Documentation Verification Report

Adjunction

πŸ“ Source: Mathlib/CategoryTheory/Triangulated/Adjunction.lean

Statistics

MetricCount
DefinitionsAdjunction, IsTriangulated, IsTriangulated
3
TheoremscommShift, comp, id, leftAdjoint_isTriangulated, mk', mk'', rightAdjoint_isTriangulated, isTriangulated_leftAdjoint, isTriangulated_rightAdjoint, instIsTriangulatedFunctor, instIsTriangulatedFunctorSymmOfInverse, instIsTriangulatedInverse, instIsTriangulatedInverseSymmOfFunctor, mk', mk'', refl, trans
17
Total20

CategoryTheory

Definitions

NameCategoryTheorems
Adjunction πŸ“–CompData
2 mathmath: Functor.IsLeftAdjoint.exists_rightAdjoint, Functor.IsRightAdjoint.exists_leftAdjoint

CategoryTheory.Adjunction

Definitions

NameCategoryTheorems
IsTriangulated πŸ“–CompData
4 mathmath: IsTriangulated.id, IsTriangulated.mk'', IsTriangulated.comp, IsTriangulated.mk'

Theorems

NameKindAssumesProvesValidatesDepends On
isTriangulated_leftAdjoint πŸ“–mathematicalCategoryTheory.Functor.Additive
CategoryTheory.shiftFunctor
Int.instAddMonoid
CategoryTheory.Functor.IsTriangulatedβ€”CategoryTheory.Limits.hasZeroObject_op
CategoryTheory.Pretriangulated.Opposite.instAdditiveOppositeShiftFunctorInt
isTriangulated_rightAdjoint
CategoryTheory.Pretriangulated.Opposite.commShift_adjunction_op_int
CategoryTheory.Pretriangulated.Opposite.functor_isTriangulated_op
CategoryTheory.Functor.isTriangulated_of_op
isTriangulated_rightAdjoint πŸ“–mathematicalCategoryTheory.Functor.Additive
CategoryTheory.shiftFunctor
Int.instAddMonoid
CategoryTheory.Functor.IsTriangulatedβ€”right_adjoint_additive
CategoryTheory.Functor.IsTriangulated.instAdditive
CategoryTheory.Pretriangulated.distinguished_cocone_triangle
CategoryTheory.Pretriangulated.complete_distinguished_triangle_morphism
CategoryTheory.Functor.map_distinguished
counit_naturality
CategoryTheory.Functor.map_comp
unit_naturality_assoc
right_triangle_components_assoc
DFunLike.congr_arg
Equiv.injective
homEquiv_counit
CategoryTheory.Category.assoc
homEquiv_unit
counit_naturality_assoc
shift_counit_app
CategoryTheory.Iso.hom_inv_id_app_assoc
left_triangle_components_assoc
CategoryTheory.Preadditive.mono_iff_cancel_zero
CategoryTheory.Pretriangulated.Triangle.coyoneda_exact₃
CategoryTheory.cancel_mono
CategoryTheory.mono_of_strongMono
CategoryTheory.instStrongMonoOfIsRegularMono
CategoryTheory.instIsRegularMonoOfIsSplitMono
CategoryTheory.Functor.instIsSplitMonoApp
CategoryTheory.IsSplitMono.of_iso
CategoryTheory.Iso.isIso_inv
CategoryTheory.Limits.zero_comp
Mathlib.Tactic.Reassoc.eq_whisker'
CategoryTheory.Pretriangulated.Triangle.coyoneda_exactβ‚‚
CategoryTheory.Functor.map_zero
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
CategoryTheory.Limits.comp_zero
CategoryTheory.Pretriangulated.comp_distTriang_mor_zero₁₂
right_triangle_components
CategoryTheory.Category.comp_id
CategoryTheory.isIso_of_yoneda_map_bijective
CategoryTheory.Pretriangulated.Triangle.coyoneda_exact₁
CategoryTheory.Functor.commShiftIso_hom_naturality
CategoryTheory.Functor.map_comp_assoc
CategoryTheory.Pretriangulated.comp_distTriang_mor_zero₃₁
CategoryTheory.Preadditive.sub_comp
CategoryTheory.Iso.isIso_hom
sub_eq_zero
CategoryTheory.Iso.hom_inv_id_app
Equiv.apply_symm_apply
CategoryTheory.Preadditive.add_comp
add_sub_cancel
CategoryTheory.Pretriangulated.isomorphic_distinguished
CategoryTheory.Category.id_comp
CategoryTheory.Functor.map_id
shift_unit_app_assoc

CategoryTheory.Adjunction.IsTriangulated

Theorems

NameKindAssumesProvesValidatesDepends On
commShift πŸ“–mathematicalCategoryTheory.Functor.Additive
CategoryTheory.shiftFunctor
Int.instAddMonoid
CategoryTheory.Adjunction.CommShiftβ€”β€”
comp πŸ“–mathematicalCategoryTheory.Functor.Additive
CategoryTheory.shiftFunctor
Int.instAddMonoid
CategoryTheory.Adjunction.IsTriangulated
CategoryTheory.Functor.comp
CategoryTheory.Adjunction.comp
CategoryTheory.Functor.CommShift.comp
β€”CategoryTheory.Adjunction.CommShift.instComp
CategoryTheory.Functor.IsTriangulated.instComp
leftAdjoint_isTriangulated
rightAdjoint_isTriangulated
id πŸ“–mathematicalCategoryTheory.Functor.Additive
CategoryTheory.shiftFunctor
Int.instAddMonoid
CategoryTheory.Adjunction.IsTriangulated
CategoryTheory.Functor.id
CategoryTheory.Adjunction.id
CategoryTheory.Functor.CommShift.id
β€”CategoryTheory.Adjunction.CommShift.instId
CategoryTheory.Functor.IsTriangulated.instId
leftAdjoint_isTriangulated πŸ“–mathematicalCategoryTheory.Functor.Additive
CategoryTheory.shiftFunctor
Int.instAddMonoid
CategoryTheory.Functor.IsTriangulatedβ€”β€”
mk' πŸ“–mathematicalCategoryTheory.Functor.Additive
CategoryTheory.shiftFunctor
Int.instAddMonoid
CategoryTheory.Adjunction.IsTriangulatedβ€”CategoryTheory.Adjunction.isTriangulated_rightAdjoint
mk'' πŸ“–mathematicalCategoryTheory.Functor.Additive
CategoryTheory.shiftFunctor
Int.instAddMonoid
CategoryTheory.Adjunction.IsTriangulatedβ€”CategoryTheory.Adjunction.isTriangulated_leftAdjoint
rightAdjoint_isTriangulated πŸ“–mathematicalCategoryTheory.Functor.Additive
CategoryTheory.shiftFunctor
Int.instAddMonoid
CategoryTheory.Functor.IsTriangulatedβ€”β€”

CategoryTheory.Equivalence

Definitions

NameCategoryTheorems
IsTriangulated πŸ“–MathDef
6 mathmath: CategoryTheory.Pretriangulated.instIsTriangulatedOppositeOpOpEquivalence, IsTriangulated.trans, IsTriangulated.mk', IsTriangulated.symm, IsTriangulated.refl, IsTriangulated.mk''

CategoryTheory.Equivalence.IsTriangulated

Theorems

NameKindAssumesProvesValidatesDepends On
instIsTriangulatedFunctor πŸ“–mathematicalCategoryTheory.Functor.Additive
CategoryTheory.shiftFunctor
Int.instAddMonoid
CategoryTheory.Functor.IsTriangulated
CategoryTheory.Equivalence.functor
β€”CategoryTheory.Adjunction.IsTriangulated.leftAdjoint_isTriangulated
instIsTriangulatedFunctorSymmOfInverse πŸ“–mathematicalCategoryTheory.Functor.Additive
CategoryTheory.shiftFunctor
Int.instAddMonoid
CategoryTheory.Functor.IsTriangulated
CategoryTheory.Equivalence.functor
CategoryTheory.Equivalence.symm
CategoryTheory.Equivalence.CommShift.instCommShiftFunctorSymm
β€”β€”
instIsTriangulatedInverse πŸ“–mathematicalCategoryTheory.Functor.Additive
CategoryTheory.shiftFunctor
Int.instAddMonoid
CategoryTheory.Functor.IsTriangulated
CategoryTheory.Equivalence.inverse
β€”CategoryTheory.Adjunction.IsTriangulated.rightAdjoint_isTriangulated
instIsTriangulatedInverseSymmOfFunctor πŸ“–mathematicalCategoryTheory.Functor.Additive
CategoryTheory.shiftFunctor
Int.instAddMonoid
CategoryTheory.Functor.IsTriangulated
CategoryTheory.Equivalence.inverse
CategoryTheory.Equivalence.symm
CategoryTheory.Equivalence.CommShift.instCommShiftInverseSymm
β€”β€”
mk' πŸ“–mathematicalCategoryTheory.Functor.Additive
CategoryTheory.shiftFunctor
Int.instAddMonoid
CategoryTheory.Equivalence.IsTriangulatedβ€”CategoryTheory.Adjunction.isTriangulated_rightAdjoint
mk'' πŸ“–mathematicalCategoryTheory.Functor.Additive
CategoryTheory.shiftFunctor
Int.instAddMonoid
CategoryTheory.Equivalence.IsTriangulatedβ€”CategoryTheory.Adjunction.IsTriangulated.rightAdjoint_isTriangulated
mk'
CategoryTheory.Equivalence.CommShift.instSymm
refl πŸ“–mathematicalCategoryTheory.Functor.Additive
CategoryTheory.shiftFunctor
Int.instAddMonoid
CategoryTheory.Equivalence.IsTriangulated
CategoryTheory.Equivalence.refl
CategoryTheory.Equivalence.CommShift.instCommShiftFunctorRefl
CategoryTheory.Equivalence.CommShift.instCommShiftInverseRefl
β€”CategoryTheory.Equivalence.refl_toAdjunction
CategoryTheory.Adjunction.IsTriangulated.id
trans πŸ“–mathematicalCategoryTheory.Functor.Additive
CategoryTheory.shiftFunctor
Int.instAddMonoid
CategoryTheory.Equivalence.IsTriangulated
CategoryTheory.Equivalence.trans
CategoryTheory.Equivalence.CommShift.instCommShiftFunctorTrans
CategoryTheory.Equivalence.CommShift.instCommShiftInverseTrans
β€”CategoryTheory.Equivalence.trans_toAdjunction
CategoryTheory.Adjunction.IsTriangulated.comp

---

← Back to Index