Classifier
📁 Source: Mathlib/CategoryTheory/Topos/Classifier.lean
Statistics
CategoryTheory
Definitions
| Name | Category | Theorems |
|---|---|---|
Classifier 📖 | CompData | |
HasClassifier 📖 | CompData |
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
isRepresentable_hasClassifier_iff 📖 | mathematical | — | HasClassifierFunctor.IsRepresentableSubobject.presheaf | — | Functor.RepresentableBy.isRepresentable |
CategoryTheory.Classifier
Definitions
| Name | Category | Theorems |
|---|---|---|
SubobjectRepresentableBy 📖 | CompOp | — |
instUniqueHomΩ₀ 📖 | CompOp | — |
isTerminalΩ₀ 📖 | CompOp | |
mkOfTerminalΩ₀ 📖 | CompOp | |
representableBy 📖 | CompOp | — |
truth 📖 | CompOp | |
truth_as_subobject 📖 | CompOp | |
Ω 📖 | CompOp | |
Ω₀ 📖 | CompOp | |
χ 📖 | CompOp | |
χ₀ 📖 | CompOp |
Theorems
CategoryTheory.Classifier.SubobjectRepresentableBy
Definitions
| Name | Category | Theorems |
|---|---|---|
classifier 📖 | CompOp | — |
isTerminalΩ₀ 📖 | CompOp | — |
iso 📖 | CompOp | |
isoΩ₀ 📖 | CompOp | — |
Ω₀ 📖 | CompOp | |
π 📖 | CompOp | |
χ 📖 | CompOp | |
χ₀ 📖 | CompOp | — |
Theorems
CategoryTheory.HasClassifier
Definitions
| Name | Category | Theorems |
|---|---|---|
truth 📖 | CompOp | |
truthIsRegularMono 📖 | CompOp | — |
Ω 📖 | CompOp | |
Ω₀ 📖 | CompOp | |
χ 📖 | CompOp |
Theorems
---