Documentation Verification Report

Classifier

📁 Source: Mathlib/CategoryTheory/Topos/Classifier.lean

Statistics

MetricCount
DefinitionsClassifier, SubobjectRepresentableBy, classifier, isTerminalΩ₀, iso, isoΩ₀, Ω₀, π, χ, χ₀, instUniqueHomΩ₀, isTerminalΩ₀, mkOfTerminalΩ₀, representableBy, truth, truth_as_subobject, Ω, Ω₀, χ, χ₀, HasClassifier, truth, truthIsRegularMono, Ω, Ω₀, χ
26
TheoremshasTerminal, homEquiv_eq, isPullback, iso_inv_hom_left_comp, iso_inv_hom_left_comp_assoc, iso_inv_left_comp, iso_inv_left_π, iso_inv_left_π_assoc, pullback_homEquiv_symm_obj_Ω₀, uniq, isPullback, isTerminalFrom_eq_χ₀, mkOfTerminalΩ₀_truth, mkOfTerminalΩ₀_Ω, mkOfTerminalΩ₀_Ω₀, mkOfTerminalΩ₀_χ, mkOfTerminalΩ₀_χ₀, mono_truth, pullback_χ_obj_mk_truth, surjective_χ, uniq, χ_pullback_obj_mk_truth_arrow, comm, comm_assoc, exists_classifier, instIsRegularMonoTruth, isPullback_χ, isRegularMonoCategory, reflectsIsomorphisms, reflectsIsomorphismsOp, truthIsSplitMono, unique, isRepresentable_hasClassifier_iff
33
Total59

CategoryTheory

Definitions

NameCategoryTheorems
Classifier 📖CompData
4 mathmath: HasClassifier.exists_classifier, HasClassifier.comm, HasClassifier.isPullback_χ, HasClassifier.comm_assoc
HasClassifier 📖CompData
1 mathmath: isRepresentable_hasClassifier_iff

Theorems

NameKindAssumesProvesValidatesDepends On
isRepresentable_hasClassifier_iff 📖mathematicalHasClassifier
Functor.IsRepresentable
Subobject.presheaf
Functor.RepresentableBy.isRepresentable

CategoryTheory.Classifier

Definitions

NameCategoryTheorems
SubobjectRepresentableBy 📖CompOp
instUniqueHomΩ₀ 📖CompOp
isTerminalΩ₀ 📖CompOp
1 mathmath: isTerminalFrom_eq_χ₀
mkOfTerminalΩ₀ 📖CompOp
5 mathmath: mkOfTerminalΩ₀_truth, mkOfTerminalΩ₀_χ, mkOfTerminalΩ₀_χ₀, mkOfTerminalΩ₀_Ω, mkOfTerminalΩ₀_Ω₀
representableBy 📖CompOp
truth 📖CompOp
3 mathmath: mkOfTerminalΩ₀_truth, isPullback, mono_truth
truth_as_subobject 📖CompOp
2 mathmath: pullback_χ_obj_mk_truth, χ_pullback_obj_mk_truth_arrow
Ω 📖CompOp
5 mathmath: pullback_χ_obj_mk_truth, χ_pullback_obj_mk_truth_arrow, mkOfTerminalΩ₀_Ω, isPullback, mono_truth
Ω₀ 📖CompOp
7 mathmath: isTerminalFrom_eq_χ₀, CategoryTheory.HasClassifier.comm, CategoryTheory.HasClassifier.isPullback_χ, mkOfTerminalΩ₀_Ω₀, CategoryTheory.HasClassifier.comm_assoc, isPullback, mono_truth
χ 📖CompOp
6 mathmath: pullback_χ_obj_mk_truth, χ_pullback_obj_mk_truth_arrow, mkOfTerminalΩ₀_χ, surjective_χ, uniq, isPullback
χ₀ 📖CompOp
6 mathmath: mkOfTerminalΩ₀_χ₀, isTerminalFrom_eq_χ₀, CategoryTheory.HasClassifier.comm, CategoryTheory.HasClassifier.isPullback_χ, CategoryTheory.HasClassifier.comm_assoc, isPullback

Theorems

NameKindAssumesProvesValidatesDepends On
isPullback 📖mathematicalCategoryTheory.IsPullback
Ω₀
Ω
χ₀
χ
truth
isTerminalFrom_eq_χ₀ 📖mathematicalCategoryTheory.Limits.IsTerminal.from
Ω₀
isTerminalΩ₀
χ₀
mkOfTerminalΩ₀_truth 📖mathematicalCategoryTheory.IsPullback
CategoryTheory.Limits.IsTerminal.from
truth
mkOfTerminalΩ₀
mkOfTerminalΩ₀_Ω 📖mathematicalCategoryTheory.IsPullback
CategoryTheory.Limits.IsTerminal.from
Ω
mkOfTerminalΩ₀
mkOfTerminalΩ₀_Ω₀ 📖mathematicalCategoryTheory.IsPullback
CategoryTheory.Limits.IsTerminal.from
Ω₀
mkOfTerminalΩ₀
mkOfTerminalΩ₀_χ 📖mathematicalCategoryTheory.IsPullback
CategoryTheory.Limits.IsTerminal.from
χ
mkOfTerminalΩ₀
mkOfTerminalΩ₀_χ₀ 📖mathematicalCategoryTheory.IsPullback
CategoryTheory.Limits.IsTerminal.from
χ₀
mkOfTerminalΩ₀
mono_truth 📖mathematicalCategoryTheory.Mono
Ω₀
Ω
truth
pullback_χ_obj_mk_truth 📖mathematicalCategoryTheory.Functor.obj
CategoryTheory.Subobject
Ω
Preorder.smallCategory
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
CategoryTheory.Subobject.pullback
χ
truth_as_subobject
mono_truth
CategoryTheory.IsPullback.flip
isPullback
surjective_χ 📖mathematicalχCategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Limits.pullback.fst_of_mono
mono_truth
uniq
CategoryTheory.IsPullback.of_hasPullback
uniq 📖mathematicalCategoryTheory.IsPullback
Ω₀
Ω
truth
χ
χ_pullback_obj_mk_truth_arrow 📖mathematicalχ
CategoryTheory.Functor.obj
CategoryTheory.Subobject
Preorder.smallCategory
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
CategoryTheory.Subobject.underlying
Ω
CategoryTheory.Subobject.pullback
truth_as_subobject
CategoryTheory.Subobject.arrow
CategoryTheory.Subobject.arrow_mono
CategoryTheory.Subobject.arrow_mono
surjective_χ
uniq
CategoryTheory.IsPullback.of_iso
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.IsPullback.flip
CategoryTheory.IsPullback.of_hasPullback
mono_truth
CategoryTheory.Iso.eq_inv_comp
CategoryTheory.Category.comp_id
CategoryTheory.Limits.IsTerminal.hom_ext
CategoryTheory.Category.id_comp

CategoryTheory.Classifier.SubobjectRepresentableBy

Definitions

NameCategoryTheorems
classifier 📖CompOp
isTerminalΩ₀ 📖CompOp
iso 📖CompOp
5 mathmath: iso_inv_hom_left_comp, iso_inv_left_π_assoc, iso_inv_hom_left_comp_assoc, iso_inv_left_comp, iso_inv_left_π
isoΩ₀ 📖CompOp
Ω₀ 📖CompOp
8 mathmath: pullback_homEquiv_symm_obj_Ω₀, iso_inv_hom_left_comp, homEquiv_eq, isPullback, iso_inv_left_π_assoc, iso_inv_hom_left_comp_assoc, iso_inv_left_comp, iso_inv_left_π
π 📖CompOp
3 mathmath: isPullback, iso_inv_left_π_assoc, iso_inv_left_π
χ 📖CompOp
7 mathmath: iso_inv_hom_left_comp, uniq, isPullback, iso_inv_left_π_assoc, iso_inv_hom_left_comp_assoc, iso_inv_left_comp, iso_inv_left_π
χ₀ 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
hasTerminal 📖mathematicalCategoryTheory.Limits.HasTerminalCategoryTheory.Limits.IsTerminal.hasTerminal
homEquiv_eq 📖mathematicalDFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
Subobject.presheaf
Opposite.op
EquivLike.toFunLike
Equiv.instEquivLike
CategoryTheory.Functor.RepresentableBy.homEquiv
CategoryTheory.Subobject
Preorder.smallCategory
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
CategoryTheory.Subobject.pullback
Ω₀
CategoryTheory.Category.comp_id
CategoryTheory.Functor.RepresentableBy.homEquiv_comp
isPullback 📖mathematicalCategoryTheory.IsPullback
CategoryTheory.Functor.obj
CategoryTheory.Subobject
Preorder.smallCategory
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
CategoryTheory.Subobject.underlying
Ω₀
π
χ
CategoryTheory.Subobject.arrow
CategoryTheory.IsPullback.of_iso
CategoryTheory.IsPullback.flip
CategoryTheory.Subobject.isPullback
CategoryTheory.Category.comp_id
iso_inv_hom_left_comp
iso_inv_left_π
CategoryTheory.Category.id_comp
iso_inv_hom_left_comp 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
CategoryTheory.ObjectProperty.FullSubcategory.obj
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Over.isMono
CategoryTheory.Functor.obj
CategoryTheory.Subobject
Preorder.smallCategory
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
CategoryTheory.MonoOver
CategoryTheory.ObjectProperty.FullSubcategory.category
CategoryTheory.Subobject.representative
CategoryTheory.Subobject.pullback
χ
Ω₀
CategoryTheory.CommaMorphism.left
CategoryTheory.InducedCategory.Hom.hom
CategoryTheory.ObjectProperty.FullSubcategory
CategoryTheory.Iso.inv
iso
CategoryTheory.Subobject.arrow
CategoryTheory.MonoOver.w
iso_inv_hom_left_comp_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
CategoryTheory.ObjectProperty.FullSubcategory.obj
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Over.isMono
CategoryTheory.Functor.obj
CategoryTheory.Subobject
Preorder.smallCategory
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
CategoryTheory.MonoOver
CategoryTheory.ObjectProperty.FullSubcategory.category
CategoryTheory.Subobject.representative
CategoryTheory.Subobject.pullback
χ
Ω₀
CategoryTheory.CommaMorphism.left
CategoryTheory.InducedCategory.Hom.hom
CategoryTheory.ObjectProperty.FullSubcategory
CategoryTheory.Iso.inv
iso
CategoryTheory.Subobject.arrow
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
iso_inv_hom_left_comp
iso_inv_left_comp 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
CategoryTheory.ObjectProperty.FullSubcategory.obj
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Over.isMono
CategoryTheory.Functor.obj
CategoryTheory.Subobject
Preorder.smallCategory
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
CategoryTheory.MonoOver
CategoryTheory.ObjectProperty.FullSubcategory.category
CategoryTheory.Subobject.representative
CategoryTheory.Subobject.pullback
χ
Ω₀
CategoryTheory.CommaMorphism.left
CategoryTheory.InducedCategory.Hom.hom
CategoryTheory.ObjectProperty.FullSubcategory
CategoryTheory.Iso.inv
iso
CategoryTheory.Subobject.arrow
iso_inv_hom_left_comp
iso_inv_left_π 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
CategoryTheory.ObjectProperty.FullSubcategory.obj
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Over.isMono
CategoryTheory.Functor.obj
CategoryTheory.Subobject
Preorder.smallCategory
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
CategoryTheory.MonoOver
CategoryTheory.ObjectProperty.FullSubcategory.category
CategoryTheory.Subobject.representative
CategoryTheory.Subobject.pullback
χ
Ω₀
CategoryTheory.Subobject.underlying
CategoryTheory.CommaMorphism.left
CategoryTheory.InducedCategory.Hom.hom
CategoryTheory.ObjectProperty.FullSubcategory
CategoryTheory.Iso.inv
iso
π
CategoryTheory.Subobject.pullbackπ
CategoryTheory.Over.comp_left_assoc
CategoryTheory.Functor.congr_map
CategoryTheory.Iso.inv_hom_id
CategoryTheory.Category.id_comp
iso_inv_left_π_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
CategoryTheory.ObjectProperty.FullSubcategory.obj
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Over.isMono
CategoryTheory.Functor.obj
CategoryTheory.Subobject
Preorder.smallCategory
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
CategoryTheory.MonoOver
CategoryTheory.ObjectProperty.FullSubcategory.category
CategoryTheory.Subobject.representative
CategoryTheory.Subobject.pullback
χ
Ω₀
CategoryTheory.CommaMorphism.left
CategoryTheory.InducedCategory.Hom.hom
CategoryTheory.ObjectProperty.FullSubcategory
CategoryTheory.Iso.inv
iso
CategoryTheory.Subobject.underlying
π
CategoryTheory.Subobject.pullbackπ
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
iso_inv_left_π
pullback_homEquiv_symm_obj_Ω₀ 📖mathematicalCategoryTheory.Functor.obj
CategoryTheory.Subobject
Preorder.smallCategory
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
CategoryTheory.Subobject.pullback
DFunLike.coe
Equiv
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
Subobject.presheaf
Opposite.op
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
CategoryTheory.Functor.RepresentableBy.homEquiv
Ω₀
homEquiv_eq
Equiv.apply_symm_apply
uniq 📖mathematicalCategoryTheory.IsPullback
CategoryTheory.Functor.obj
CategoryTheory.Subobject
Preorder.smallCategory
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
CategoryTheory.Subobject.underlying
Ω₀
CategoryTheory.Subobject.arrow
χEquiv.injective
homEquiv_eq
Equiv.apply_symm_apply
CategoryTheory.Subobject.arrow_mono
CategoryTheory.Subobject.mk_arrow
CategoryTheory.IsPullback.flip

CategoryTheory.HasClassifier

Definitions

NameCategoryTheorems
truth 📖CompOp
5 mathmath: instIsRegularMonoTruth, comm, truthIsSplitMono, isPullback_χ, comm_assoc
truthIsRegularMono 📖CompOp
Ω 📖CompOp
5 mathmath: instIsRegularMonoTruth, comm, truthIsSplitMono, isPullback_χ, comm_assoc
Ω₀ 📖CompOp
2 mathmath: instIsRegularMonoTruth, truthIsSplitMono
χ 📖CompOp
4 mathmath: comm, isPullback_χ, comm_assoc, unique

Theorems

NameKindAssumesProvesValidatesDepends On
comm 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Ω
χ
CategoryTheory.Classifier.Ω₀
Nonempty.some
CategoryTheory.Classifier
exists_classifier
CategoryTheory.Classifier.χ₀
truth
CategoryTheory.CommSq.w
exists_classifier
CategoryTheory.IsPullback.toCommSq
isPullback_χ
comm_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Ω
χ
CategoryTheory.Classifier.Ω₀
Nonempty.some
CategoryTheory.Classifier
exists_classifier
CategoryTheory.Classifier.χ₀
truth
exists_classifier
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
comm
exists_classifier 📖mathematicalCategoryTheory.Classifier
instIsRegularMonoTruth 📖mathematicalCategoryTheory.IsRegularMono
Ω₀
Ω
truth
isPullback_χ 📖mathematicalCategoryTheory.IsPullback
CategoryTheory.Classifier.Ω₀
Nonempty.some
CategoryTheory.Classifier
exists_classifier
Ω
CategoryTheory.Classifier.χ₀
χ
truth
CategoryTheory.Classifier.isPullback
exists_classifier
isRegularMonoCategory 📖mathematicalCategoryTheory.IsRegularMonoCategoryexists_classifier
CategoryTheory.CommSq.w
CategoryTheory.IsPullback.toCommSq
isPullback_χ
reflectsIsomorphisms 📖mathematicalCategoryTheory.Functor.ReflectsIsomorphismsCategoryTheory.reflectsIsomorphisms_of_reflectsMonomorphisms_of_reflectsEpimorphisms
CategoryTheory.balanced_of_strongMonoCategory
CategoryTheory.strongMonoCategory_of_regularMonoCategory
isRegularMonoCategory
CategoryTheory.Functor.reflectsMonomorphisms_of_faithful
CategoryTheory.Functor.reflectsEpimorphisms_of_faithful
reflectsIsomorphismsOp 📖mathematicalCategoryTheory.Functor.ReflectsIsomorphisms
Opposite
CategoryTheory.Category.opposite
CategoryTheory.reflectsIsomorphisms_of_reflectsMonomorphisms_of_reflectsEpimorphisms
CategoryTheory.balanced_opposite
CategoryTheory.balanced_of_strongMonoCategory
CategoryTheory.strongMonoCategory_of_regularMonoCategory
isRegularMonoCategory
CategoryTheory.Functor.reflectsMonomorphisms_of_faithful
CategoryTheory.Functor.reflectsEpimorphisms_of_faithful
truthIsSplitMono 📖mathematicalCategoryTheory.IsSplitMono
Ω₀
Ω
truth
CategoryTheory.Limits.IsTerminal.isSplitMono_from
exists_classifier
unique 📖mathematicalCategoryTheory.IsPullback
CategoryTheory.Classifier.Ω₀
Nonempty.some
CategoryTheory.Classifier
exists_classifier
Ω
CategoryTheory.Classifier.χ₀
truth
χexists_classifier
CategoryTheory.Classifier.uniq

---

← Back to Index