Documentation Verification Report

Subterminal

📁 Source: Mathlib/CategoryTheory/Subterminal.lean

Statistics

MetricCount
DefinitionsIsSubterminal, isoDiag, Subterminals, instCategorySubterminals, instInhabitedSubterminalsOfHasTerminal, subterminalInclusion, subterminalsEquivMonoOverTerminal
7
Theoremsdef, isIso_diag, isoDiag_hom, isoDiag_inv, mono_isTerminal_from, mono_terminal_from, instFaithfulSubterminalsSubterminalInclusion, instFullSubterminalsSubterminalInclusion, isSubterminal_of_isIso_diag, isSubterminal_of_isTerminal, isSubterminal_of_mono_isTerminal_from, isSubterminal_of_mono_terminal_from, isSubterminal_of_terminal, monoOver_terminal_to_subterminals_comp, subterminalInclusion_map, subterminalInclusion_obj, subterminalsEquivMonoOverTerminal_counitIso, subterminalsEquivMonoOverTerminal_functor_map, subterminalsEquivMonoOverTerminal_functor_obj_obj, subterminalsEquivMonoOverTerminal_inverse_map, subterminalsEquivMonoOverTerminal_inverse_obj_obj, subterminalsEquivMonoOverTerminal_unitIso, subterminals_thin, subterminals_to_monoOver_terminal_comp_forget
24
Total31

CategoryTheory

Definitions

NameCategoryTheorems
IsSubterminal 📖MathDef
14 mathmath: isSubterminal_of_isIso_diag, IsSubterminal.def, subterminalsEquivMonoOverTerminal_inverse_map, isSubterminal_of_isTerminal, isSubterminal_of_mono_terminal_from, subterminalsEquivMonoOverTerminal_inverse_obj_obj, isSubterminal_of_mono_isTerminal_from, subterminalsEquivMonoOverTerminal_functor_map, subterminalsEquivMonoOverTerminal_unitIso, subterminalsEquivMonoOverTerminal_counitIso, isSubterminal_of_terminal, subterminalInclusion_obj, subterminalInclusion_map, subterminalsEquivMonoOverTerminal_functor_obj_obj
Subterminals 📖CompOp
14 mathmath: monoOver_terminal_to_subterminals_comp, instFullSubterminalsSubterminalInclusion, instFaithfulSubterminalsSubterminalInclusion, subterminalsEquivMonoOverTerminal_inverse_map, subterminalsEquivMonoOverTerminal_inverse_obj_obj, instExponentialIdealSubterminalsSubterminalInclusion, subterminalsEquivMonoOverTerminal_functor_map, subterminalsEquivMonoOverTerminal_unitIso, subterminalsEquivMonoOverTerminal_counitIso, subterminals_thin, subterminalInclusion_obj, subterminalInclusion_map, subterminalsEquivMonoOverTerminal_functor_obj_obj, subterminals_to_monoOver_terminal_comp_forget
instCategorySubterminals 📖CompOp
14 mathmath: monoOver_terminal_to_subterminals_comp, instFullSubterminalsSubterminalInclusion, instFaithfulSubterminalsSubterminalInclusion, subterminalsEquivMonoOverTerminal_inverse_map, subterminalsEquivMonoOverTerminal_inverse_obj_obj, instExponentialIdealSubterminalsSubterminalInclusion, subterminalsEquivMonoOverTerminal_functor_map, subterminalsEquivMonoOverTerminal_unitIso, subterminalsEquivMonoOverTerminal_counitIso, subterminals_thin, subterminalInclusion_obj, subterminalInclusion_map, subterminalsEquivMonoOverTerminal_functor_obj_obj, subterminals_to_monoOver_terminal_comp_forget
instInhabitedSubterminalsOfHasTerminal 📖CompOp
subterminalInclusion 📖CompOp
7 mathmath: monoOver_terminal_to_subterminals_comp, instFullSubterminalsSubterminalInclusion, instFaithfulSubterminalsSubterminalInclusion, instExponentialIdealSubterminalsSubterminalInclusion, subterminalInclusion_obj, subterminalInclusion_map, subterminals_to_monoOver_terminal_comp_forget
subterminalsEquivMonoOverTerminal 📖CompOp
8 mathmath: monoOver_terminal_to_subterminals_comp, subterminalsEquivMonoOverTerminal_inverse_map, subterminalsEquivMonoOverTerminal_inverse_obj_obj, subterminalsEquivMonoOverTerminal_functor_map, subterminalsEquivMonoOverTerminal_unitIso, subterminalsEquivMonoOverTerminal_counitIso, subterminalsEquivMonoOverTerminal_functor_obj_obj, subterminals_to_monoOver_terminal_comp_forget

Theorems

NameKindAssumesProvesValidatesDepends On
instFaithfulSubterminalsSubterminalInclusion 📖mathematicalFunctor.Faithful
Subterminals
instCategorySubterminals
subterminalInclusion
ObjectProperty.faithful_ι
instFullSubterminalsSubterminalInclusion 📖mathematicalFunctor.Full
Subterminals
instCategorySubterminals
subterminalInclusion
ObjectProperty.full_ι
isSubterminal_of_isIso_diag 📖mathematicalIsSubterminalcancel_epi
epi_of_strongEpi
strongEpi_of_isIso
Limits.limit.lift_π
Limits.prod.lift_fst
Limits.prod.lift_snd
isSubterminal_of_isTerminal 📖mathematicalIsSubterminalLimits.IsTerminal.hom_ext
isSubterminal_of_mono_isTerminal_from 📖mathematicalIsSubterminalcancel_mono
Limits.IsTerminal.hom_ext
isSubterminal_of_mono_terminal_from 📖mathematicalIsSubterminalcancel_mono
Unique.instSubsingleton
isSubterminal_of_terminal 📖mathematicalIsSubterminal
Limits.terminal
Unique.instSubsingleton
monoOver_terminal_to_subterminals_comp 📖mathematicalFunctor.comp
MonoOver
Limits.terminal
ObjectProperty.FullSubcategory.category
Over
instCategoryOver
Over.isMono
Subterminals
instCategorySubterminals
Equivalence.inverse
subterminalsEquivMonoOverTerminal
subterminalInclusion
MonoOver.forget
Over.forget
subterminalInclusion_map 📖mathematicalFunctor.map
Subterminals
instCategorySubterminals
subterminalInclusion
InducedCategory.Hom.hom
ObjectProperty.FullSubcategory
IsSubterminal
ObjectProperty.FullSubcategory.obj
subterminalInclusion_obj 📖mathematicalFunctor.obj
Subterminals
instCategorySubterminals
subterminalInclusion
ObjectProperty.FullSubcategory.obj
IsSubterminal
subterminalsEquivMonoOverTerminal_counitIso 📖mathematicalEquivalence.counitIso
Subterminals
MonoOver
Limits.terminal
instCategorySubterminals
ObjectProperty.FullSubcategory.category
Over
instCategoryOver
Over.isMono
subterminalsEquivMonoOverTerminal
NatIso.ofComponents
Functor.comp
IsSubterminal
Comma.left
Discrete
discreteCategory
Functor.id
Functor.fromPUnit
ObjectProperty.FullSubcategory.obj
ObjectProperty.homMk
CommaMorphism.left
InducedCategory.Hom.hom
ObjectProperty.FullSubcategory
Limits.terminal.from
MonoOver.homMk
MonoOver.isoMk
Functor.obj
Iso.refl
subterminalsEquivMonoOverTerminal_functor_map 📖mathematicalFunctor.map
Subterminals
instCategorySubterminals
MonoOver
Limits.terminal
ObjectProperty.FullSubcategory.category
Over
instCategoryOver
Over.isMono
Equivalence.functor
subterminalsEquivMonoOverTerminal
MonoOver.homMk
ObjectProperty.FullSubcategory.obj
IsSubterminal
Limits.terminal.from
InducedCategory.Hom.hom
ObjectProperty.FullSubcategory
subterminalsEquivMonoOverTerminal_functor_obj_obj 📖mathematicalObjectProperty.FullSubcategory.obj
Over
Limits.terminal
instCategoryOver
Over.isMono
Functor.obj
Subterminals
instCategorySubterminals
MonoOver
ObjectProperty.FullSubcategory.category
Equivalence.functor
subterminalsEquivMonoOverTerminal
IsSubterminal
Limits.terminal.from
subterminalsEquivMonoOverTerminal_inverse_map 📖mathematicalFunctor.map
MonoOver
Limits.terminal
ObjectProperty.FullSubcategory.category
Over
instCategoryOver
Over.isMono
Subterminals
instCategorySubterminals
Equivalence.inverse
subterminalsEquivMonoOverTerminal
ObjectProperty.homMk
IsSubterminal
Comma.left
Discrete
discreteCategory
Functor.id
Functor.fromPUnit
ObjectProperty.FullSubcategory.obj
CommaMorphism.left
InducedCategory.Hom.hom
ObjectProperty.FullSubcategory
subterminalsEquivMonoOverTerminal_inverse_obj_obj 📖mathematicalObjectProperty.FullSubcategory.obj
IsSubterminal
Functor.obj
MonoOver
Limits.terminal
ObjectProperty.FullSubcategory.category
Over
instCategoryOver
Over.isMono
Subterminals
instCategorySubterminals
Equivalence.inverse
subterminalsEquivMonoOverTerminal
Comma.left
Discrete
discreteCategory
Functor.id
Functor.fromPUnit
subterminalsEquivMonoOverTerminal_unitIso 📖mathematicalEquivalence.unitIso
Subterminals
MonoOver
Limits.terminal
instCategorySubterminals
ObjectProperty.FullSubcategory.category
Over
instCategoryOver
Over.isMono
subterminalsEquivMonoOverTerminal
NatIso.ofComponents
Functor.id
Functor.comp
ObjectProperty.FullSubcategory.obj
IsSubterminal
Limits.terminal.from
MonoOver.homMk
InducedCategory.Hom.hom
ObjectProperty.FullSubcategory
Comma.left
Discrete
discreteCategory
Functor.fromPUnit
ObjectProperty.homMk
CommaMorphism.left
Iso.refl
subterminals_thin 📖mathematicalQuiver.Hom
Subterminals
CategoryStruct.toQuiver
Category.toCategoryStruct
instCategorySubterminals
ObjectProperty.hom_ext
ObjectProperty.FullSubcategory.property
subterminals_to_monoOver_terminal_comp_forget 📖mathematicalFunctor.comp
Subterminals
instCategorySubterminals
MonoOver
Limits.terminal
ObjectProperty.FullSubcategory.category
Over
instCategoryOver
Over.isMono
Equivalence.functor
subterminalsEquivMonoOverTerminal
MonoOver.forget
Over.forget
subterminalInclusion

CategoryTheory.IsSubterminal

Definitions

NameCategoryTheorems
isoDiag 📖CompOp
2 mathmath: isoDiag_inv, isoDiag_hom

Theorems

NameKindAssumesProvesValidatesDepends On
def 📖mathematicalCategoryTheory.IsSubterminal
isIso_diag 📖mathematicalCategoryTheory.IsSubterminalCategoryTheory.IsIso
CategoryTheory.Limits.prod
CategoryTheory.Limits.diag
CategoryTheory.Limits.limit.lift_π
CategoryTheory.Limits.prod.comp_lift
CategoryTheory.Category.comp_id
CategoryTheory.Limits.prod.hom_ext
CategoryTheory.Category.id_comp
def
isoDiag_hom 📖mathematicalCategoryTheory.IsSubterminalCategoryTheory.Iso.hom
CategoryTheory.Limits.prod
isoDiag
CategoryTheory.inv
CategoryTheory.Limits.diag
isIso_diag
isoDiag_inv 📖mathematicalCategoryTheory.IsSubterminalCategoryTheory.Iso.inv
CategoryTheory.Limits.prod
isoDiag
CategoryTheory.Limits.diag
mono_isTerminal_from 📖mathematicalCategoryTheory.IsSubterminalCategoryTheory.Mono
CategoryTheory.Limits.IsTerminal.from
mono_terminal_from 📖mathematicalCategoryTheory.IsSubterminalCategoryTheory.Mono
CategoryTheory.Limits.terminal
CategoryTheory.Limits.terminal.from
mono_isTerminal_from

---

← Back to Index