
CategoryTheory.Category.assoc
ofMkLEMk_comp
map_pullback πŸ“–mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Subobject
Preorder.smallCategory
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
map
pullback
β€”Quotient.ind'
CategoryTheory.ThinSkeleton.equiv_of_both_ways
CategoryTheory.MonoOver.isThin
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Limits.pullback.condition_assoc
CategoryTheory.Category.assoc
CategoryTheory.Limits.pullback.lift_snd
CategoryTheory.Limits.pullback.condition
CategoryTheory.Limits.PullbackCone.IsLimit.lift_fst
CategoryTheory.Limits.pullback.lift_snd_assoc
CategoryTheory.Limits.PullbackCone.IsLimit.lift_snd
mk_arrow πŸ“–mathematicalβ€”CategoryTheory.Functor.obj
CategoryTheory.Subobject
Preorder.smallCategory
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
underlying
arrow
arrow_mono
β€”Quotient.inductionOn'
arrow_mono
Quotient.mk_out'
Quotient.sound'
CategoryTheory.Category.id_comp
mk_eq_mk_of_comm πŸ“–β€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Iso.hom
β€”β€”eq_mk_of_comm
CategoryTheory.Category.assoc
mk_eq_of_comm πŸ“–β€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Subobject
Preorder.smallCategory
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
underlying
CategoryTheory.Iso.hom
arrow
β€”β€”eq_mk_of_comm
CategoryTheory.Iso.symm_hom
CategoryTheory.Iso.inv_comp_eq
mk_le_mk_of_comm πŸ“–mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Subobject
Preorder.toLE
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
β€”β€”
mk_le_of_comm πŸ“–mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Subobject
Preorder.smallCategory
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
underlying
arrow
Preorder.toLEβ€”le_of_comm
CategoryTheory.Category.assoc
mk_lt_mk_iff_of_comm πŸ“–mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Subobject
Preorder.toLT
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
CategoryTheory.IsIso
β€”mk_eq_mk_of_comm
mk_lt_mk_of_comm
mk_lt_mk_of_comm πŸ“–mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.IsIso
CategoryTheory.Subobject
Preorder.toLT
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
β€”LE.le.lt_or_eq
mk_le_mk_of_comm
CategoryTheory.cancel_mono
isoOfMkEqMk_hom
ofMkLEMk_comp
CategoryTheory.Iso.isIso_hom
mk_surjective πŸ“–β€”β€”β€”β€”arrow_mono
mk_arrow
ofLEMk_comp πŸ“–mathematicalCategoryTheory.Subobject
Preorder.toLE
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Preorder.smallCategory
underlying
ofLEMk
arrow
β€”CategoryTheory.Category.assoc
ofLE_arrow
ofLEMk_comp_ofMkLE πŸ“–mathematicalCategoryTheory.Subobject
Preorder.toLE
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Preorder.smallCategory
underlying
ofLEMk
ofMkLE
ofLE
LE.le.trans
β€”LE.le.trans
CategoryTheory.Category.assoc
CategoryTheory.Iso.hom_inv_id_assoc
CategoryTheory.Functor.map_comp
ofLEMk_comp_ofMkLEMk πŸ“–mathematicalCategoryTheory.Subobject
Preorder.toLE
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Preorder.smallCategory
underlying
ofLEMk
ofMkLEMk
LE.le.trans
β€”LE.le.trans
CategoryTheory.Category.assoc
CategoryTheory.Iso.hom_inv_id_assoc
CategoryTheory.Functor.map_comp_assoc
ofLEMk_comp_ofMkLEMk_assoc πŸ“–mathematicalCategoryTheory.Subobject
Preorder.toLE
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Preorder.smallCategory
underlying
ofLEMk
ofMkLEMk
LE.le.trans
β€”LE.le.trans
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
ofLEMk_comp_ofMkLEMk
ofLEMk_comp_ofMkLE_assoc πŸ“–mathematicalCategoryTheory.Subobject
Preorder.toLE
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Preorder.smallCategory
underlying
ofLEMk
ofMkLE
ofLE
LE.le.trans
β€”LE.le.trans
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
ofLEMk_comp_ofMkLE
ofLE_arrow πŸ“–mathematicalCategoryTheory.Subobject
Preorder.toLE
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Preorder.smallCategory
underlying
ofLE
arrow
β€”underlying_arrow
ofLE_arrow_assoc πŸ“–mathematicalCategoryTheory.Subobject
Preorder.toLE
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Preorder.smallCategory
underlying
ofLE
arrow
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
ofLE_arrow
ofLE_comp_ofLE πŸ“–mathematicalCategoryTheory.Subobject
Preorder.toLE
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Preorder.smallCategory
underlying
ofLE
LE.le.trans
β€”LE.le.trans
CategoryTheory.Functor.map_comp
ofLE_comp_ofLEMk πŸ“–mathematicalCategoryTheory.Subobject
Preorder.toLE
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Preorder.smallCategory
underlying
ofLE
ofLEMk
LE.le.trans
β€”LE.le.trans
CategoryTheory.Functor.map_comp_assoc
ofLE_comp_ofLEMk_assoc πŸ“–mathematicalCategoryTheory.Subobject
Preorder.toLE
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Preorder.smallCategory
underlying
ofLE
ofLEMk
LE.le.trans
β€”LE.le.trans
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
ofLE_comp_ofLEMk
ofLE_comp_ofLE_assoc πŸ“–mathematicalCategoryTheory.Subobject
Preorder.toLE
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Preorder.smallCategory
underlying
ofLE
LE.le.trans
β€”LE.le.trans
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
ofLE_comp_ofLE
ofLE_mk_le_mk_of_comm πŸ“–mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
ofLE
mk_le_mk_of_comm
CategoryTheory.Functor.obj
CategoryTheory.Subobject
Preorder.smallCategory
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
underlying
CategoryTheory.Iso.hom
underlyingIso
CategoryTheory.Iso.inv
β€”eq_of_comp_arrow_eq
mk_le_mk_of_comm
ofLE_arrow
CategoryTheory.Category.assoc
underlyingIso_arrow
ofLE_refl πŸ“–mathematicalβ€”ofLE
le_rfl
CategoryTheory.Subobject
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Preorder.smallCategory
underlying
β€”le_rfl
CategoryTheory.cancel_mono
arrow_mono
ofLE_arrow
CategoryTheory.Category.id_comp
ofMkLEMk_comp πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
ofMkLEMk
β€”CategoryTheory.Category.assoc
ofLE_arrow
underlyingIso_arrow
ofMkLEMk_comp_ofMkLE πŸ“–mathematicalCategoryTheory.Subobject
Preorder.toLE
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Preorder.smallCategory
underlying
ofMkLEMk
ofMkLE
LE.le.trans
β€”LE.le.trans
CategoryTheory.Category.assoc
CategoryTheory.Iso.hom_inv_id_assoc
CategoryTheory.Functor.map_comp
ofMkLEMk_comp_ofMkLEMk πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
ofMkLEMk
LE.le.trans
CategoryTheory.Subobject
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
β€”LE.le.trans
CategoryTheory.Category.assoc
CategoryTheory.Iso.hom_inv_id_assoc
CategoryTheory.Functor.map_comp_assoc
ofMkLEMk_comp_ofMkLEMk_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
ofMkLEMk
LE.le.trans
CategoryTheory.Subobject
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
β€”LE.le.trans
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
ofMkLEMk_comp_ofMkLEMk
ofMkLEMk_comp_ofMkLE_assoc πŸ“–mathematicalCategoryTheory.Subobject
Preorder.toLE
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
ofMkLEMk
CategoryTheory.Functor.obj
Preorder.smallCategory
underlying
ofMkLE
LE.le.trans
β€”LE.le.trans
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
ofMkLEMk_comp_ofMkLE
ofMkLEMk_refl πŸ“–mathematicalβ€”ofMkLEMk
le_rfl
CategoryTheory.Subobject
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
β€”le_rfl
CategoryTheory.cancel_mono
ofMkLEMk_comp
CategoryTheory.Category.id_comp
ofMkLE_arrow πŸ“–mathematicalCategoryTheory.Subobject
Preorder.toLE
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Preorder.smallCategory
underlying
ofMkLE
arrow
β€”CategoryTheory.Category.assoc
ofLE_arrow
underlyingIso_arrow
ofMkLE_comp_ofLE πŸ“–mathematicalCategoryTheory.Subobject
Preorder.toLE
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Preorder.smallCategory
underlying
ofMkLE
ofLE
LE.le.trans
β€”LE.le.trans
CategoryTheory.Category.assoc
CategoryTheory.Functor.map_comp
ofMkLE_comp_ofLEMk πŸ“–mathematicalCategoryTheory.Subobject
Preorder.toLE
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Preorder.smallCategory
underlying
ofMkLE
ofLEMk
ofMkLEMk
LE.le.trans
β€”LE.le.trans
CategoryTheory.Category.assoc
CategoryTheory.Functor.map_comp_assoc
ofMkLE_comp_ofLEMk_assoc πŸ“–mathematicalCategoryTheory.Subobject
Preorder.toLE
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Preorder.smallCategory
underlying
ofMkLE
ofLEMk
ofMkLEMk
LE.le.trans
β€”LE.le.trans
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
ofMkLE_comp_ofLEMk
ofMkLE_comp_ofLE_assoc πŸ“–mathematicalCategoryTheory.Subobject
Preorder.toLE
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Preorder.smallCategory
underlying
ofMkLE
ofLE
LE.le.trans
β€”LE.le.trans
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
ofMkLE_comp_ofLE
pullback_comp πŸ“–mathematicalβ€”CategoryTheory.Functor.obj
CategoryTheory.Subobject
Preorder.smallCategory
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
pullback
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
β€”Quotient.inductionOn'
pullback_id πŸ“–mathematicalβ€”CategoryTheory.Functor.obj
CategoryTheory.Subobject
Preorder.smallCategory
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
pullback
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
β€”Quotient.inductionOn'
pullback_map_self πŸ“–mathematicalβ€”CategoryTheory.Functor.obj
CategoryTheory.Subobject
Preorder.smallCategory
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
pullback
map
β€”β€”
pullback_obj πŸ“–mathematicalβ€”CategoryTheory.Functor.obj
CategoryTheory.Subobject
Preorder.smallCategory
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
pullback
CategoryTheory.Limits.pullback
underlying
arrow
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Limits.WalkingCospan
CategoryTheory.Limits.WidePullbackShape.category
CategoryTheory.Limits.WalkingPair
CategoryTheory.Limits.cospan
CategoryTheory.Limits.pullback.snd
CategoryTheory.Limits.pullback.snd_of_mono
arrow_mono
β€”CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Limits.pullback.snd_of_mono
arrow_mono
mk_surjective
CategoryTheory.IsPullback.of_hasPullback
mk_eq_mk_of_comm
CategoryTheory.Category.comp_id
underlyingIso_arrow
CategoryTheory.Category.id_comp
CategoryTheory.Limits.pullback.map_isIso
CategoryTheory.Iso.isIso_inv
CategoryTheory.IsIso.id
CategoryTheory.Limits.limit.lift_Ο€
pullback_obj_mk πŸ“–mathematicalCategoryTheory.IsPullbackCategoryTheory.Functor.obj
CategoryTheory.Subobject
Preorder.smallCategory
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
pullback
β€”CategoryTheory.Iso.to_eq
representative_arrow πŸ“–mathematicalβ€”CategoryTheory.MonoOver.arrow
CategoryTheory.Functor.obj
CategoryTheory.Subobject
Preorder.smallCategory
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
CategoryTheory.MonoOver
CategoryTheory.ObjectProperty.FullSubcategory.category
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Over.isMono
representative
arrow
β€”β€”
representative_coe πŸ“–mathematicalβ€”CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
CategoryTheory.ObjectProperty.FullSubcategory.obj
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Over.isMono
CategoryTheory.Functor.obj
CategoryTheory.Subobject
Preorder.smallCategory
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
CategoryTheory.MonoOver
CategoryTheory.ObjectProperty.FullSubcategory.category
representative
underlying
β€”β€”
skeletal πŸ“–mathematicalβ€”CategoryTheory.Skeletal
CategoryTheory.Subobject
Preorder.smallCategory
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
β€”CategoryTheory.ThinSkeleton.skeletal
CategoryTheory.MonoOver.isThin
underlyingIso_arrow πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Subobject
Preorder.smallCategory
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
underlying
CategoryTheory.Iso.inv
underlyingIso
arrow
β€”CategoryTheory.Over.w
underlyingIso_arrow_apply πŸ“–mathematicalβ€”DFunLike.coe
CategoryTheory.Functor.obj
CategoryTheory.Subobject
Preorder.smallCategory
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
underlying
CategoryTheory.ConcreteCategory.hom
arrow
CategoryTheory.Iso.inv
underlyingIso
β€”CategoryTheory.comp_apply
Mathlib.Tactic.Elementwise.hom_elementwise
underlyingIso_arrow
underlyingIso_arrow_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Subobject
Preorder.smallCategory
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
underlying
CategoryTheory.Iso.inv
underlyingIso
arrow
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
underlyingIso_arrow
underlyingIso_hom_comp_eq_mk πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Subobject
Preorder.smallCategory
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
underlying
CategoryTheory.Iso.hom
underlyingIso
arrow
β€”CategoryTheory.Iso.eq_inv_comp
underlyingIso_arrow
underlyingIso_hom_comp_eq_mk_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Subobject
Preorder.smallCategory
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
underlying
CategoryTheory.Iso.hom
underlyingIso
arrow
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
underlying_arrow πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Subobject
Preorder.smallCategory
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
underlying
CategoryTheory.Functor.map
arrow
β€”CategoryTheory.Over.w
underlying_arrow_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Subobject
Preorder.smallCategory
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
underlying
CategoryTheory.Functor.map
arrow
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
underlying_arrow

---

← Back to Index