Documentation Verification Report

Comma

📁 Source: Mathlib/CategoryTheory/Subobject/Comma.lean

Statistics

MetricCount
DefinitionsComma, liftQuotient, projectQuotient, quotientEquiv, liftSubobject, projectSubobject, subobjectEquiv
7
Theoremslift_projectQuotient, projectQuotient_factors, projectQuotient_mk, unop_left_comp_ofMkLEMk_unop, unop_left_comp_underlyingIso_hom_unop, well_copowered_costructuredArrow, lift_projectSubobject, projectSubobject_factors, projectSubobject_mk, wellPowered_structuredArrow
10
Total17

CategoryTheory

Definitions

NameCategoryTheorems
Comma 📖CompData
432 mathmath: TwoSquare.structuredArrowRightwardsOpEquivalence.functor_obj_hom_right, CostructuredArrow.ofCommaFstEquivalenceInverse_obj_left_hom, StructuredArrow.ofCommaSndEquivalenceInverse_obj_right_left, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_counitIso_hom_app_left, WithInitial.equivComma_functor_obj_right_obj, StructuredArrow.ofCommaSndEquivalenceFunctor_map_right, Comma.snd_obj, Comma.mapLeftEq_inv_app_right, Comma.mapLeftIso_inverse_map_right, Functor.leftExtensionEquivalenceOfIso₁_functor_map_left, Comma.opFunctor_obj, WithTerminal.equivComma_functor_obj_left_obj, StructuredArrow.mapIso_functor_obj_left, WithTerminal.equivComma_counitIso_hom_app_left_app, Comma.toPUnitIdEquiv_functor_map, StructuredArrow.commaMapEquivalenceInverse_map, Comma.map_obj_hom, WithTerminal.equivComma_counitIso_inv_app_left_app, StructuredArrow.ofCommaSndEquivalence_functor, Comma.toIdPUnitEquiv_inverse_map_right, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_inverse_map_app, Comma.map_final, Comma.mapLeft_map_left, StructuredArrow.mapIso_inverse_obj_hom, CostructuredArrow.grothendieckPrecompFunctorToComma_map_left, Comma.fromProd_obj_hom, CostructuredArrow.mapNatIso_inverse_obj_left, CostructuredArrow.mapIso_functor_obj_hom, StructuredArrow.commaMapEquivalenceCounitIso_hom_app_left_right, Comma.fst_obj, Comma.mapLeftIso_functor_map_left, Comma.mapLeftIso_unitIso_inv_app_left, Functor.leftExtensionEquivalenceOfIso₁_functor_obj_left, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_functor_obj_left, Comma.mapRightIso_counitIso_inv_app_left, TwoSquare.EquivalenceJ.inverse_map, StructuredArrow.commaMapEquivalenceUnitIso_inv_app_right_right, Comma.mapRightEq_hom_app_right, Comma.initial_fst, Comma.mapRightIso_counitIso_inv_app_right, Comma.opEquiv_counitIso, Comma.mapLeftEq_hom_app_left, Comma.isConnected_comma_of_initial, Comma.hasColimitsOfSize, Comma.coneOfPreserves_π_app_right, Comma.eqToHom_left, Comma.limitAuxiliaryCone_pt, WithTerminal.equivComma_inverse_obj_obj, Comma.hasColimitsOfShape, Comma.mapRightIso_functor_map_left, Comma.mapLeftIso_counitIso_inv_app_right, WithTerminal.equivComma_counitIso_hom_app_right, Comma.map_map_right, Comma.instEssSurjCompPostOfFull, CostructuredArrow.mapNatIso_inverse_map_right, StructuredArrow.mapNatIso_functor_obj_right, Comma.mapRight_obj_hom, Comma.mapRightIso_inverse_map_right, WithTerminal.equivComma_functor_obj_left_map, CostructuredArrow.mapNatIso_unitIso_inv_app_left, Comma.inv_left, CostructuredArrow.mapIso_unitIso_hom_app_left, WithTerminal.equivComma_functor_obj_right, Comma.mapRightIso_unitIso_inv_app_right, Comma.toPUnitIdEquiv_counitIso_hom_app, Comma.mapSnd_inv_app, Comma.fromProd_obj_right, CostructuredArrow.grothendieckPrecompFunctorEquivalence_functor, Comma.mapRightIso_functor_obj_right, Comma.opFunctor_map, CostructuredArrow.commaToGrothendieckPrecompFunctor_map_fiber, CostructuredArrow.commaToGrothendieckPrecompFunctor_obj_fiber, Comma.preRight_obj_left, WithTerminal.commaFromOver_map_left, WithInitial.equivComma_functor_obj_right_map, WithInitial.equivComma_counitIso_hom_app_right_app, Comma.rightIso_hom, CostructuredArrow.ιCompGrothendieckProj_inv_app, Comma.mapLeftIso_inverse_obj_left, CostructuredArrow.mapIso_inverse_obj_right, Comma.mapRight_obj_left, Comma.equivProd_unitIso_hom_app_left, Comma.comp_right, WithTerminal.commaFromOver_obj_right, StructuredArrow.ofCommaSndEquivalence_unitIso, TwoSquare.costructuredArrowRightwards_map, StructuredArrow.ofCommaSndEquivalence_counitIso, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_inverse_obj_map, CostructuredArrow.mapIso_functor_map_left, Comma.mapLeftIso_inverse_obj_right, Functor.leftExtensionEquivalenceOfIso₁_inverse_map_left, Comma.equivProd_counitIso_hom_app, Comma.mapRightId_inv_app_left, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_inverse_obj_obj, Comma.instFaithfulCompPreLeft, Functor.leftExtensionEquivalenceOfIso₁_inverse_obj_left, Comma.mapLeftId_hom_app_right, Comma.post_obj_right, Comma.preRight_map_left, MorphismProperty.Comma.instFullTopCommaForget, MorphismProperty.Comma.isoFromComma_hom, StructuredArrow.mapNatIso_functor_obj_hom, CostructuredArrow.mapIso_unitIso_inv_app_left, CostructuredArrow.grothendieckPrecompFunctorToComma_obj_right, Comma.preLeft_obj_right, StructuredArrow.mapIso_inverse_obj_right, CostructuredArrow.commaToGrothendieckPrecompFunctor_map_base, Comma.mapRightComp_inv_app_right, StructuredArrow.mapNatIso_inverse_map_right, Comma.instFaithfulCompPost, StructuredArrow.mapNatIso_functor_map_right, CostructuredArrow.ofCommaFstEquivalence_inverse, StructuredArrow.ofCommaSndEquivalenceInverse_map_right_left, CostructuredArrow.mapIso_functor_obj_left, WithInitial.equivComma_counitIso_inv_app_right_app, Comma.hasColimit, CostructuredArrow.ofCommaFstEquivalenceFunctor_obj_hom, StructuredArrow.mapNatIso_inverse_obj_left, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_functor_map_left, WithTerminal.equivComma_functor_map_right, Comma.faithful_map, Comma.comp_left, Comma.toPUnitIdEquiv_functor_obj, WithInitial.commaFromUnder_map_left, Comma.fromProd_obj_left, StructuredArrow.ofCommaSndEquivalenceFunctor_map_left, Comma.mapLeftComp_inv_app_left, Comma.mapLeftIso_functor_obj_left, StructuredArrow.mapNatIso_unitIso_hom_app_right, Comma.natTrans_app, Comma.map_obj_right, Comma.coneOfPreserves_pt_right, Comma.equivProd_inverse_map_left, CostructuredArrow.ιCompGrothendieckPrecompFunctorToCommaCompFst_inv_app, Comma.instFullCompPreLeft, Comma.equivProd_unitIso_hom_app_right, CostructuredArrow.ofCommaFstEquivalenceInverse_obj_right_as, Comma.preRight_map_right, CostructuredArrow.ofCommaFstEquivalenceInverse_obj_left_left, CostructuredArrow.mapNatIso_functor_obj_hom, Comma.map_map_left, Comma.mapRightIso_functor_obj_hom, Comma.toIdPUnitEquiv_unitIso_inv_app_right, Comma.post_map_left, CostructuredArrow.grothendieckPrecompFunctorToComma_obj_left, Comma.toPUnitIdEquiv_unitIso_inv_app_left, Comma.colimitAuxiliaryCocone_pt, StructuredArrow.ofCommaSndEquivalenceFunctor_obj_right, Comma.coconeOfPreserves_pt_right, Comma.isCofiltered_of_initial, Comma.preservesColimitsOfShape_snd, Comma.snd_map, Comma.preRight_obj_right, Comma.mapLeftIso_unitIso_inv_app_right, CostructuredArrow.mapNatIso_counitIso_inv_app_left, Comma.isEquivalence_post, Comma.mapLeftIso_unitIso_hom_app_left, CostructuredArrow.mapIso_counitIso_hom_app_left, WithInitial.equivComma_functor_map_left, CostructuredArrow.mapCompιCompGrothendieckProj_inv_app, Comma.mapRightEq_inv_app_left, Functor.leftExtensionEquivalenceOfIso₁_inverse_map_right, Comma.isEquivalenceMap, Comma.eqToHom_right, CostructuredArrow.mapIso_functor_map_right, WithTerminal.equivComma_functor_obj_hom_app, WithInitial.equivComma_inverse_map_app, Comma.unopFunctor_obj, CostructuredArrow.mapNatIso_inverse_map_left, Comma.mapLeftComp_inv_app_right, Comma.equivProd_counitIso_inv_app, Comma.isEquivalence_preLeft, Comma.coconeOfPreserves_ι_app_right, Comma.toIdPUnitEquiv_unitIso_hom_app_right, WithInitial.equivComma_counitIso_hom_app_left, Comma.mapRightIso_inverse_obj_right, CostructuredArrow.grothendieckPrecompFunctorEquivalence_unitIso, Comma.coconeOfPreserves_pt_hom, Comma.mapLeftIso_counitIso_hom_app_left, Comma.mapRightIso_functor_map_right, Comma.limitAuxiliaryCone_π_app, WithInitial.equivComma_functor_map_right_app, Comma.toIdPUnitEquiv_functor_map, Comma.toIdPUnitEquiv_inverse_obj_left_as, Functor.leftExtensionEquivalenceOfIso₁_inverse_obj_right, StructuredArrow.commaMapEquivalenceInverse_obj, Functor.leftExtensionEquivalenceOfIso₁_counitIso_inv_app_right_app, Comma.inv_right, WithInitial.equivComma_functor_obj_hom_app, Comma.toIdPUnitEquiv_functor_obj, StructuredArrow.mapNatIso_inverse_obj_hom, WithInitial.commaFromUnder_obj_hom_app, StructuredArrow.commaMapEquivalenceFunctor_obj_left, CostructuredArrow.mapNatIso_inverse_obj_hom, WithInitial.commaFromUnder_obj_right, WithInitial.equivComma_inverse_obj_map, Comma.toIdPUnitEquiv_counitIso_hom_app, Comma.mapRightComp_hom_app_left, StructuredArrow.commaMapEquivalenceFunctor_map_left, CostructuredArrow.ofCommaFstEquivalence_functor, Comma.toPUnitIdEquiv_inverse_map_left, Comma.mapRightIso_functor_obj_left, CostructuredArrow.ofCommaFstEquivalenceFunctor_map_right, MorphismProperty.Comma.forget_obj, Comma.unopFunctorCompSnd_inv_app, Comma.coconeOfPreserves_ι_app_left, Comma.equivProd_inverse_map_right, CostructuredArrow.mapNatIso_unitIso_hom_app_left, Functor.leftExtensionEquivalenceOfIso₁_inverse_obj_hom_app, Comma.isoMk_inv_left, CostructuredArrow.grothendieckPrecompFunctorEquivalence_inverse, Comma.toPUnitIdEquiv_functor_iso, CostructuredArrow.ofCommaFstEquivalenceInverse_map_left_left, StructuredArrow.mapIso_functor_obj_right, Comma.mapLeftEq_hom_app_right, StructuredArrow.mapIso_unitIso_inv_app_right, Comma.mapLeft_obj_right, Comma.hasLimitsOfSize, Comma.preservesColimitsOfShape_fst, Comma.opFunctorCompSnd_hom_app, StructuredArrow.mapIso_functor_map_left, Functor.leftExtensionEquivalenceOfIso₁_functor_obj_hom_app, Comma.mapLeftIso_inverse_obj_hom, StructuredArrow.commaMapEquivalenceFunctor_map_right, Comma.mapLeftId_hom_app_left, Comma.hasLimitsOfShape, Comma.post_obj_left, Comma.mapLeftId_inv_app_left, Comma.mapRightIso_counitIso_hom_app_right, Comma.fromProd_map_right, MorphismProperty.Comma.forget_map, Comma.equivProd_inverse_obj_right, Comma.isFiltered_of_final, WithTerminal.commaFromOver_obj_hom_app, Comma.opFunctorCompFst_hom_app, Comma.toPUnitIdEquiv_unitIso_hom_app_left, Comma.mapRightIso_unitIso_hom_app_left, WithInitial.equivComma_unitIso_inv_app_app, Comma.fromProd_map_left, Comma.full_map, WithInitial.commaFromUnder_map_right, WithInitial.equivComma_functor_obj_left, StructuredArrow.ofCommaSndEquivalenceInverse_obj_hom, Comma.opFunctorCompFst_inv_app, Comma.preRight_obj_hom, Comma.unopFunctor_map, Comma.instFullCompPreRight, CostructuredArrow.mapNatIso_functor_obj_left, Comma.instFullCompPostOfFaithful, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_unitIso_inv_app_app, Comma.opEquiv_functor, MorphismProperty.Comma.id_hom, Comma.initial_snd, MorphismProperty.Comma.isoFromComma_inv, Comma.instFaithfulCompPreRight, Comma.mapLeftIso_unitIso_hom_app_right, CostructuredArrow.ofCommaFstEquivalence_counitIso, Comma.opEquiv_unitIso, StructuredArrow.mapNatIso_counitIso_hom_app_right, Comma.mapRightId_hom_app_right, CostructuredArrow.ofCommaFstEquivalenceFunctor_obj_left, Comma.mapLeftIso_counitIso_inv_app_left, Comma.toPUnitIdEquiv_inverse_obj_right_as, MorphismProperty.Comma.instIsIsoCommaHom, Comma.mapRightIso_counitIso_hom_app_left, WithInitial.equivComma_unitIso_hom_app_app, CostructuredArrow.mapNatIso_functor_obj_right, StructuredArrow.commaMapEquivalenceCounitIso_hom_app_right_right, Comma.mapRightId_hom_app_left, CostructuredArrow.ofCommaFstEquivalenceFunctor_map_left, Comma.final_fst, Comma.mapLeftEq_inv_app_left, WithTerminal.commaFromOver_map_right, Comma.mapLeftIso_counitIso_hom_app_right, WithInitial.equivComma_inverse_obj_obj, Comma.instEssSurjCompPreLeft, StructuredArrow.ofCommaSndEquivalenceInverse_map_right_right, CostructuredArrow.ofCommaFstEquivalenceFunctor_obj_right, Comma.mapFst_hom_app, Comma.mapLeft_map_right, Comma.mapLeft_obj_left, Comma.coneOfPreserves_pt_hom, Comma.unopFunctorCompFst_inv_app, Comma.leftIso_hom, Comma.equivProd_unitIso_inv_app_right, WithInitial.commaFromUnder_obj_left, CostructuredArrow.grothendieckPrecompFunctorEquivalence_counitIso, TwoSquare.EquivalenceJ.functor_obj, Comma.toPUnitIdEquiv_inverse_obj_left, StructuredArrow.mapIso_unitIso_hom_app_right, MorphismProperty.Comma.instFaithfulCommaForget, Comma.mapLeftIso_functor_obj_hom, Comma.isEquivalence_preRight, StructuredArrow.commaMapEquivalenceUnitIso_hom_app_right_right, CostructuredArrow.mapNatIso_counitIso_hom_app_left, Comma.final_snd, Comma.leftIso_inv, StructuredArrow.mapIso_functor_obj_hom, StructuredArrow.mapNatIso_unitIso_inv_app_right, WithInitial.equivComma_counitIso_inv_app_left, Comma.isConnected_comma_of_final, Comma.mapRight_map_left, Comma.mapRightId_inv_app_right, Comma.mapRightComp_hom_app_right, Comma.opFunctorCompSnd_inv_app, Comma.isoMk_hom_right, Comma.mapRightIso_inverse_obj_hom, CostructuredArrow.ofCommaFstEquivalenceInverse_obj_left_right, StructuredArrow.mapIso_inverse_map_right, Comma.id_left, TwoSquare.structuredArrowDownwards_map, CostructuredArrow.mapCompιCompGrothendieckProj_hom_app, WithTerminal.equivComma_functor_map_left_app, Comma.preLeft_map_left, StructuredArrow.ofCommaSndEquivalenceFunctor_obj_left, Comma.opEquiv_inverse, TwoSquare.structuredArrowDownwards_obj, CostructuredArrow.mapNatIso_inverse_obj_right, MorphismProperty.Comma.inv_hom, Comma.id_right, MorphismProperty.Comma.instReflectsIsomorphismsCommaForgetOfRespectsIso, CostructuredArrow.mapNatIso_functor_map_left, Comma.mapRightIso_unitIso_inv_app_left, WithInitial.liftFromUnder_map_app, CostructuredArrow.ιCompGrothendieckPrecompFunctorToCommaCompFst_hom_app, Comma.essSurj_map, Comma.equivProd_inverse_obj_left, Functor.leftExtensionEquivalenceOfIso₁_unitIso_hom_app_right_app, Comma.hasLimit, Comma.mapSnd_hom_app, StructuredArrow.mapNatIso_functor_obj_left, StructuredArrow.commaMapEquivalenceUnitIso_hom_app_right_left, Comma.toPUnitIdEquiv_counitIso_inv_app, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_counitIso_hom_app_right_app, CostructuredArrow.ofCommaFstEquivalence_unitIso, TwoSquare.EquivalenceJ.functor_map, StructuredArrow.mapIso_inverse_obj_left, Comma.instEssSurjCompPreRight, Comma.locallySmall, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_functor_obj_right_map, Comma.mapRightEq_hom_app_left, StructuredArrow.commaMapEquivalenceUnitIso_inv_app_right_left, Comma.mapRightEq_inv_app_right, StructuredArrow.mapIso_functor_map_right, Comma.coneOfPreserves_pt_left, StructuredArrow.ofCommaSndEquivalence_inverse, Comma.post_map_right, WithTerminal.equivComma_inverse_map_app, CostructuredArrow.mapIso_functor_obj_right, WithTerminal.equivComma_inverse_obj_map, Comma.toIdPUnitEquiv_counitIso_inv_app, Comma.coconeOfPreserves_pt_left, MorphismProperty.Comma.comp_hom, WithTerminal.liftFromOver_map_app, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_functor_map_right_app, CostructuredArrow.grothendieckPrecompFunctorToComma_map_right, MorphismProperty.instIsClosedUnderIsomorphismsCommaCommaObjOfRespectsIso, Comma.equivProd_functor_map, TwoSquare.EquivalenceJ.inverse_obj, Comma.mapLeftIso_inverse_map_left, Comma.preLeft_obj_left, Comma.mapRight_obj_right, Comma.mapLeftComp_hom_app_left, Comma.mapLeftIso_functor_obj_right, StructuredArrow.mapIso_inverse_map_left, Comma.mapLeft_obj_hom, CostructuredArrow.ιCompGrothendieckProj_hom_app, StructuredArrow.ofCommaSndEquivalenceInverse_obj_right_hom, CostructuredArrow.mapNatIso_functor_map_right, CostructuredArrow.mapIso_inverse_obj_hom, WithTerminal.commaFromOver_obj_left, Comma.equivProd_unitIso_inv_app_left, Comma.unopFunctorCompSnd_hom_app, Comma.preLeft_map_right, Comma.toIdPUnitEquiv_functor_iso, CostructuredArrow.mapIso_inverse_map_right, StructuredArrow.ofCommaSndEquivalenceInverse_obj_left_as, Comma.post_obj_hom, Functor.leftExtensionEquivalenceOfIso₁_counitIso_hom_app_right_app, WithTerminal.equivComma_counitIso_inv_app_right, Comma.unopFunctorCompFst_hom_app, CostructuredArrow.mapIso_inverse_map_left, Comma.isoMk_inv_right, StructuredArrow.mapNatIso_inverse_map_left, Comma.map_fst, CostructuredArrow.commaToGrothendieckPrecompFunctor_obj_base, WithTerminal.equivComma_unitIso_hom_app_app, TwoSquare.costructuredArrowRightwards_obj, Comma.toIdPUnitEquiv_inverse_obj_right, Comma.colimitAuxiliaryCocone_ι_app, Comma.mapRightIso_inverse_obj_left, CostructuredArrow.ofCommaFstEquivalenceInverse_obj_hom, Comma.fst_map, StructuredArrow.commaMapEquivalenceCounitIso_inv_app_left_right, Comma.mapRightIso_inverse_map_left, Comma.mapLeftId_inv_app_right, StructuredArrow.mapNatIso_functor_map_left, Comma.map_snd, StructuredArrow.mapNatIso_counitIso_inv_app_right, StructuredArrow.commaMapEquivalenceFunctor_obj_right, Functor.leftExtensionEquivalenceOfIso₁_functor_map_right, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_functor_obj_hom_app, Comma.rightIso_inv, WithTerminal.equivComma_unitIso_inv_app_app, CostructuredArrow.grothendieckPrecompFunctorToComma_obj_hom, Comma.mapLeftComp_hom_app_right, StructuredArrow.ofCommaSndEquivalenceFunctor_obj_hom, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_functor_obj_right_obj, Comma.mapRight_map_right, Comma.isoMk_hom_left, Functor.leftExtensionEquivalenceOfIso₁_unitIso_inv_app_right_app, Comma.mapFst_inv_app, CostructuredArrow.mapIso_counitIso_inv_app_left, Comma.mapLeftIso_functor_map_right, StructuredArrow.commaMapEquivalenceCounitIso_inv_app_right_right, StructuredArrow.mapIso_counitIso_hom_app_right, Comma.equivProd_functor_obj, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_counitIso_inv_app_right_app, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_counitIso_inv_app_left, Comma.map_obj_left, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_unitIso_hom_app_app, Comma.mapRightComp_inv_app_left, StructuredArrow.mapNatIso_inverse_obj_right, StructuredArrow.ofCommaSndEquivalenceInverse_obj_right_right, StructuredArrow.mapIso_counitIso_inv_app_right, Comma.mapRightIso_unitIso_hom_app_right, StructuredArrow.commaMapEquivalenceFunctor_obj_hom, Comma.preLeft_obj_hom, Functor.leftExtensionEquivalenceOfIso₁_functor_obj_right, CostructuredArrow.ofCommaFstEquivalenceInverse_map_left_right, CostructuredArrow.mapIso_inverse_obj_left, Comma.coneOfPreserves_π_app_left

CategoryTheory.CostructuredArrow

Definitions

NameCategoryTheorems
liftQuotient 📖CompOp
1 mathmath: lift_projectQuotient
projectQuotient 📖CompOp
2 mathmath: projectQuotient_factors, projectQuotient_mk
quotientEquiv 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
lift_projectQuotient 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite.unop
Opposite.op
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Subobject
Opposite
CategoryTheory.Category.opposite
Preorder.smallCategory
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
CategoryTheory.Subobject.underlying
projectQuotient
CategoryTheory.Comma.right
CategoryTheory.Functor.map
Quiver.Hom.unop
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Subobject.arrow
CategoryTheory.Comma.hom
liftQuotientCategoryTheory.Subobject.ind
CategoryTheory.Subobject.mk_eq_mk_of_comm
CategoryTheory.op_mono_of_epi
epi_left_of_epi
CategoryTheory.Limits.hasColimitsOfShape_widePushoutShape
Finite.of_fintype
CategoryTheory.Limits.hasFiniteWidePushouts_of_has_finite_limits
CategoryTheory.Limits.PreservesFiniteColimits.preservesFiniteColimits
CategoryTheory.unop_epi_of_mono
CategoryTheory.cancel_epi
CategoryTheory.Functor.map_epi
CategoryTheory.preservesEpimorphisms_of_preservesColimitsOfShape
CategoryTheory.Functor.map_comp
unop_left_comp_underlyingIso_hom_unop
CategoryTheory.CommaMorphism.w
CategoryTheory.Category.comp_id
projectQuotient_factors 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite.unop
Opposite.op
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Subobject
Opposite
CategoryTheory.Category.opposite
Preorder.smallCategory
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
CategoryTheory.Subobject.underlying
projectQuotient
CategoryTheory.Comma.right
CategoryTheory.Functor.map
Quiver.Hom.unop
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Subobject.arrow
CategoryTheory.Comma.hom
CategoryTheory.Subobject.ind
CategoryTheory.MonoOver.mono
CategoryTheory.op_mono_of_epi
epi_left_of_epi
CategoryTheory.Limits.hasColimitsOfShape_widePushoutShape
Finite.of_fintype
CategoryTheory.Limits.hasFiniteWidePushouts_of_has_finite_limits
CategoryTheory.Limits.PreservesFiniteColimits.preservesFiniteColimits
CategoryTheory.unop_epi_of_mono
CategoryTheory.Category.assoc
CategoryTheory.Functor.map_comp
CategoryTheory.unop_comp
CategoryTheory.Subobject.underlyingIso_arrow
CategoryTheory.CommaMorphism.w
CategoryTheory.Category.comp_id
projectQuotient_mk 📖mathematicalprojectQuotient
Opposite
CategoryTheory.CostructuredArrow
CategoryTheory.Category.opposite
CategoryTheory.instCategoryCostructuredArrow
Opposite.op
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
Opposite.unop
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.CommaMorphism.left
Quiver.Hom.unop
CategoryTheory.op_mono_of_epi
epi_left_of_epi
CategoryTheory.Limits.hasColimitsOfShape_widePushoutShape
CategoryTheory.Limits.WalkingPair
Finite.of_fintype
CategoryTheory.Limits.fintypeWalkingPair
CategoryTheory.Limits.hasFiniteWidePushouts_of_has_finite_limits
CategoryTheory.Limits.PreservesFiniteColimits.preservesFiniteColimits
CategoryTheory.Limits.WalkingSpan
CategoryTheory.Limits.WidePushoutShape.category
CategoryTheory.Limits.finCategoryWidePushout
CategoryTheory.unop_epi_of_mono
unop_left_comp_ofMkLEMk_unop 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
Opposite.unop
CategoryTheory.CostructuredArrow
Opposite.op
CategoryTheory.CommaMorphism.left
Quiver.Hom.unop
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.Subobject.ofMkLEMk
Opposite
CategoryTheory.Category.opposite
Quiver.Hom.op
Quiver.Hom.unop_op
CategoryTheory.unop_comp
CategoryTheory.Subobject.ofMkLEMk_comp
unop_left_comp_underlyingIso_hom_unop 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
Opposite.unop
CategoryTheory.CostructuredArrow
Opposite.op
CategoryTheory.Functor.obj
CategoryTheory.Subobject
Opposite
CategoryTheory.Category.opposite
Preorder.smallCategory
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
CategoryTheory.Subobject.underlying
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.CommaMorphism.left
Quiver.Hom.unop
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.Iso.hom
CategoryTheory.Subobject.underlyingIso
CategoryTheory.Subobject.arrow
Quiver.Hom.unop_op
CategoryTheory.unop_comp
well_copowered_costructuredArrow 📖mathematicalCategoryTheory.WellPowered
Opposite
CategoryTheory.CostructuredArrow
CategoryTheory.Category.opposite
CategoryTheory.instCategoryCostructuredArrow
CategoryTheory.instLocallySmallOpposite
locallySmall
CategoryTheory.instLocallySmallOpposite
locallySmall
small_map
small_subtype
CategoryTheory.small_subobject

CategoryTheory.StructuredArrow

Definitions

NameCategoryTheorems
liftSubobject 📖CompOp
1 mathmath: lift_projectSubobject
projectSubobject 📖CompOp
2 mathmath: projectSubobject_mk, projectSubobject_factors
subobjectEquiv 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
lift_projectSubobject 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Comma.left
CategoryTheory.Subobject
CategoryTheory.Comma.right
Preorder.smallCategory
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
CategoryTheory.Subobject.underlying
projectSubobject
CategoryTheory.Functor.map
CategoryTheory.Subobject.arrow
CategoryTheory.Comma.hom
liftSubobjectCategoryTheory.Subobject.ind
CategoryTheory.Subobject.mk_eq_mk_of_comm
CategoryTheory.MonoOver.mono
CategoryTheory.cancel_mono
CategoryTheory.Functor.map_mono
CategoryTheory.preservesMonomorphisms_of_preservesLimitsOfShape
CategoryTheory.Limits.PreservesFiniteLimits.preservesFiniteLimits
mono_right_of_mono
CategoryTheory.Limits.hasLimitsOfShape_widePullbackShape
Finite.of_fintype
CategoryTheory.Limits.hasFiniteWidePullbacks_of_hasFiniteLimits
CategoryTheory.Category.assoc
CategoryTheory.Functor.map_comp
w
ext
projectSubobject_factors 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Comma.left
CategoryTheory.Subobject
CategoryTheory.Comma.right
Preorder.smallCategory
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
CategoryTheory.Subobject.underlying
projectSubobject
CategoryTheory.Functor.map
CategoryTheory.Subobject.arrow
CategoryTheory.Comma.hom
CategoryTheory.Subobject.ind
CategoryTheory.MonoOver.mono
mono_right_of_mono
CategoryTheory.Limits.hasLimitsOfShape_widePullbackShape
Finite.of_fintype
CategoryTheory.Limits.hasFiniteWidePullbacks_of_hasFiniteLimits
CategoryTheory.Limits.PreservesFiniteLimits.preservesFiniteLimits
CategoryTheory.Category.assoc
CategoryTheory.Functor.map_comp
CategoryTheory.Subobject.underlyingIso_arrow
w
projectSubobject_mk 📖mathematicalprojectSubobject
CategoryTheory.StructuredArrow
CategoryTheory.instCategoryStructuredArrow
CategoryTheory.Comma.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.CommaMorphism.right
mono_right_of_mono
CategoryTheory.Limits.hasLimitsOfShape_widePullbackShape
CategoryTheory.Limits.WalkingPair
Finite.of_fintype
CategoryTheory.Limits.fintypeWalkingPair
CategoryTheory.Limits.hasFiniteWidePullbacks_of_hasFiniteLimits
CategoryTheory.Limits.PreservesFiniteLimits.preservesFiniteLimits
CategoryTheory.Limits.WalkingCospan
CategoryTheory.Limits.WidePullbackShape.category
CategoryTheory.Limits.finCategoryWidePullback
wellPowered_structuredArrow 📖mathematicalCategoryTheory.WellPowered
CategoryTheory.StructuredArrow
CategoryTheory.instCategoryStructuredArrow
locallySmall
locallySmall
small_map
small_subtype
CategoryTheory.small_subobject

---

← Back to Index