Documentation Verification Report

Lattice

๐Ÿ“ Source: Mathlib/CategoryTheory/Subobject/Lattice.lean

Statistics

MetricCount
DefinitionsbotCoeIsoZero, botLE, inf, infLELeft, infLERight, instBot, instInhabited, instTop, leInf, leSupLeft, leSupRight, leTop, mapBot, mapTop, pullbackSelf, pullbackTop, sup, supLe, topLEPullbackSelf, botCoeIsoInitial, botCoeIsoZero, boundedOrder, completeSemilatticeInf, completeSemilatticeSup, functor, inf, instCompleteLattice, instInhabited, instLattice, leInfCone, orderBot, orderTop, sInf, sSup, semilatticeInf, semilatticeSup, smallCoproductDesc, subobjectOrderIso, sup, wideCospan, widePullback, widePullbackฮน
42
Theoremsbot_arrow, bot_arrow_eq_zero, bot_left, inf_map_app, inf_obj, initialTo_b_eq_zero, top_arrow, top_left, bot_arrow, bot_eq_initial_to, bot_eq_zero, bot_factors_iff_zero, epi_iff_mk_eq_top, eq_top_of_isIso_arrow, factors_left_of_inf_factors, factors_right_of_inf_factors, finset_inf_arrow_factors, finset_inf_factors, finset_sup_factors, functor_map, functor_obj, inf_arrow_factors_left, inf_arrow_factors_right, inf_comp_left, inf_comp_left_assoc, inf_comp_right, inf_comp_right_assoc, inf_def, inf_eq_map_pullback, inf_eq_map_pullback', inf_factors, inf_isPullback, inf_le_left, inf_le_right, inf_map, inf_pullback, isIso_arrow_iff_eq_top, isIso_iff_mk_eq_top, isIso_top_arrow, leInfCone_ฯ€_app_none, le_inf, le_sInf, le_sSup, map_bot, map_top, mk_eq_bot_iff_zero, mk_eq_top_of_isIso, nontrivial_of_not_isZero, prod_eq_inf, pullback_self, pullback_top, sInf_le, sSup_le, subsingleton_of_isInitial, subsingleton_of_isZero, sup_factors_of_factors_left, sup_factors_of_factors_right, symm_apply_mem_iff_mem_image, top_arrow_isIso, top_eq_id, top_factors, underlyingIso_inv_top_arrow, underlyingIso_inv_top_arrow_assoc, underlyingIso_top_hom, wideCospan_map_term, widePullbackฮน_mono
66
Total108

CategoryTheory.MonoOver

Definitions

NameCategoryTheorems
botCoeIsoZero ๐Ÿ“–CompOpโ€”
botLE ๐Ÿ“–CompOpโ€”
inf ๐Ÿ“–CompOp
2 mathmath: inf_map_app, inf_obj
infLELeft ๐Ÿ“–CompOpโ€”
infLERight ๐Ÿ“–CompOpโ€”
instBot ๐Ÿ“–CompOp
3 mathmath: bot_left, bot_arrow, bot_arrow_eq_zero
instInhabited ๐Ÿ“–CompOpโ€”
instTop ๐Ÿ“–CompOp
2 mathmath: top_arrow, top_left
leInf ๐Ÿ“–CompOpโ€”
leSupLeft ๐Ÿ“–CompOpโ€”
leSupRight ๐Ÿ“–CompOpโ€”
leTop ๐Ÿ“–CompOpโ€”
mapBot ๐Ÿ“–CompOpโ€”
mapTop ๐Ÿ“–CompOpโ€”
pullbackSelf ๐Ÿ“–CompOpโ€”
pullbackTop ๐Ÿ“–CompOpโ€”
sup ๐Ÿ“–CompOpโ€”
supLe ๐Ÿ“–CompOpโ€”
topLEPullbackSelf ๐Ÿ“–CompOpโ€”

Theorems

NameKindAssumesProvesValidatesDepends On
bot_arrow ๐Ÿ“–mathematicalโ€”arrow
Bot.bot
CategoryTheory.MonoOver
instBot
CategoryTheory.Limits.initial.to
โ€”โ€”
bot_arrow_eq_zero ๐Ÿ“–mathematicalโ€”arrow
Bot.bot
CategoryTheory.MonoOver
instBot
CategoryTheory.Limits.HasZeroObject.hasInitial
CategoryTheory.Limits.HasZeroObject.initialMonoClass
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
CategoryTheory.ObjectProperty.FullSubcategory.obj
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Over.isMono
CategoryTheory.Limits.HasZeroMorphisms.zero
โ€”CategoryTheory.Limits.zero_of_source_iso_zero
CategoryTheory.Limits.HasZeroObject.hasInitial
CategoryTheory.Limits.HasZeroObject.initialMonoClass
bot_left ๐Ÿ“–mathematicalโ€”CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
CategoryTheory.ObjectProperty.FullSubcategory.obj
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Over.isMono
Bot.bot
CategoryTheory.MonoOver
instBot
CategoryTheory.Limits.initial
โ€”โ€”
inf_map_app ๐Ÿ“–mathematicalโ€”CategoryTheory.NatTrans.app
CategoryTheory.MonoOver
CategoryTheory.ObjectProperty.FullSubcategory.category
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Over.isMono
CategoryTheory.Functor.comp
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
CategoryTheory.ObjectProperty.FullSubcategory.obj
pullback
arrow
map
mono
CategoryTheory.Functor.map
CategoryTheory.Functor
CategoryTheory.Functor.category
inf
homMk
CategoryTheory.Functor.obj
CategoryTheory.Limits.pullback.lift
CategoryTheory.Limits.pullback
forget
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
CategoryTheory.Limits.pullback.fst
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.pullback.snd
CategoryTheory.CommaMorphism.left
CategoryTheory.InducedCategory.Hom.hom
CategoryTheory.ObjectProperty.FullSubcategory
โ€”mono
inf_obj ๐Ÿ“–mathematicalโ€”CategoryTheory.Functor.obj
CategoryTheory.MonoOver
CategoryTheory.ObjectProperty.FullSubcategory.category
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Over.isMono
CategoryTheory.Functor
CategoryTheory.Functor.category
inf
CategoryTheory.Functor.comp
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
CategoryTheory.ObjectProperty.FullSubcategory.obj
pullback
arrow
map
mono
โ€”โ€”
initialTo_b_eq_zero ๐Ÿ“–mathematicalโ€”CategoryTheory.Limits.initial.to
CategoryTheory.Limits.HasZeroObject.hasInitial
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.initial
CategoryTheory.Limits.HasZeroMorphisms.zero
โ€”CategoryTheory.Limits.HasZeroObject.hasInitial
CategoryTheory.Limits.HasZeroObject.initialMonoClass
bot_arrow
bot_arrow_eq_zero
top_arrow ๐Ÿ“–mathematicalโ€”arrow
Top.top
CategoryTheory.MonoOver
instTop
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
โ€”โ€”
top_left ๐Ÿ“–mathematicalโ€”CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
CategoryTheory.ObjectProperty.FullSubcategory.obj
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Over.isMono
Top.top
CategoryTheory.MonoOver
instTop
โ€”โ€”

CategoryTheory.Subobject

Definitions

NameCategoryTheorems
botCoeIsoInitial ๐Ÿ“–CompOpโ€”
botCoeIsoZero ๐Ÿ“–CompOpโ€”
boundedOrder ๐Ÿ“–CompOp
2 mathmath: CategoryTheory.instIsSimpleOrderSubobjectOfSimple, CategoryTheory.simple_iff_subobject_isSimpleOrder
completeSemilatticeInf ๐Ÿ“–CompOpโ€”
completeSemilatticeSup ๐Ÿ“–CompOpโ€”
functor ๐Ÿ“–CompOp
2 mathmath: functor_obj, functor_map
inf ๐Ÿ“–CompOp
5 mathmath: inf_le_left, inf_eq_map_pullback', le_inf, inf_def, inf_le_right
instCompleteLattice ๐Ÿ“–CompOp
5 mathmath: CategoryTheory.IsGrothendieckAbelian.subobjectMk_of_isColimit_eq_iSup, CategoryTheory.IsGrothendieckAbelian.generatingMonomorphisms.exists_ordinal, CategoryTheory.IsGrothendieckAbelian.generatingMonomorphisms.functorToMonoOver_map, CategoryTheory.IsGrothendieckAbelian.generatingMonomorphisms.top_mem_range, CategoryTheory.IsGrothendieckAbelian.generatingMonomorphisms.functorToMonoOver_obj
instInhabited ๐Ÿ“–CompOpโ€”
instLattice ๐Ÿ“–CompOpโ€”
leInfCone ๐Ÿ“–CompOp
1 mathmath: leInfCone_ฯ€_app_none
orderBot ๐Ÿ“–CompOp
9 mathmath: bot_eq_initial_to, finset_sup_factors, bot_factors_iff_zero, CategoryTheory.Limits.imageSubobject_zero, CategoryTheory.subobject_simple_iff_isAtom, map_bot, mk_eq_bot_iff_zero, bot_arrow, bot_eq_zero
orderTop ๐Ÿ“–CompOp
29 mathmath: AlgebraicTopology.NormalizedMooreComplex.obj_d, top_arrow_isIso, CategoryTheory.IsGrothendieckAbelian.generatingMonomorphisms.exists_ordinal, map_top, isIso_top_arrow, CategoryTheory.ObjectProperty.IsStrongGenerator.subobject_eq_top, CategoryTheory.ExtremalEpi.subobject_eq_top, CategoryTheory.Dial.tensorUnit_rel, finset_inf_factors, mk_eq_top_of_isIso, top_eq_id, CategoryTheory.Limits.equalizerSubobject_of_self, top_factors, eq_top_of_isIso_arrow, CategoryTheory.IsGrothendieckAbelian.generatingMonomorphisms.top_mem_range, underlyingIso_inv_top_arrow_assoc, isIso_arrow_iff_eq_top, AlgebraicTopology.NormalizedMooreComplex.objX_add_one, underlyingIso_inv_top_arrow, underlyingIso_top_hom, AlgebraicTopology.NormalizedMooreComplex.objX_zero, pullback_top, epi_iff_mk_eq_top, isIso_iff_mk_eq_top, pullback_self, CategoryTheory.IsGrothendieckAbelian.generatingMonomorphisms.largerSubobject_top, finset_inf_arrow_factors, CategoryTheory.Dial.tensorUnitImpl_rel, CategoryTheory.Limits.kernelSubobject_zero
sInf ๐Ÿ“–CompOp
2 mathmath: le_sInf, sInf_le
sSup ๐Ÿ“–CompOp
2 mathmath: le_sSup, sSup_le
semilatticeInf ๐Ÿ“–CompOp
26 mathmath: AlgebraicTopology.NormalizedMooreComplex.obj_d, CategoryTheory.Dial.tensorObjImpl_rel, inf_eq_of_isDetecting, CategoryTheory.Regular.frobeniusStrongEpiMonoFactorisation_I, inf_comp_left, inf_arrow_factors_right, prod_eq_inf, inf_isPullback, CategoryTheory.Regular.instIsRegularEpiFrobeniusMorphism, CategoryTheory.Regular.frobeniusStrongEpiMonoFactorisation_e, inf_factors, finset_inf_factors, inf_map, CategoryTheory.Regular.exists_inf_pullback_eq_exists_inf, inf_def, inf_arrow_factors_left, CategoryTheory.Regular.frobeniusMorphism_isPullback, AlgebraicTopology.NormalizedMooreComplex.objX_add_one, CategoryTheory.Regular.frobeniusStrongEpiMonoFactorisation_m, inf_comp_left_assoc, inf_comp_right, inf_eq_map_pullback, inf_pullback, inf_comp_right_assoc, finset_inf_arrow_factors, CategoryTheory.Dial.tensorObj_rel
semilatticeSup ๐Ÿ“–CompOp
3 mathmath: finset_sup_factors, sup_factors_of_factors_left, sup_factors_of_factors_right
smallCoproductDesc ๐Ÿ“–CompOpโ€”
subobjectOrderIso ๐Ÿ“–CompOpโ€”
sup ๐Ÿ“–CompOpโ€”
wideCospan ๐Ÿ“–CompOp
2 mathmath: wideCospan_map_term, leInfCone_ฯ€_app_none
widePullback ๐Ÿ“–CompOp
1 mathmath: widePullbackฮน_mono
widePullbackฮน ๐Ÿ“–CompOp
1 mathmath: widePullbackฮน_mono

Theorems

NameKindAssumesProvesValidatesDepends On
bot_arrow ๐Ÿ“–mathematicalโ€”arrow
Bot.bot
CategoryTheory.Subobject
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
orderBot
CategoryTheory.Limits.HasZeroObject.hasInitial
CategoryTheory.Limits.HasZeroObject.initialMonoClass
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Preorder.smallCategory
underlying
CategoryTheory.Limits.HasZeroMorphisms.zero
โ€”CategoryTheory.Limits.zero_of_source_iso_zero
CategoryTheory.Limits.HasZeroObject.hasInitial
CategoryTheory.Limits.HasZeroObject.initialMonoClass
bot_eq_initial_to ๐Ÿ“–mathematicalโ€”Bot.bot
CategoryTheory.Subobject
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
orderBot
CategoryTheory.Limits.initial
CategoryTheory.Limits.initial.to
CategoryTheory.Limits.initial.mono_from
โ€”โ€”
bot_eq_zero ๐Ÿ“–mathematicalโ€”Bot.bot
CategoryTheory.Subobject
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
orderBot
CategoryTheory.Limits.HasZeroObject.hasInitial
CategoryTheory.Limits.HasZeroObject.initialMonoClass
CategoryTheory.Limits.HasZeroObject.zero'
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Limits.HasZeroObject.instMono
โ€”mk_eq_mk_of_comm
CategoryTheory.Limits.HasZeroObject.hasInitial
CategoryTheory.Limits.HasZeroObject.initialMonoClass
CategoryTheory.Limits.HasZeroObject.instMono
CategoryTheory.Limits.comp_zero
CategoryTheory.MonoOver.initialTo_b_eq_zero
bot_factors_iff_zero ๐Ÿ“–mathematicalโ€”Factors
Bot.bot
CategoryTheory.Subobject
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
orderBot
CategoryTheory.Limits.HasZeroObject.hasInitial
CategoryTheory.Limits.HasZeroObject.initialMonoClass
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.HasZeroMorphisms.zero
โ€”CategoryTheory.Limits.HasZeroObject.hasInitial
CategoryTheory.Limits.HasZeroObject.initialMonoClass
CategoryTheory.MonoOver.bot_arrow_eq_zero
CategoryTheory.Limits.comp_zero
CategoryTheory.MonoOver.initialTo_b_eq_zero
epi_iff_mk_eq_top ๐Ÿ“–mathematicalโ€”CategoryTheory.Epi
Top.top
CategoryTheory.Subobject
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
orderTop
โ€”isIso_iff_mk_eq_top
CategoryTheory.isIso_of_mono_of_epi
CategoryTheory.epi_of_strongEpi
CategoryTheory.strongEpi_of_isIso
eq_top_of_isIso_arrow ๐Ÿ“–mathematicalโ€”Top.top
CategoryTheory.Subobject
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
orderTop
โ€”isIso_arrow_iff_eq_top
factors_left_of_inf_factors ๐Ÿ“–โ€”Factors
CategoryTheory.Subobject
SemilatticeInf.toMin
semilatticeInf
โ€”โ€”factors_of_le
inf_le_left
factors_right_of_inf_factors ๐Ÿ“–โ€”Factors
CategoryTheory.Subobject
SemilatticeInf.toMin
semilatticeInf
โ€”โ€”factors_of_le
inf_le_right
finset_inf_arrow_factors ๐Ÿ“–mathematicalFinset
Finset.instMembership
Factors
CategoryTheory.Functor.obj
CategoryTheory.Subobject
Preorder.smallCategory
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
underlying
Finset.inf
semilatticeInf
orderTop
arrow
โ€”Finset.induction_on
Finset.inf_insert
inf_arrow_factors_left
factorThru_arrow
factors_comp_arrow
inf_arrow_factors_right
factors_of_factors_right
finset_inf_factors ๐Ÿ“–mathematicalโ€”Factors
Finset.inf
CategoryTheory.Subobject
semilatticeInf
orderTop
โ€”Finset.induction_on
instIsEmptyFalse
Finset.inf_insert
finset_sup_factors ๐Ÿ“–mathematicalFinset
Finset.instMembership
Factors
Finset.sup
CategoryTheory.Subobject
semilatticeSup
orderBot
โ€”Finset.induction_on
Finset.sup_insert
sup_factors_of_factors_left
sup_factors_of_factors_right
functor_map ๐Ÿ“–mathematicalโ€”CategoryTheory.Functor.map
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
functor
CategoryTheory.Functor.obj
CategoryTheory.Subobject
Opposite.unop
Preorder.smallCategory
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
pullback
Quiver.Hom.unop
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
โ€”โ€”
functor_obj ๐Ÿ“–mathematicalโ€”CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
functor
CategoryTheory.Subobject
Opposite.unop
โ€”โ€”
inf_arrow_factors_left ๐Ÿ“–mathematicalโ€”Factors
CategoryTheory.Functor.obj
CategoryTheory.Subobject
Preorder.smallCategory
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
underlying
SemilatticeInf.toMin
semilatticeInf
arrow
โ€”factors_iff
inf_le_left
ofLE_arrow
inf_arrow_factors_right ๐Ÿ“–mathematicalโ€”Factors
CategoryTheory.Functor.obj
CategoryTheory.Subobject
Preorder.smallCategory
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
underlying
SemilatticeInf.toMin
semilatticeInf
arrow
โ€”factors_iff
inf_le_right
ofLE_arrow
inf_comp_left ๐Ÿ“–mathematicalโ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Subobject
Preorder.smallCategory
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
underlying
SemilatticeInf.toMin
semilatticeInf
ofLE
arrow
โ€”ofLE_arrow
inf_le_left
inf_comp_left_assoc ๐Ÿ“–mathematicalโ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Subobject
Preorder.smallCategory
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
underlying
SemilatticeInf.toMin
semilatticeInf
ofLE
arrow
โ€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
inf_comp_left
inf_comp_right ๐Ÿ“–mathematicalโ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Subobject
Preorder.smallCategory
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
underlying
SemilatticeInf.toMin
semilatticeInf
ofLE
arrow
โ€”ofLE_arrow
inf_le_right
inf_comp_right_assoc ๐Ÿ“–mathematicalโ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Subobject
Preorder.smallCategory
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
underlying
SemilatticeInf.toMin
semilatticeInf
ofLE
arrow
โ€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
inf_comp_right
inf_def ๐Ÿ“–mathematicalโ€”CategoryTheory.Subobject
SemilatticeInf.toMin
semilatticeInf
CategoryTheory.Functor.obj
Preorder.smallCategory
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
CategoryTheory.Functor
CategoryTheory.Functor.category
inf
โ€”โ€”
inf_eq_map_pullback ๐Ÿ“–mathematicalโ€”CategoryTheory.Subobject
SemilatticeInf.toMin
semilatticeInf
Quotient.mk''
CategoryTheory.MonoOver
CategoryTheory.isIsomorphicSetoid
CategoryTheory.ObjectProperty.FullSubcategory.category
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Over.isMono
CategoryTheory.Functor.obj
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
CategoryTheory.ObjectProperty.FullSubcategory.obj
Preorder.smallCategory
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
map
CategoryTheory.MonoOver.arrow
CategoryTheory.MonoOver.mono
pullback
โ€”inf_eq_map_pullback'
inf_eq_map_pullback' ๐Ÿ“–mathematicalโ€”CategoryTheory.Functor.obj
CategoryTheory.Subobject
Preorder.smallCategory
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
CategoryTheory.Functor
CategoryTheory.Functor.category
inf
Quotient.mk''
CategoryTheory.MonoOver
CategoryTheory.isIsomorphicSetoid
CategoryTheory.ObjectProperty.FullSubcategory.category
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Over.isMono
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
CategoryTheory.ObjectProperty.FullSubcategory.obj
map
CategoryTheory.MonoOver.arrow
CategoryTheory.MonoOver.mono
pullback
โ€”Quotient.inductionOn'
CategoryTheory.MonoOver.mono
inf_factors ๐Ÿ“–mathematicalโ€”Factors
CategoryTheory.Subobject
SemilatticeInf.toMin
semilatticeInf
โ€”factors_left_of_inf_factors
factors_right_of_inf_factors
Quotient.indโ‚‚'
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Limits.pullback.lift_snd_assoc
inf_isPullback ๐Ÿ“–mathematicalโ€”CategoryTheory.IsPullback
CategoryTheory.Functor.obj
CategoryTheory.Subobject
Preorder.smallCategory
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
underlying
SemilatticeInf.toMin
semilatticeInf
ofLE
arrow
โ€”ofLE_arrow
CategoryTheory.CommSq.w
factors_comp_arrow
CategoryTheory.Limits.PullbackCone.condition
eq_of_comp_arrow_eq
CategoryTheory.Category.assoc
factorThru_arrow
factorThru.congr_simp
factorThru_comp_arrow
inf_le_left ๐Ÿ“–mathematicalโ€”CategoryTheory.Subobject
Preorder.toLE
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
CategoryTheory.Functor.obj
Preorder.smallCategory
CategoryTheory.Functor
CategoryTheory.Functor.category
inf
โ€”Quotient.inductionOnโ‚‚'
inf_le_right ๐Ÿ“–mathematicalโ€”CategoryTheory.Subobject
Preorder.toLE
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
CategoryTheory.Functor.obj
Preorder.smallCategory
CategoryTheory.Functor
CategoryTheory.Functor.category
inf
โ€”Quotient.inductionOnโ‚‚'
inf_map ๐Ÿ“–mathematicalโ€”CategoryTheory.Functor.obj
CategoryTheory.Subobject
Preorder.smallCategory
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
map
SemilatticeInf.toMin
semilatticeInf
โ€”Quotient.ind'
inf_def
CategoryTheory.MonoOver.mono
inf_eq_map_pullback'
CategoryTheory.mono_comp
map_comp
pullback_comp
pullback_map_self
inf_pullback ๐Ÿ“–mathematicalโ€”CategoryTheory.Functor.obj
CategoryTheory.Subobject
Preorder.smallCategory
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
pullback
SemilatticeInf.toMin
semilatticeInf
โ€”Quotient.ind'
inf_def
CategoryTheory.MonoOver.mono
inf_eq_map_pullback'
pullback_comp
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Limits.pullback.snd_of_mono
map_pullback
CategoryTheory.Limits.pullback.condition
isIso_arrow_iff_eq_top ๐Ÿ“–mathematicalโ€”CategoryTheory.IsIso
CategoryTheory.Functor.obj
CategoryTheory.Subobject
Preorder.smallCategory
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
underlying
arrow
Top.top
OrderTop.toTop
Preorder.toLE
orderTop
โ€”arrow_mono
isIso_iff_mk_eq_top
mk_arrow
isIso_iff_mk_eq_top ๐Ÿ“–mathematicalโ€”CategoryTheory.IsIso
Top.top
CategoryTheory.Subobject
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
orderTop
โ€”mk_eq_mk_of_comm
CategoryTheory.instMonoId
CategoryTheory.Category.comp_id
Eq.le
ofMkLEMk_comp
CategoryTheory.Iso.isIso_hom
isIso_top_arrow ๐Ÿ“–mathematicalโ€”CategoryTheory.IsIso
CategoryTheory.Functor.obj
CategoryTheory.Subobject
Preorder.smallCategory
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
underlying
Top.top
OrderTop.toTop
Preorder.toLE
orderTop
arrow
โ€”isIso_arrow_iff_eq_top
leInfCone_ฯ€_app_none ๐Ÿ“–mathematicalCategoryTheory.Subobject
Preorder.toLE
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
CategoryTheory.NatTrans.app
CategoryTheory.Limits.WidePullbackShape
Set.Elem
Shrink
CategoryTheory.small_subobject
Set.image
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
equivShrink
CategoryTheory.Limits.WidePullbackShape.category
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cone.pt
wideCospan
leInfCone
CategoryTheory.Limits.Cone.ฯ€
arrow
โ€”CategoryTheory.small_subobject
le_inf ๐Ÿ“–mathematicalCategoryTheory.Subobject
Preorder.toLE
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
CategoryTheory.Functor.obj
Preorder.smallCategory
CategoryTheory.Functor
CategoryTheory.Functor.category
inf
โ€”Quotient.inductionOnโ‚ƒ'
le_sInf ๐Ÿ“–mathematicalCategoryTheory.Limits.HasWidePullbacks
CategoryTheory.Subobject
Preorder.toLE
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
sInfโ€”le_of_comm
CategoryTheory.small_subobject
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
widePullbackฮน_mono
CategoryTheory.Category.assoc
underlyingIso_arrow
widePullbackฮน.eq_1
CategoryTheory.Limits.limit.lift_ฯ€
leInfCone_ฯ€_app_none
le_sSup ๐Ÿ“–mathematicalCategoryTheory.Limits.HasCoproducts
CategoryTheory.Subobject
Set
Set.instMembership
Preorder.toLE
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
sSup
โ€”le_of_comm
CategoryTheory.small_subobject
Equiv.symm_apply_apply
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Category.assoc
underlyingIso_arrow
CategoryTheory.Limits.image.fac
CategoryTheory.Limits.colimit.ฮน_desc
arrow_congr
map_bot ๐Ÿ“–mathematicalโ€”CategoryTheory.Functor.obj
CategoryTheory.Subobject
Preorder.smallCategory
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
map
Bot.bot
OrderBot.toBot
Preorder.toLE
orderBot
โ€”Quotient.sound'
map_top ๐Ÿ“–mathematicalโ€”CategoryTheory.Functor.obj
CategoryTheory.Subobject
Preorder.smallCategory
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
map
Top.top
OrderTop.toTop
Preorder.toLE
orderTop
โ€”Quotient.sound'
mk_eq_bot_iff_zero ๐Ÿ“–mathematicalโ€”Bot.bot
CategoryTheory.Subobject
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
orderBot
CategoryTheory.Limits.HasZeroObject.hasInitial
CategoryTheory.Limits.HasZeroObject.initialMonoClass
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.HasZeroMorphisms.zero
โ€”CategoryTheory.Limits.HasZeroObject.hasInitial
CategoryTheory.Limits.HasZeroObject.initialMonoClass
mk_factors_self
mk_eq_mk_of_comm
CategoryTheory.Limits.isoZeroOfMonoEqZero.congr_simp
CategoryTheory.Limits.HasZeroObject.zeroIsoInitial_hom
CategoryTheory.Limits.comp_zero
CategoryTheory.MonoOver.initialTo_b_eq_zero
mk_eq_top_of_isIso ๐Ÿ“–mathematicalโ€”CategoryTheory.mono_of_strongMono
CategoryTheory.strongMono_of_isIso
Top.top
CategoryTheory.Subobject
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
orderTop
โ€”CategoryTheory.mono_of_strongMono
CategoryTheory.strongMono_of_isIso
isIso_iff_mk_eq_top
nontrivial_of_not_isZero ๐Ÿ“–mathematicalCategoryTheory.Limits.IsZeroNontrivial
CategoryTheory.Subobject
โ€”CategoryTheory.Limits.HasZeroObject.instMono
CategoryTheory.instMonoId
CategoryTheory.Limits.IsZero.of_iso
CategoryTheory.Limits.isZero_zero
prod_eq_inf ๐Ÿ“–mathematicalโ€”CategoryTheory.Limits.prod
CategoryTheory.Subobject
Preorder.smallCategory
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
SemilatticeInf.toMin
semilatticeInf
โ€”le_antisymm
le_inf
CategoryTheory.leOfHom
inf_le_left
inf_le_right
pullback_self ๐Ÿ“–mathematicalโ€”CategoryTheory.Functor.obj
CategoryTheory.Subobject
Preorder.smallCategory
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
pullback
Top.top
OrderTop.toTop
Preorder.toLE
orderTop
โ€”Quotient.sound'
pullback_top ๐Ÿ“–mathematicalโ€”CategoryTheory.Functor.obj
CategoryTheory.Subobject
Preorder.smallCategory
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
pullback
Top.top
OrderTop.toTop
Preorder.toLE
orderTop
โ€”Quotient.sound'
sInf_le ๐Ÿ“–mathematicalCategoryTheory.Limits.HasWidePullbacks
CategoryTheory.Subobject
Set
Set.instMembership
Preorder.toLE
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
sInf
โ€”le_of_comm
widePullbackฮน_mono
CategoryTheory.small_subobject
Set.mem_image_of_mem
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
Equiv.symm_apply_apply
CategoryTheory.Category.assoc
arrow_congr
CategoryTheory.Limits.limit.w
sSup_le ๐Ÿ“–mathematicalCategoryTheory.Limits.HasCoproducts
CategoryTheory.Subobject
Preorder.toLE
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
sSupโ€”le_of_comm
CategoryTheory.small_subobject
arrow_mono
CategoryTheory.Limits.Sigma.hom_ext
CategoryTheory.Limits.colimit.ฮน_desc_assoc
underlying_arrow
CategoryTheory.Limits.colimit.ฮน_desc
CategoryTheory.Category.assoc
CategoryTheory.Limits.image.lift_fac
subsingleton_of_isInitial ๐Ÿ“–mathematicalโ€”CategoryTheory.Subobjectโ€”CategoryTheory.instMonoId
mk_surjective
CategoryTheory.Limits.IsInitial.hom_ext
CategoryTheory.cancel_mono
CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
CategoryTheory.Category.comp_id
mk_eq_mk_of_comm
subsingleton_of_isZero ๐Ÿ“–mathematicalCategoryTheory.Limits.IsZeroCategoryTheory.Subobjectโ€”subsingleton_of_isInitial
sup_factors_of_factors_left ๐Ÿ“–mathematicalFactorsCategoryTheory.Subobject
SemilatticeSup.toMax
semilatticeSup
โ€”factors_of_le
le_sup_left
sup_factors_of_factors_right ๐Ÿ“–mathematicalFactorsCategoryTheory.Subobject
SemilatticeSup.toMax
semilatticeSup
โ€”factors_of_le
le_sup_right
symm_apply_mem_iff_mem_image ๐Ÿ“–mathematicalโ€”Set
Set.instMembership
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
Set.image
โ€”Equiv.apply_symm_apply
Equiv.symm_apply_apply
top_arrow_isIso ๐Ÿ“–mathematicalโ€”CategoryTheory.IsIso
CategoryTheory.Functor.obj
CategoryTheory.Subobject
Preorder.smallCategory
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
underlying
Top.top
OrderTop.toTop
Preorder.toLE
orderTop
arrow
โ€”CategoryTheory.instMonoId
underlyingIso_top_hom
CategoryTheory.Iso.isIso_hom
top_eq_id ๐Ÿ“–mathematicalโ€”Top.top
CategoryTheory.Subobject
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
orderTop
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.instMonoId
โ€”โ€”
top_factors ๐Ÿ“–mathematicalโ€”Factors
Top.top
CategoryTheory.Subobject
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
orderTop
โ€”CategoryTheory.Category.comp_id
underlyingIso_inv_top_arrow ๐Ÿ“–mathematicalโ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Subobject
Preorder.smallCategory
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
underlying
CategoryTheory.CategoryStruct.id
CategoryTheory.instMonoId
CategoryTheory.Iso.inv
underlyingIso
arrow
Top.top
OrderTop.toTop
Preorder.toLE
orderTop
โ€”underlyingIso_arrow
CategoryTheory.instMonoId
underlyingIso_inv_top_arrow_assoc ๐Ÿ“–mathematicalโ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Subobject
Preorder.smallCategory
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
underlying
CategoryTheory.CategoryStruct.id
CategoryTheory.instMonoId
CategoryTheory.Iso.inv
underlyingIso
arrow
Top.top
OrderTop.toTop
Preorder.toLE
orderTop
โ€”CategoryTheory.instMonoId
CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
underlyingIso_inv_top_arrow
underlyingIso_top_hom ๐Ÿ“–mathematicalโ€”CategoryTheory.Iso.hom
CategoryTheory.Functor.obj
CategoryTheory.Subobject
Preorder.smallCategory
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
underlying
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.instMonoId
underlyingIso
arrow
Top.top
OrderTop.toTop
Preorder.toLE
orderTop
โ€”CategoryTheory.instMonoId
CategoryTheory.Category.comp_id
wideCospan_map_term ๐Ÿ“–mathematicalโ€”CategoryTheory.Functor.map
CategoryTheory.Limits.WidePullbackShape
Set.Elem
Shrink
CategoryTheory.Subobject
CategoryTheory.small_subobject
Set.image
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
equivShrink
CategoryTheory.Limits.WidePullbackShape.category
wideCospan
CategoryTheory.Limits.WidePullbackShape.Hom.term
arrow
Equiv.symm
Set
Set.instMembership
โ€”CategoryTheory.small_subobject
widePullbackฮน_mono ๐Ÿ“–mathematicalCategoryTheory.Limits.HasWidePullbacksCategoryTheory.Mono
widePullback
widePullbackฮน
โ€”CategoryTheory.Limits.limit.hom_ext
CategoryTheory.small_subobject
CategoryTheory.cancel_mono
arrow_mono
CategoryTheory.Category.assoc
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Limits.limit.w

---

โ† Back to Index