Documentation Verification Report

FactorThru

📁 Source: Mathlib/CategoryTheory/Subobject/FactorThru.lean

Statistics

MetricCount
DefinitionsfactorThru, factorThru, homOfFactors
3
Theoremsfactors_congr, factorThru_add, factorThru_add_sub_factorThru_left, factorThru_add_sub_factorThru_right, factorThru_arrow, factorThru_arrow_assoc, factorThru_comp_arrow, factorThru_eq_zero, factorThru_mk_self, factorThru_ofLE, factorThru_right, factorThru_self, factorThru_zero, factors_add, factors_comp_arrow, factors_iff, factors_left_of_factors_add, factors_of_factors_right, factors_of_le, factors_right_of_factors_add, factors_self, factors_zero, le_of_factors, mk_factors_iff, mk_factors_self
25
Total28

CategoryTheory.MonoOver

Definitions

NameCategoryTheorems
factorThru 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
factors_congr 📖mathematicalFactorsCategoryTheory.Category.assoc
CategoryTheory.Over.w

CategoryTheory.Subobject

Definitions

NameCategoryTheorems
factorThru 📖CompOp
17 mathmath: factorThru_right, AlgebraicTopology.NormalizedMooreComplex.obj_d, factorThru_eq_zero, AlgebraicTopology.DoldKan.PInftyToNormalizedMooreComplex_f, factorThru_comp_arrow, factorThru_mk_self, CategoryTheory.Limits.factorThruImageSubobject_comp_self_assoc, factorThru_arrow_assoc, factorThru_add_sub_factorThru_right, factorThru_self, factorThru_ofLE, AlgebraicTopology.NormalizedMooreComplex.map_f, factorThru_add_sub_factorThru_left, factorThru_arrow, factorThru_add, factorThru_zero, CategoryTheory.Limits.factorThruImageSubobject_comp_self
homOfFactors 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
factorThru_add 📖mathematicalFactors
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
CategoryTheory.Preadditive.homGroup
factorThru
CategoryTheory.Functor.obj
CategoryTheory.Subobject
Preorder.smallCategory
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
underlying
eq_of_comp_arrow_eq
factorThru_arrow
CategoryTheory.Preadditive.add_comp
factorThru_add_sub_factorThru_left 📖mathematicalFactors
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
CategoryTheory.Preadditive.homGroup
CategoryTheory.Functor.obj
CategoryTheory.Subobject
Preorder.smallCategory
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
underlying
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
factorThru
factors_right_of_factors_add
eq_of_comp_arrow_eq
factors_right_of_factors_add
CategoryTheory.Preadditive.sub_comp
factorThru_arrow
add_sub_cancel_left
factorThru_add_sub_factorThru_right 📖mathematicalFactors
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
CategoryTheory.Preadditive.homGroup
CategoryTheory.Functor.obj
CategoryTheory.Subobject
Preorder.smallCategory
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
underlying
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
factorThru
factors_left_of_factors_add
eq_of_comp_arrow_eq
factors_left_of_factors_add
CategoryTheory.Preadditive.sub_comp
factorThru_arrow
add_sub_cancel_right
factorThru_arrow 📖mathematicalFactorsCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Subobject
Preorder.smallCategory
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
underlying
factorThru
arrow
factors_iff
factorThru_arrow_assoc 📖mathematicalFactorsCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Subobject
Preorder.smallCategory
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
underlying
factorThru
arrow
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
factorThru_arrow
factorThru_comp_arrow 📖mathematicalFactors
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Subobject
Preorder.smallCategory
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
underlying
arrow
factorThrueq_of_comp_arrow_eq
factorThru_arrow
factorThru_eq_zero 📖mathematicalFactorsfactorThru
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Subobject
Preorder.smallCategory
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
underlying
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.eq_whisker
factorThru_arrow
CategoryTheory.Limits.zero_comp
eq_of_comp_arrow_eq
factorThru_mk_self 📖mathematicalfactorThru
mk_factors_self
CategoryTheory.Iso.inv
CategoryTheory.Functor.obj
CategoryTheory.Subobject
Preorder.smallCategory
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
underlying
underlyingIso
eq_of_comp_arrow_eq
mk_factors_self
factorThru_arrow
underlyingIso_arrow
factorThru_ofLE 📖mathematicalCategoryTheory.Subobject
Preorder.toLE
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
Factors
factorThru
factors_of_le
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Preorder.smallCategory
underlying
ofLE
eq_of_comp_arrow_eq
factors_of_le
factorThru_arrow
CategoryTheory.Category.assoc
ofLE_arrow
factorThru_right 📖mathematicalFactorsCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Subobject
Preorder.smallCategory
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
underlying
factorThru
factors_of_factors_right
factors_of_factors_right
CategoryTheory.cancel_mono
arrow_mono
CategoryTheory.Category.assoc
factorThru_arrow
factorThru_self 📖mathematicalFactors
CategoryTheory.Functor.obj
CategoryTheory.Subobject
Preorder.smallCategory
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
underlying
arrow
factorThru
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
eq_of_comp_arrow_eq
factorThru_arrow
CategoryTheory.Category.id_comp
factorThru_zero 📖mathematicalFactors
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.HasZeroMorphisms.zero
factorThru
CategoryTheory.Functor.obj
CategoryTheory.Subobject
Preorder.smallCategory
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
underlying
factors_add 📖mathematicalFactorsQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
CategoryTheory.Preadditive.homGroup
factors_iff
CategoryTheory.Preadditive.add_comp
factorThru_arrow
factors_comp_arrow 📖mathematicalFactors
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Subobject
Preorder.smallCategory
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
underlying
arrow
factors_iff
factors_iff 📖mathematicalFactors
CategoryTheory.MonoOver.Factors
CategoryTheory.Functor.obj
CategoryTheory.Subobject
Preorder.smallCategory
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
CategoryTheory.MonoOver
CategoryTheory.ObjectProperty.FullSubcategory.category
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Over.isMono
representative
CategoryTheory.MonoOver.factors_congr
factors_left_of_factors_add 📖Factors
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
CategoryTheory.Preadditive.homGroup
factors_iff
CategoryTheory.Preadditive.sub_comp
factorThru_arrow
add_sub_cancel_right
factors_of_factors_right 📖mathematicalFactorsCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Quotient.ind'
CategoryTheory.Category.assoc
factors_of_le 📖CategoryTheory.Subobject
Preorder.toLE
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
Factors
CategoryTheory.Category.assoc
ofLE_arrow
factors_right_of_factors_add 📖Factors
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
CategoryTheory.Preadditive.homGroup
factors_iff
CategoryTheory.Preadditive.sub_comp
factorThru_arrow
add_sub_cancel_left
factors_self 📖mathematicalFactors
CategoryTheory.Functor.obj
CategoryTheory.Subobject
Preorder.smallCategory
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
underlying
arrow
factors_iff
CategoryTheory.Category.id_comp
factors_zero 📖mathematicalFactors
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.HasZeroMorphisms.zero
factors_iff
CategoryTheory.Limits.zero_comp
le_of_factors 📖mathematicalFactors
CategoryTheory.Functor.obj
CategoryTheory.Subobject
Preorder.smallCategory
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
underlying
arrow
Preorder.toLEle_of_comm
factorThru_arrow
mk_factors_iff 📖mathematicalFactors
CategoryTheory.MonoOver.Factors
mk_factors_self 📖mathematicalFactorsCategoryTheory.Category.id_comp

---

← Back to Index