| Metric | Count |
DefinitionsfunctorHomMk, functorHomMk', functorIsoMk, functorIsoMk', functorMk, homMk, instAddCommGroupHom, instAddHom, instLinear, instModuleHom, instNegHom, instPreadditive, instSMulHom, instSubHom, instZeroHom, isoMk, mk, mor₁, mor₂, mor₃, obj₁, obj₂, obj₃, π₁, π₁Toπ₂, π₂, π₂Toπ₃, π₃, π₃Toπ₁, TriangleMorphism, comp, hom₁, hom₂, hom₃, binaryBiproductTriangle, binaryProductTriangle, binaryProductTriangleIsoBinaryBiproductTriangle, contractibleTriangle, contractibleTriangleFunctor, instInhabitedTriangle, instInhabitedTriangleMorphism, productTriangle, fan, isLimitFan, π, triangleCategory, triangleMorphismId | 47 |
Theoremshom_inv_id_triangle_hom₁, hom_inv_id_triangle_hom₁_assoc, hom_inv_id_triangle_hom₂, hom_inv_id_triangle_hom₂_assoc, hom_inv_id_triangle_hom₃, hom_inv_id_triangle_hom₃_assoc, inv_hom_id_triangle_hom₁, inv_hom_id_triangle_hom₁_assoc, inv_hom_id_triangle_hom₂, inv_hom_id_triangle_hom₂_assoc, inv_hom_id_triangle_hom₃, inv_hom_id_triangle_hom₃_assoc, add_hom₁, add_hom₂, add_hom₃, eqToHom_hom₁, eqToHom_hom₂, eqToHom_hom₃, functorHomMk'_app_hom₁, functorHomMk'_app_hom₂, functorHomMk'_app_hom₃, functorHomMk_app_hom₁, functorHomMk_app_hom₂, functorHomMk_app_hom₃, functorIsoMk'_hom_app_hom₁, functorIsoMk'_hom_app_hom₂, functorIsoMk'_hom_app_hom₃, functorIsoMk'_inv_app_hom₁, functorIsoMk'_inv_app_hom₂, functorIsoMk'_inv_app_hom₃, functorIsoMk_hom, functorIsoMk_inv, functorMk_map_hom₁, functorMk_map_hom₂, functorMk_map_hom₃, functorMk_obj, homMk_hom₁, homMk_hom₂, homMk_hom₃, hom_ext, hom_ext_iff, instIsIsoHom₁, instIsIsoHom₂, instIsIsoHom₃, isIso_of_isIsos, isoMk_hom, isoMk_inv, mk_mor₁, mk_mor₂, mk_mor₃, mk_obj₁, mk_obj₂, mk_obj₃, neg_hom₁, neg_hom₂, neg_hom₃, smul_hom₁, smul_hom₂, smul_hom₃, sub_hom₁, sub_hom₂, sub_hom₃, zero_hom₁, zero_hom₂, zero_hom₃, π₁Toπ₂_app, π₁_map, π₁_obj, π₂Toπ₃_app, π₂_map, π₂_obj, π₃Toπ₁_app, π₃_map, π₃_obj, comm₁, comm₁_assoc, comm₂, comm₂_assoc, comm₃, comm₃_assoc, comp_hom₁, comp_hom₂, comp_hom₃, ext, ext_iff, binaryBiproductTriangle_mor₁, binaryBiproductTriangle_mor₂, binaryBiproductTriangle_mor₃, binaryBiproductTriangle_obj₁, binaryBiproductTriangle_obj₂, binaryBiproductTriangle_obj₃, binaryProductTriangleIsoBinaryBiproductTriangle_hom_hom₁, binaryProductTriangleIsoBinaryBiproductTriangle_hom_hom₂, binaryProductTriangleIsoBinaryBiproductTriangle_hom_hom₃, binaryProductTriangleIsoBinaryBiproductTriangle_inv_hom₁, binaryProductTriangleIsoBinaryBiproductTriangle_inv_hom₂, binaryProductTriangleIsoBinaryBiproductTriangle_inv_hom₃, binaryProductTriangle_mor₁, binaryProductTriangle_mor₂, binaryProductTriangle_mor₃, binaryProductTriangle_obj₁, binaryProductTriangle_obj₂, binaryProductTriangle_obj₃, comp_hom₁, comp_hom₁_assoc, comp_hom₂, comp_hom₂_assoc, comp_hom₃, comp_hom₃_assoc, contractibleTriangleFunctor_map_hom₁, contractibleTriangleFunctor_map_hom₂, contractibleTriangleFunctor_map_hom₃, contractibleTriangleFunctor_obj, contractibleTriangle_mor₁, contractibleTriangle_mor₂, contractibleTriangle_mor₃, contractibleTriangle_obj₁, contractibleTriangle_obj₂, contractibleTriangle_obj₃, id_hom₁, id_hom₂, id_hom₃, lift_hom₁, lift_hom₂, lift_hom₃, zero₃₁, π_hom₁, π_hom₂, π_hom₃, productTriangle_mor₁, productTriangle_mor₂, productTriangle_mor₃, productTriangle_obj₁, productTriangle_obj₂, productTriangle_obj₃, triangleCategory_comp, triangleCategory_id, triangleMorphismId_hom₁, triangleMorphismId_hom₂, triangleMorphismId_hom₃ | 140 |
| Total | 187 |
| Name | Category | Theorems |
TriangleMorphism 📖 | CompData | — |
binaryBiproductTriangle 📖 | CompOp | 13 mathmath: binaryBiproductTriangle_mor₁, binaryBiproductTriangle_mor₂, binaryProductTriangleIsoBinaryBiproductTriangle_hom_hom₂, binaryProductTriangleIsoBinaryBiproductTriangle_inv_hom₂, binaryBiproductTriangle_obj₃, binaryBiproductTriangle_obj₂, binaryBiproductTriangle_obj₁, binaryBiproductTriangle_mor₃, binaryProductTriangleIsoBinaryBiproductTriangle_inv_hom₃, binaryProductTriangleIsoBinaryBiproductTriangle_inv_hom₁, binaryProductTriangleIsoBinaryBiproductTriangle_hom_hom₃, binaryProductTriangleIsoBinaryBiproductTriangle_hom_hom₁, binaryBiproductTriangle_distinguished
|
binaryProductTriangle 📖 | CompOp | 13 mathmath: binaryProductTriangle_obj₂, binaryProductTriangleIsoBinaryBiproductTriangle_hom_hom₂, binaryProductTriangle_mor₂, binaryProductTriangleIsoBinaryBiproductTriangle_inv_hom₂, binaryProductTriangle_mor₁, binaryProductTriangle_distinguished, binaryProductTriangle_mor₃, binaryProductTriangleIsoBinaryBiproductTriangle_inv_hom₃, binaryProductTriangle_obj₃, binaryProductTriangleIsoBinaryBiproductTriangle_inv_hom₁, binaryProductTriangle_obj₁, binaryProductTriangleIsoBinaryBiproductTriangle_hom_hom₃, binaryProductTriangleIsoBinaryBiproductTriangle_hom_hom₁
|
binaryProductTriangleIsoBinaryBiproductTriangle 📖 | CompOp | 6 mathmath: binaryProductTriangleIsoBinaryBiproductTriangle_hom_hom₂, binaryProductTriangleIsoBinaryBiproductTriangle_inv_hom₂, binaryProductTriangleIsoBinaryBiproductTriangle_inv_hom₃, binaryProductTriangleIsoBinaryBiproductTriangle_inv_hom₁, binaryProductTriangleIsoBinaryBiproductTriangle_hom_hom₃, binaryProductTriangleIsoBinaryBiproductTriangle_hom_hom₁
|
contractibleTriangle 📖 | CompOp | 20 mathmath: contractibleTriangle_obj₂, contractibleTriangleFunctor_map_hom₂, Opposite.contractibleTriangleIso_hom_hom₂, Opposite.contractibleTriangleIso_hom_hom₁, Opposite.contractibleTriangleIso_inv_hom₃, contractibleTriangle_mor₂, Opposite.contractibleTriangleIso_hom_hom₃, contractibleTriangleFunctor_map_hom₁, Opposite.contractibleTriangleIso_inv_hom₁, Opposite.contractible_distinguished, contractibleTriangleFunctor_obj, HomotopyCategory.Pretriangulated.contractible_distinguished, contractibleTriangleFunctor_map_hom₃, contractibleTriangle_obj₃, contractibleTriangle_mor₁, contractibleTriangle_obj₁, contractibleTriangle_mor₃, Opposite.contractibleTriangleIso_inv_hom₂, CategoryTheory.Functor.contractible_mem_essImageDistTriang, contractible_distinguished
|
contractibleTriangleFunctor 📖 | CompOp | 4 mathmath: contractibleTriangleFunctor_map_hom₂, contractibleTriangleFunctor_map_hom₁, contractibleTriangleFunctor_obj, contractibleTriangleFunctor_map_hom₃
|
instInhabitedTriangle 📖 | CompOp | — |
instInhabitedTriangleMorphism 📖 | CompOp | — |
productTriangle 📖 | CompOp | 14 mathmath: productTriangle.π_hom₁, productTriangle_mor₂, productTriangle.π_hom₃, productTriangle.π_hom₂, productTriangle.lift_hom₁, productTriangle_obj₃, productTriangle.lift_hom₃, productTriangle_mor₃, productTriangle_mor₁, productTriangle_distinguished, productTriangle_obj₁, productTriangle.lift_hom₂, productTriangle_obj₂, productTriangle.zero₃₁
|
triangleCategory 📖 | CompOp | 258 mathmath: rotCompInvRot_hom_app_hom₃, CategoryTheory.Iso.inv_hom_id_triangle_hom₃_assoc, HomotopyCategory.spectralObjectMappingCone_δ'_app, Triangle.π₂_map, CategoryTheory.Functor.mapTriangleIdIso_inv_app_hom₃, triangleRotation_counitIso, Opposite.mem_distinguishedTriangles_iff, Triangle.shiftFunctorZero_inv_app_hom₁, CategoryTheory.Functor.mapTriangleOpCompTriangleOpEquivalenceFunctorApp_inv_hom₁, CategoryTheory.Functor.mapTriangleIso_inv_app_hom₁, CategoryTheory.Functor.mapTriangleIso_inv_app_hom₃, CategoryTheory.Triangulated.SpectralObject.ω₂_obj_distinguished, rotCompInvRot_inv_app_hom₂, Triangle.shiftFunctor_map_hom₁, Triangle.π₁_map, CategoryTheory.Functor.mapTriangleRotateIso_inv_app_hom₂, CategoryTheory.Triangulated.TStructure.triangle_iso_exists, contractibleTriangleFunctor_map_hom₂, CategoryTheory.Iso.inv_hom_id_triangle_hom₂, CategoryTheory.Functor.mapTriangleCompIso_inv_app_hom₂, Opposite.mem_distinguishedTriangles_iff', CategoryTheory.Functor.mapTriangle_obj, CategoryTheory.Abelian.Ext.preadditiveYoneda_homologySequenceδ_singleTriangle_apply, Triangle.functorHomMk'_app_hom₁, Triangle.shift_distinguished, Triangle.shiftFunctor_obj, invRotCompRot_inv_app_hom₃, comp_hom₁_assoc, Triangle.eqToHom_hom₂, isoTriangleOfIso₁₂_hom_hom₂, CategoryTheory.Functor.mapTriangleCommShiftIso_inv_app_hom₁, CategoryTheory.Iso.inv_hom_id_triangle_hom₁, Triangle.functorIsoMk'_inv_app_hom₂, triangleOpEquivalence_unitIso, CategoryTheory.Triangulated.SpectralObject.ω₂_obj_mor₃, CategoryTheory.Functor.mapTriangleCompIso_hom_app_hom₂, Triangle.shiftFunctorAdd_eq, CategoryTheory.Iso.inv_hom_id_triangle_hom₂_assoc, CategoryTheory.Functor.mapTriangleRotateIso_inv_app_hom₁, CategoryTheory.Triangulated.TStructure.triangleLTGE_obj_mor₁, TriangleOpEquivalence.functor_map_hom₂, Triangle.π₃_map, Triangle.functorMk_map_hom₃, Triangle.shiftFunctorZero_eq, Triangle.functorMk_map_hom₁, CategoryTheory.Functor.mapTriangleOpCompTriangleOpEquivalenceFunctorApp_inv_hom₃, Opposite.contractibleTriangleIso_hom_hom₂, CategoryTheory.ShortComplex.ShortExact.singleTriangleIso_hom_hom₁, Triangle.eqToHom_hom₃, Triangle.functorIsoMk'_hom_app_hom₃, CategoryTheory.Triangulated.TStructure.triangleLTGE_obj_obj₃, Triangle.smul_hom₂, CategoryTheory.Functor.mapTriangleInvRotateIso_inv_app_hom₃, binaryProductTriangleIsoBinaryBiproductTriangle_hom_hom₂, Triangle.eqToHom_hom₁, Opposite.contractibleTriangleIso_hom_hom₁, Triangle.functorIsoMk'_hom_app_hom₁, Triangle.isoMk_inv, TriangleOpEquivalence.functor_map_hom₃, CategoryTheory.Functor.map_distinguished_iff, CategoryTheory.Functor.mapTriangleIso_hom_app_hom₁, id_hom₃, Triangle.functorHomMk'_app_hom₃, CategoryTheory.Functor.mapTriangleInvRotateIso_hom_app_hom₃, CategoryTheory.Iso.hom_inv_id_triangle_hom₂, TriangleOpEquivalence.unitIso_hom_app, CategoryTheory.Iso.hom_inv_id_triangle_hom₂_assoc, isoTriangleOfIso₁₂_hom_hom₁, Triangle.isIso_of_isIsos, TriangleOpEquivalence.counitIso_hom_app_hom₁, CategoryTheory.Triangulated.SpectralObject.ω₂_map_hom₁, TriangleOpEquivalence.counitIso_inv_app_hom₃, Triangle.sub_hom₁, CochainComplex.homologySequenceδ_quotient_mapTriangle_obj_assoc, Opposite.contractibleTriangleIso_inv_hom₃, CategoryTheory.Functor.mapTriangleIso_hom_app_hom₂, CategoryTheory.Functor.mapTriangleCompIso_inv_app_hom₃, CategoryTheory.Functor.mapTriangleOpCompTriangleOpEquivalenceFunctorApp_hom_hom₁, Opposite.contractibleTriangleIso_hom_hom₃, CategoryTheory.Functor.mapTriangleCompIso_hom_app_hom₃, binaryProductTriangleIsoBinaryBiproductTriangle_inv_hom₂, Triangle.shift_distinguished_iff, contractibleTriangleFunctor_map_hom₁, CategoryTheory.ShortComplex.ShortExact.singleTriangleIso_inv_hom₂, invRotate_map_hom₁, triangleRotation_unitIso, CategoryTheory.Functor.mapTriangle_map_hom₁, preadditiveYoneda_homologySequenceδ_apply, CategoryTheory.Triangulated.TStructure.instIsGEObj₃ObjTriangleTriangleLTGE, CategoryTheory.Functor.mapTriangleRotateIso_hom_app_hom₂, CategoryTheory.ShortComplex.ShortExact.singleTriangleIso_inv_hom₃, Opposite.contractibleTriangleIso_inv_hom₁, Triangle.neg_hom₁, Triangle.shiftFunctorZero_inv_app_hom₃, Triangle.π₁Toπ₂_app, comp_hom₃_assoc, Triangle.neg_hom₃, Triangle.π₂Toπ₃_app, isoTriangleOfIso₁₂_inv_hom₂, CategoryTheory.Functor.mapTriangleCommShiftIso_hom_app_hom₃, triangleCategory_id, CategoryTheory.Functor.mapTriangleCommShiftIso_inv_app_hom₃, op_distinguished, CategoryTheory.Triangulated.TStructure.triangleLTGE_map_hom₃, mem_distTriang_op_iff, contractibleTriangleFunctor_obj, TriangleOpEquivalence.counitIso_inv_app_hom₂, CategoryTheory.Functor.mapTriangleInvRotateIso_inv_app_hom₂, Triangle.zero_hom₁, triangleOpEquivalence_counitIso, triangleOpEquivalence_functor, shortComplexOfDistTriangleIsoOfIso_hom_τ₃, rotCompInvRot_inv_app_hom₃, contractibleTriangleFunctor_map_hom₃, CategoryTheory.Functor.mapTriangleInvRotateIso_inv_app_hom₁, rotate_map_hom₂, invRotCompRot_hom_app_hom₂, CategoryTheory.Functor.mapTriangleRotateIso_hom_app_hom₃, invRotCompRot_inv_app_hom₁, rotate_map_hom₃, mem_distTriang_op_iff', CategoryTheory.Triangulated.SpectralObject.ω₂_obj_mor₂, CategoryTheory.Functor.mapTriangleIdIso_hom_app_hom₃, comp_hom₂_assoc, CategoryTheory.Triangulated.TStructure.triangleLTGE_map_hom₂, id_hom₂, TriangleOpEquivalence.unitIso_inv_app, Triangle.functorIsoMk'_hom_app_hom₂, CategoryTheory.ShortComplex.ShortExact.singleTriangleIso_hom_hom₃, CategoryTheory.Functor.mapTriangleRotateIso_hom_app_hom₁, CategoryTheory.Functor.mapTriangleIso_hom_app_hom₃, invRotate_map_hom₂, CategoryTheory.Triangulated.TStructure.triangleLTGE_obj_mor₃, CategoryTheory.ShortComplex.ShortExact.singleTriangleIso_inv_hom₁, Triangle.shiftFunctorAdd'_inv_app_hom₂, TriangleOpEquivalence.functor_obj, CategoryTheory.Iso.hom_inv_id_triangle_hom₁, CategoryTheory.Functor.mapTriangleOpCompTriangleOpEquivalenceFunctorApp_hom_hom₃, shortComplexOfDistTriangleIsoOfIso_inv_τ₁, CategoryTheory.Iso.hom_inv_id_triangle_hom₃, CategoryTheory.Triangulated.TStructure.triangleLTGE_obj_obj₁, Triangle.π₃Toπ₁_app, Triangle.shiftFunctorZero_hom_app_hom₃, Triangle.shiftFunctorZero_hom_app_hom₁, CategoryTheory.Functor.mapTriangleOpCompTriangleOpEquivalenceFunctorApp_inv_hom₂, isoTriangleOfIso₁₃_hom_hom₁, CategoryTheory.Functor.mapTriangleCompIso_inv_app_hom₁, Triangle.functorMk_map_hom₂, binaryProductTriangleIsoBinaryBiproductTriangle_inv_hom₃, Triangle.shiftFunctorAdd'_inv_app_hom₁, CategoryTheory.Functor.IsTriangulated.map_distinguished, CategoryTheory.Functor.mapTriangle_map_hom₃, Triangle.neg_hom₂, unop_distinguished, Triangle.shiftFunctorAdd'_hom_app_hom₃, Triangle.shiftFunctor_eq, CategoryTheory.Triangulated.TStructure.instIsLEObj₁ObjTriangleTriangleLTGEHSubIntOfNat, Triangle.π₁_obj, comp_hom₂, CategoryTheory.Functor.mapTriangleCommShiftIso_inv_app_hom₂, Triangle.add_hom₂, rotCompInvRot_inv_app_hom₁, Triangle.zero_hom₃, Triangle.add_hom₃, TriangleOpEquivalence.inverse_obj, TriangleOpEquivalence.counitIso_hom_app_hom₂, CategoryTheory.Iso.inv_hom_id_triangle_hom₁_assoc, isoTriangleOfIso₁₃_hom_hom₃, CategoryTheory.Triangulated.TStructure.triangleLTGE_distinguished, CategoryTheory.Functor.mapTriangleCompIso_hom_app_hom₁, triangleCategory_comp, CochainComplex.homologySequenceδ_quotient_mapTriangle_obj, HomotopyCategory.distinguished_iff_iso_trianglehOfDegreewiseSplit, Triangle.shiftFunctor_map_hom₃, rotate_map_hom₁, Triangle.shiftFunctorAdd'_eq, Triangle.π₂_obj, Triangle.π₃_obj, CategoryTheory.Functor.mapTriangleCommShiftIso_hom_app_hom₁, Triangle.add_hom₁, Triangle.shiftFunctorAdd'_hom_app_hom₁, CategoryTheory.Functor.instFaithfulTriangleMapTriangle, isoTriangleOfIso₁₂_inv_hom₁, CategoryTheory.Triangulated.TStructure.triangleLTGE_obj_mor₂, Triangle.smul_hom₃, CategoryTheory.Functor.mapTriangleIso_inv_app_hom₂, Triangle.sub_hom₃, Opposite.contractibleTriangleIso_inv_hom₂, invRotCompRot_hom_app_hom₃, isoTriangleOfIso₁₃_inv_hom₁, comp_hom₃, CategoryTheory.Functor.mapTriangleIdIso_inv_app_hom₁, rotate_obj, Triangle.sub_hom₂, Triangle.functorHomMk'_app_hom₂, binaryProductTriangleIsoBinaryBiproductTriangle_inv_hom₁, CategoryTheory.ShortComplex.ShortExact.singleTriangleIso_hom_hom₂, CategoryTheory.Triangulated.SpectralObject.ω₂_map_hom₂, CategoryTheory.Iso.hom_inv_id_triangle_hom₃_assoc, CategoryTheory.Functor.mapTriangleIdIso_inv_app_hom₂, rotCompInvRot_hom_app_hom₂, CategoryTheory.Triangulated.TStructure.triangleLTGE_map_hom₁, Triangle.shiftFunctorAdd'_inv_app_hom₃, CategoryTheory.Functor.mapTriangleRotateIso_inv_app_hom₃, exists_iso_of_arrow_iso, CategoryTheory.Triangulated.SpectralObject.ω₂_obj_obj₂, comp_hom₁, Triangle.shiftFunctor_map_hom₂, shortComplexOfDistTriangleIsoOfIso_inv_τ₂, TriangleOpEquivalence.functor_map_hom₁, CategoryTheory.Functor.mapTriangleCommShiftIso_hom_app_hom₂, Triangle.shiftFunctorZero_inv_app_hom₂, CategoryTheory.Functor.instFullTriangleMapTriangleOfFaithful, Triangle.shiftFunctorAdd'_hom_app_hom₂, TriangleOpEquivalence.counitIso_hom_app_hom₃, CategoryTheory.Functor.mapTriangleInvRotateIso_hom_app_hom₁, CategoryTheory.Triangulated.SpectralObject.ω₂_obj_mor₁, shortComplexOfDistTriangleIsoOfIso_hom_τ₁, shortComplexOfDistTriangleIsoOfIso_hom_τ₂, invRotate_map_hom₃, Triangle.isoMk_hom, CategoryTheory.Triangulated.SpectralObject.ω₂_map_hom₃, triangleRotation_inverse, triangleRotation_functor, CategoryTheory.Iso.inv_hom_id_triangle_hom₃, DerivedCategory.mem_distTriang_iff, CategoryTheory.Functor.mapTriangleInvRotateIso_hom_app_hom₂, CategoryTheory.Triangulated.TStructure.triangleLTGE_obj_obj₂, Triangle.shiftFunctorZero_hom_app_hom₂, invRotCompRot_inv_app_hom₂, TriangleOpEquivalence.inverse_map, CategoryTheory.Iso.hom_inv_id_triangle_hom₁_assoc, CategoryTheory.Triangulated.SpectralObject.ω₂_obj_obj₁, CategoryTheory.Functor.map_distinguished, CategoryTheory.Functor.mapTriangleIdIso_hom_app_hom₁, CategoryTheory.Functor.mapTriangleIdIso_hom_app_hom₂, CategoryTheory.Functor.mem_mapTriangle_essImage_of_distinguished, binaryProductTriangleIsoBinaryBiproductTriangle_hom_hom₃, isoTriangleOfIso₁₃_inv_hom₃, TriangleOpEquivalence.counitIso_inv_app_hom₁, CategoryTheory.Functor.mapTriangleOpCompTriangleOpEquivalenceFunctorApp_hom_hom₂, shortComplexOfDistTriangleIsoOfIso_inv_τ₃, binaryProductTriangleIsoBinaryBiproductTriangle_hom_hom₁, rotCompInvRot_hom_app_hom₁, Triangle.functorMk_obj, Triangle.smul_hom₁, invRotate_obj, HomotopyCategory.Pretriangulated.shift_distinguished_triangle, invRotCompRot_hom_app_hom₁, Triangle.functorIsoMk'_inv_app_hom₁, Triangle.functorIsoMk'_inv_app_hom₃, id_hom₁, CategoryTheory.Functor.mapTriangle_map_hom₂, triangleOpEquivalence_inverse, Triangle.zero_hom₂, instIsEquivalenceTriangleInvRotate, instIsEquivalenceTriangleRotate, CategoryTheory.Triangulated.SpectralObject.ω₂_obj_obj₃
|
triangleMorphismId 📖 | CompOp | 4 mathmath: triangleMorphismId_hom₃, triangleCategory_id, triangleMorphismId_hom₂, triangleMorphismId_hom₁
|
| Name | Category | Theorems |
functorHomMk 📖 | CompOp | 5 mathmath: functorHomMk_app_hom₂, functorHomMk_app_hom₃, functorHomMk_app_hom₁, functorIsoMk_hom, functorIsoMk_inv
|
functorHomMk' 📖 | CompOp | 3 mathmath: functorHomMk'_app_hom₁, functorHomMk'_app_hom₃, functorHomMk'_app_hom₂
|
functorIsoMk 📖 | CompOp | 2 mathmath: functorIsoMk_hom, functorIsoMk_inv
|
functorIsoMk' 📖 | CompOp | 6 mathmath: functorIsoMk'_inv_app_hom₂, functorIsoMk'_hom_app_hom₃, functorIsoMk'_hom_app_hom₁, functorIsoMk'_hom_app_hom₂, functorIsoMk'_inv_app_hom₁, functorIsoMk'_inv_app_hom₃
|
functorMk 📖 | CompOp | 13 mathmath: functorHomMk'_app_hom₁, functorIsoMk'_inv_app_hom₂, functorMk_map_hom₃, functorMk_map_hom₁, functorIsoMk'_hom_app_hom₃, functorIsoMk'_hom_app_hom₁, functorHomMk'_app_hom₃, functorIsoMk'_hom_app_hom₂, functorMk_map_hom₂, functorHomMk'_app_hom₂, functorMk_obj, functorIsoMk'_inv_app_hom₁, functorIsoMk'_inv_app_hom₃
|
homMk 📖 | CompOp | 7 mathmath: homMk_hom₃, isoMk_inv, CategoryTheory.Pretriangulated.TriangleOpEquivalence.unitIso_hom_app, homMk_hom₁, CategoryTheory.Pretriangulated.TriangleOpEquivalence.unitIso_inv_app, homMk_hom₂, isoMk_hom
|
instAddCommGroupHom 📖 | CompOp | — |
instAddHom 📖 | CompOp | 3 mathmath: add_hom₂, add_hom₃, add_hom₁
|
instLinear 📖 | CompOp | — |
instModuleHom 📖 | CompOp | — |
instNegHom 📖 | CompOp | 3 mathmath: neg_hom₁, neg_hom₃, neg_hom₂
|
instPreadditive 📖 | CompOp | — |
instSMulHom 📖 | CompOp | 3 mathmath: smul_hom₂, smul_hom₃, smul_hom₁
|
instSubHom 📖 | CompOp | 3 mathmath: sub_hom₁, sub_hom₃, sub_hom₂
|
instZeroHom 📖 | CompOp | 3 mathmath: zero_hom₁, zero_hom₃, zero_hom₂
|
isoMk 📖 | CompOp | 2 mathmath: isoMk_inv, isoMk_hom
|
mk 📖 | CompOp | — |
mor₁ 📖 | CompOp | 90 mathmath: CochainComplex.mappingConeCompTriangleh_comm₁_assoc, coyoneda_exact₂, shiftFunctor_map_hom₁, CochainComplex.mappingCone.triangle_mor₁, CategoryTheory.Triangulated.Octahedron.triangle_mor₁, CategoryTheory.Functor.mapTriangle_obj, CategoryTheory.Functor.homologySequence_comp_assoc, CategoryTheory.Pretriangulated.comp_distTriang_mor_zero₁₂, shiftFunctor_obj, CategoryTheory.Functor.homologySequence_comp, CategoryTheory.Pretriangulated.binaryBiproductTriangle_mor₁, mor₁_eq_zero_of_mono₂, DerivedCategory.HomologySequence.exact₂, mk_mor₁, CategoryTheory.Triangulated.TStructure.triangleLTGE_obj_mor₁, CategoryTheory.Pretriangulated.TriangleOpEquivalence.functor_map_hom₂, DerivedCategory.triangleOfSES_mor₁, DerivedCategory.HomologySequence.mono_homologyMap_mor₁_iff, CochainComplex.mappingConeCompHomotopyEquiv_comm₂_assoc, CochainComplex.mappingConeCompHomotopyEquiv_hom_inv_id, distinguished_iff_of_isZero₃, CategoryTheory.ObjectProperty.trW_iff_of_distinguished, CategoryTheory.Pretriangulated.TriangleMorphism.comm₁_assoc, CochainComplex.MappingConeCompHomotopyEquiv.hom_inv_id_assoc, CategoryTheory.Pretriangulated.TriangleOpEquivalence.functor_map_hom₃, CategoryTheory.Pretriangulated.TriangleOpEquivalence.unitIso_hom_app, rotate_mor₃, CochainComplex.mappingConeCompHomotopyEquiv_comm₁, CategoryTheory.Pretriangulated.shortComplexOfDistTriangle_f, CategoryTheory.Triangulated.Octahedron.map_m₃, CochainComplex.mappingConeCompHomotopyEquiv_comm₁_assoc, CategoryTheory.Functor.homologySequence_epi_shift_map_mor₁_iff, CategoryTheory.Pretriangulated.comp_distTriang_mor_zero₃₁, CategoryTheory.Functor.homologySequence_exact₂, CategoryTheory.Functor.mapTriangle_map_hom₁, CategoryTheory.Functor.homologySequenceδ_comp_assoc, CategoryTheory.Functor.homologySequence_mono_shift_map_mor₁_iff, mono₁, isZero₃_iff_isIso₁, CategoryTheory.ShortComplex.ShortExact.singleTriangle_mor₁, π₁Toπ₂_app, DerivedCategory.HomologySequence.epi_homologyMap_mor₁_iff, DerivedCategory.HomologySequence.mono_homologyMap_mor₂_iff, invRotate_mor₁, CochainComplex.mappingConeCompTriangle_mor₁, CategoryTheory.Pretriangulated.binaryProductTriangle_mor₁, CochainComplex.MappingConeCompHomotopyEquiv.hom_inv_id, mor₂_eq_zero_iff_epi₁, rotate_mor₁, CategoryTheory.Triangulated.Octahedron.map_m₁, CategoryTheory.Pretriangulated.TriangleOpEquivalence.unitIso_inv_app, CategoryTheory.Pretriangulated.complete_distinguished_triangle_morphism₂, CategoryTheory.Pretriangulated.TriangleOpEquivalence.functor_obj, CategoryTheory.Pretriangulated.contractibleTriangle_mor₁, CochainComplex.mappingConeCompHomotopyEquiv_comm₂, CategoryTheory.Triangulated.SpectralObject.triangle_mor₁, DerivedCategory.HomologySequence.exact₁, isZero₂_iff, CategoryTheory.Functor.mapTriangle_map_hom₃, CategoryTheory.Pretriangulated.TriangleOpEquivalence.inverse_obj, CategoryTheory.Functor.homologySequence_exact₁, CategoryTheory.Pretriangulated.productTriangle_mor₁, CategoryTheory.Pretriangulated.comp_distTriang_mor_zero₃₁_assoc, shiftFunctor_map_hom₃, CategoryTheory.Pretriangulated.TriangleMorphism.comm₁, mor₁_eq_zero_iff_epi₃, CategoryTheory.ObjectProperty.trW.mk, CochainComplex.triangleOfDegreewiseSplit_mor₁, mor₁_eq_zero_iff_mono₂, mor₁_eq_zero_of_epi₃, CategoryTheory.Pretriangulated.exists_iso_binaryBiproduct_of_distTriang, CategoryTheory.Pretriangulated.exists_iso_of_arrow_iso, shiftFunctor_map_hom₂, CategoryTheory.Pretriangulated.complete_distinguished_triangle_morphism₁, epi₁, CategoryTheory.Pretriangulated.TriangleOpEquivalence.functor_map_hom₁, isZero₁_iff, CategoryTheory.Triangulated.SpectralObject.ω₂_obj_mor₁, CochainComplex.mappingConeCompTriangleh_comm₁, mor₃_eq_zero_iff_mono₁, DerivedCategory.HomologySequence.δ_comp_assoc, DerivedCategory.HomologySequence.δ_comp, CategoryTheory.Pretriangulated.comp_distTriang_mor_zero₁₂_assoc, CochainComplex.mappingCone.triangleRotateShortComplex_f, CategoryTheory.Pretriangulated.TriangleOpEquivalence.inverse_map, CategoryTheory.Functor.homologySequenceδ_comp, CategoryTheory.Functor.homologySequence_mono_shift_map_mor₂_iff, CochainComplex.mappingConeCompHomotopyEquiv_hom_inv_id_assoc, CategoryTheory.Functor.mapTriangle_map_hom₂, invRotate_mor₂
|
mor₂ 📖 | CompOp | 89 mathmath: CochainComplex.mappingConeCompTriangleh_comm₁_assoc, invRotate_mor₃, shiftFunctor_map_hom₁, DerivedCategory.HomologySequence.comp_δ, CategoryTheory.Functor.mapTriangle_obj, CategoryTheory.Functor.homologySequence_comp_assoc, CategoryTheory.Pretriangulated.comp_distTriang_mor_zero₁₂, shiftFunctor_obj, CategoryTheory.Functor.homologySequence_comp, CategoryTheory.Pretriangulated.binaryBiproductTriangle_mor₂, DerivedCategory.HomologySequence.exact₂, CategoryTheory.Pretriangulated.productTriangle_mor₂, CategoryTheory.Pretriangulated.TriangleOpEquivalence.functor_map_hom₂, yoneda_exact₂, epi₂, CategoryTheory.Pretriangulated.TriangleOpEquivalence.functor_map_hom₃, CategoryTheory.Pretriangulated.binaryProductTriangle_mor₂, CategoryTheory.Pretriangulated.TriangleOpEquivalence.unitIso_hom_app, distinguished_iff_of_isZero₁, HomotopyCategory.Pretriangulated.complete_distinguished_triangle_morphism, mor₂_eq_zero_of_mono₃, CochainComplex.mappingConeCompHomotopyEquiv_comm₁, CategoryTheory.Triangulated.Localization.complete_distinguished_triangle_morphism, CategoryTheory.Pretriangulated.contractibleTriangle_mor₂, CategoryTheory.Triangulated.Octahedron.map_m₃, mor₂_eq_zero_of_epi₁, DerivedCategory.HomologySequence.comp_δ_assoc, CochainComplex.mappingConeCompHomotopyEquiv_comm₁_assoc, CategoryTheory.Functor.homologySequence_epi_shift_map_mor₁_iff, CategoryTheory.Functor.homologySequence_exact₂, CategoryTheory.Functor.mapTriangle_map_hom₁, coyoneda_exact₃, CategoryTheory.Triangulated.Octahedron.triangle_mor₂, π₂Toπ₃_app, CategoryTheory.ObjectProperty.trW.mk', DerivedCategory.HomologySequence.epi_homologyMap_mor₁_iff, CategoryTheory.Functor.comp_homologySequenceδ, DerivedCategory.HomologySequence.mono_homologyMap_mor₂_iff, CochainComplex.triangleOfDegreewiseSplit_mor₂, CategoryTheory.Functor.complete_distinguished_essImageDistTriang_morphism, mk_mor₂, CategoryTheory.Functor.homologySequence_exact₃, CochainComplex.mappingCone.triangle_mor₂, CategoryTheory.Triangulated.SpectralObject.triangle_mor₂, CategoryTheory.Pretriangulated.comp_distTriang_mor_zero₂₃, mor₂_eq_zero_iff_epi₁, rotate_mor₁, CategoryTheory.ShortComplex.ShortExact.singleTriangle_mor₂, CategoryTheory.Triangulated.Octahedron.map_m₁, CategoryTheory.Triangulated.SpectralObject.ω₂_obj_mor₂, CategoryTheory.Pretriangulated.shortComplexOfDistTriangle_g, CategoryTheory.Pretriangulated.TriangleOpEquivalence.unitIso_inv_app, CategoryTheory.Pretriangulated.complete_distinguished_triangle_morphism₂, CategoryTheory.Pretriangulated.TriangleOpEquivalence.functor_obj, CategoryTheory.Pretriangulated.comp_distTriang_mor_zero₂₃_assoc, CategoryTheory.ObjectProperty.trW_iff_of_distinguished', isZero₂_iff, CategoryTheory.Functor.mapTriangle_map_hom₃, mor₃_eq_zero_iff_epi₂, CategoryTheory.Pretriangulated.TriangleOpEquivalence.inverse_obj, shiftFunctor_map_hom₃, CategoryTheory.Triangulated.TStructure.triangleLTGE_obj_mor₂, CochainComplex.mappingCone.triangleRotateShortComplex_g, mor₁_eq_zero_iff_mono₂, rotate_mor₂, CategoryTheory.Pretriangulated.exists_iso_binaryBiproduct_of_distTriang, CategoryTheory.Pretriangulated.complete_distinguished_triangle_morphism, isZero₃_iff, shiftFunctor_map_hom₂, CategoryTheory.MorphismProperty.IsCompatibleWithTriangulation.compatible_with_triangulation, DerivedCategory.triangleOfSES_mor₂, CategoryTheory.Pretriangulated.TriangleOpEquivalence.functor_map_hom₁, mor₂_eq_zero_iff_mono₃, CategoryTheory.Pretriangulated.TriangleMorphism.comm₂_assoc, CochainComplex.mappingConeCompTriangle_mor₂, CochainComplex.mappingConeCompTriangleh_comm₁, CategoryTheory.Pretriangulated.Opposite.complete_distinguished_triangle_morphism, CategoryTheory.Pretriangulated.comp_distTriang_mor_zero₁₂_assoc, CategoryTheory.Pretriangulated.TriangleMorphism.comm₂, DerivedCategory.HomologySequence.exact₃, mono₂, DerivedCategory.HomologySequence.epi_homologyMap_mor₂_iff, CategoryTheory.Pretriangulated.TriangleOpEquivalence.inverse_map, isZero₁_iff_isIso₂, CategoryTheory.Functor.homologySequence_mono_shift_map_mor₂_iff, CategoryTheory.Functor.comp_homologySequenceδ_assoc, CategoryTheory.Functor.mapTriangle_map_hom₂, CategoryTheory.Functor.homologySequence_epi_shift_map_mor₂_iff, invRotate_mor₂
|
mor₃ 📖 | CompOp | 87 mathmath: HomotopyCategory.spectralObjectMappingCone_δ'_app, invRotate_mor₃, shiftFunctor_map_hom₁, CategoryTheory.Functor.mapTriangle_obj, shiftFunctor_obj, CochainComplex.mappingConeCompTriangle_mor₃, CategoryTheory.Triangulated.SpectralObject.ω₂_obj_mor₃, CochainComplex.mappingCone.rotateHomotopyEquiv_comm₂_assoc, CategoryTheory.Pretriangulated.TriangleOpEquivalence.functor_map_hom₂, CochainComplex.mappingCone.inl_v_triangle_mor₃_f, CochainComplex.mappingCone.inr_triangleδ, CategoryTheory.Pretriangulated.TriangleMorphism.comm₃, CochainComplex.mappingConeCompHomotopyEquiv_comm₂_assoc, CategoryTheory.Triangulated.SpectralObject.triangle_mor₃, CategoryTheory.Pretriangulated.TriangleOpEquivalence.functor_map_hom₃, CategoryTheory.Pretriangulated.TriangleOpEquivalence.unitIso_hom_app, HomotopyCategory.Pretriangulated.complete_distinguished_triangle_morphism, rotate_mor₃, CategoryTheory.Triangulated.Localization.complete_distinguished_triangle_morphism, CochainComplex.mappingCone.rotateHomotopyEquiv_comm₂, CochainComplex.homologySequenceδ_quotient_mapTriangle_obj_assoc, CategoryTheory.Triangulated.Octahedron.triangle_mor₃, CategoryTheory.Triangulated.Octahedron.map_m₃, distinguished_iff_of_isZero₂, CategoryTheory.Pretriangulated.comp_distTriang_mor_zero₃₁, mor₃_eq_zero_of_epi₂, CategoryTheory.Functor.mapTriangle_map_hom₁, CochainComplex.mappingConeCompTriangle_mor₃_naturality, CategoryTheory.Pretriangulated.preadditiveYoneda_homologySequenceδ_apply, isZero₂_iff_isIso₃, CategoryTheory.ShortComplex.ShortExact.singleTriangle_mor₃, CochainComplex.mappingCone.inl_v_triangle_mor₃_f_assoc, invRotate_mor₁, CochainComplex.mappingCone.inr_triangleδ_assoc, CochainComplex.mappingCone.inr_f_triangle_mor₃_f, CategoryTheory.Functor.complete_distinguished_essImageDistTriang_morphism, CategoryTheory.Pretriangulated.comp_distTriang_mor_zero₂₃, CategoryTheory.Triangulated.Octahedron.map_m₁, CategoryTheory.Pretriangulated.binaryProductTriangle_mor₃, CategoryTheory.Pretriangulated.TriangleOpEquivalence.unitIso_inv_app, CategoryTheory.Triangulated.TStructure.triangleLTGE_obj_mor₃, CategoryTheory.Pretriangulated.TriangleOpEquivalence.functor_obj, CochainComplex.mappingConeCompHomotopyEquiv_comm₂, CategoryTheory.Pretriangulated.comp_distTriang_mor_zero₂₃_assoc, CategoryTheory.Pretriangulated.TriangleMorphism.comm₃_assoc, π₃Toπ₁_app, CochainComplex.mappingCone.rotateHomotopyEquiv_comm₃_assoc, CategoryTheory.Pretriangulated.binaryBiproductTriangle_mor₃, CochainComplex.mappingConeHomOfDegreewiseSplitIso_inv_comp_triangle_mor₃_assoc, CategoryTheory.Functor.mapTriangle_map_hom₃, mor₃_eq_zero_iff_epi₂, mono₃, CategoryTheory.Pretriangulated.productTriangle_mor₃, CategoryTheory.Pretriangulated.TriangleOpEquivalence.inverse_obj, DerivedCategory.triangleOfSES_mor₃, CategoryTheory.Pretriangulated.comp_distTriang_mor_zero₃₁_assoc, epi₃, CochainComplex.homologySequenceδ_quotient_mapTriangle_obj, CategoryTheory.Pretriangulated.contractibleTriangle_mor₃, shiftFunctor_map_hom₃, CochainComplex.triangleOfDegreewiseSplit_mor₃, CochainComplex.mappingCone.triangleMapOfHomotopy_comm₃_assoc, CochainComplex.mappingConeHomOfDegreewiseSplitIso_inv_comp_triangle_mor₃, mor₁_eq_zero_iff_epi₃, rotate_mor₂, CochainComplex.mappingCone.inr_f_triangle_mor₃_f_assoc, CategoryTheory.Pretriangulated.complete_distinguished_triangle_morphism, isZero₃_iff, CochainComplex.mappingConeCompTriangle_mor₃_naturality_assoc, CochainComplex.mappingCone.triangleMapOfHomotopy_comm₃, mor₃_eq_zero_of_mono₁, shiftFunctor_map_hom₂, CategoryTheory.Pretriangulated.complete_distinguished_triangle_morphism₁, CategoryTheory.MorphismProperty.IsCompatibleWithTriangulation.compatible_with_triangulation, CategoryTheory.Pretriangulated.TriangleOpEquivalence.functor_map_hom₁, mor₂_eq_zero_iff_mono₃, isZero₁_iff, mor₃_eq_zero_iff_mono₁, mk_mor₃, CategoryTheory.Pretriangulated.Opposite.complete_distinguished_triangle_morphism, CochainComplex.mappingCone.rotateHomotopyEquiv_comm₃, CategoryTheory.Pretriangulated.TriangleOpEquivalence.inverse_map, coyoneda_exact₁, CategoryTheory.Functor.mapTriangle_map_hom₂, CategoryTheory.Pretriangulated.preadditiveCoyoneda_homologySequenceδ_apply, yoneda_exact₃, CochainComplex.mappingCone.map_δ
|
obj₁ 📖 | CompOp | 190 mathmath: CochainComplex.triangleOfDegreewiseSplit_obj₁, CochainComplex.mappingConeCompTriangleh_comm₁_assoc, shiftFunctorZero_inv_app_hom₁, coyoneda_exact₂, CategoryTheory.Functor.mapTriangleIso_inv_app_hom₁, invRotate_obj₁, shiftFunctor_map_hom₁, CategoryTheory.Pretriangulated.productTriangle.π_hom₁, DerivedCategory.HomologySequence.comp_δ, CategoryTheory.Functor.mapTriangle_obj, CategoryTheory.Abelian.Ext.preadditiveYoneda_homologySequenceδ_singleTriangle_apply, CategoryTheory.Functor.homologySequence_comp_assoc, CategoryTheory.Pretriangulated.comp_distTriang_mor_zero₁₂, shiftFunctor_obj, CategoryTheory.Pretriangulated.comp_hom₁_assoc, CategoryTheory.Functor.mapTriangleCommShiftIso_inv_app_hom₁, CategoryTheory.Iso.inv_hom_id_triangle_hom₁, CategoryTheory.Functor.homologySequence_comp, CochainComplex.mappingCone.rotateHomotopyEquiv_comm₂_assoc, mor₁_eq_zero_of_mono₂, CategoryTheory.Pretriangulated.shortComplexOfDistTriangle_X₁, DerivedCategory.HomologySequence.exact₂, CategoryTheory.Pretriangulated.TriangleOpEquivalence.functor_map_hom₂, CategoryTheory.Functor.homologySequenceδ_naturality, CochainComplex.mappingCone.inl_v_triangle_mor₃_f, CochainComplex.mappingCone.inr_triangleδ, rotate_obj₁, CategoryTheory.Pretriangulated.TriangleMorphism.comm₃, CategoryTheory.Functor.mapTriangleOpCompTriangleOpEquivalenceFunctorApp_inv_hom₃, DerivedCategory.HomologySequence.mono_homologyMap_mor₁_iff, CochainComplex.mappingConeCompHomotopyEquiv_comm₂_assoc, CochainComplex.mappingConeCompHomotopyEquiv_hom_inv_id, eqToHom_hom₁, distinguished_iff_of_isZero₃, CategoryTheory.Abelian.Ext.preadditiveCoyoneda_homologySequenceδ_singleTriangle_apply, CategoryTheory.ObjectProperty.trW_iff_of_distinguished, CategoryTheory.Pretriangulated.TriangleMorphism.comm₁_assoc, CochainComplex.MappingConeCompHomotopyEquiv.hom_inv_id_assoc, CategoryTheory.Pretriangulated.TriangleOpEquivalence.functor_map_hom₃, CategoryTheory.Functor.mapTriangleIso_hom_app_hom₁, CategoryTheory.Pretriangulated.TriangleOpEquivalence.unitIso_hom_app, CategoryTheory.ObjectProperty.ext_of_isTriangulatedClosed₁, CategoryTheory.Pretriangulated.TriangleOpEquivalence.counitIso_hom_app_hom₁, rotate_mor₃, CochainComplex.mappingConeCompHomotopyEquiv_comm₁, sub_hom₁, CochainComplex.mappingCone.rotateHomotopyEquiv_comm₂, CochainComplex.homologySequenceδ_quotient_mapTriangle_obj_assoc, CategoryTheory.Triangulated.Octahedron.map_m₃, distinguished_iff_of_isZero₂, DerivedCategory.HomologySequence.comp_δ_assoc, CochainComplex.mappingConeCompHomotopyEquiv_comm₁_assoc, CategoryTheory.Functor.homologySequence_epi_shift_map_mor₁_iff, CategoryTheory.ObjectProperty.IsTriangulatedClosed₁.ext₁', CategoryTheory.Pretriangulated.comp_distTriang_mor_zero₃₁, mor₃_eq_zero_of_epi₂, CategoryTheory.Functor.homologySequence_exact₂, CategoryTheory.Functor.mapTriangle_map_hom₁, CochainComplex.mappingConeCompTriangle_mor₃_naturality, CategoryTheory.Functor.homologySequenceδ_comp_assoc, CategoryTheory.Functor.homologySequence_mono_shift_map_mor₁_iff, CategoryTheory.Pretriangulated.preadditiveYoneda_homologySequenceδ_apply, CochainComplex.mappingCone.triangleRotateShortComplex_X₁, isZero₂_iff_isIso₃, isZero₃_iff_isIso₁, neg_hom₁, CategoryTheory.Pretriangulated.TriangleMorphism.comp_hom₁, DerivedCategory.HomologySequence.epi_homologyMap_mor₁_iff, CategoryTheory.Functor.comp_homologySequenceδ, DerivedCategory.HomologySequence.mono_homologyMap_mor₂_iff, CochainComplex.mappingCone.inl_v_triangle_mor₃_f_assoc, invRotate_mor₁, CochainComplex.mappingCone.inr_triangleδ_assoc, CochainComplex.mappingCone.inr_f_triangle_mor₃_f, DerivedCategory.triangleOfSES_obj₁, CategoryTheory.Functor.mapTriangleInvRotateIso_inv_app_hom₂, zero_hom₁, CategoryTheory.Functor.homologySequence_exact₃, CategoryTheory.Pretriangulated.comp_distTriang_mor_zero₂₃, CochainComplex.MappingConeCompHomotopyEquiv.hom_inv_id, mor₂_eq_zero_iff_epi₁, CategoryTheory.Functor.mapTriangleRotateIso_hom_app_hom₃, CategoryTheory.Triangulated.Octahedron.map_m₁, CategoryTheory.Pretriangulated.invRotCompRot_inv_app_hom₁, CategoryTheory.Pretriangulated.rotate_map_hom₃, CategoryTheory.Pretriangulated.TriangleOpEquivalence.unitIso_inv_app, instIsIsoHom₁, CategoryTheory.Pretriangulated.TriangleOpEquivalence.functor_obj, CategoryTheory.Iso.hom_inv_id_triangle_hom₁, CategoryTheory.Pretriangulated.productTriangle.lift_hom₁, CochainComplex.mappingConeCompHomotopyEquiv_comm₂, CategoryTheory.Pretriangulated.comp_distTriang_mor_zero₂₃_assoc, CategoryTheory.Pretriangulated.TriangleMorphism.comm₃_assoc, CategoryTheory.Functor.mapTriangleOpCompTriangleOpEquivalenceFunctorApp_hom_hom₃, CategoryTheory.Triangulated.Octahedron.triangle_obj₁, CategoryTheory.Triangulated.TStructure.triangleLTGE_obj_obj₁, CategoryTheory.ShortComplex.ShortExact.singleTriangle_obj₁, CochainComplex.mappingCone.rotateHomotopyEquiv_comm₃_assoc, CategoryTheory.ObjectProperty.trW_iff_of_distinguished', rotate_obj₃, CategoryTheory.Pretriangulated.binaryBiproductTriangle_obj₁, shiftFunctorZero_hom_app_hom₁, CategoryTheory.Functor.mapTriangleCompIso_inv_app_hom₁, CochainComplex.mappingConeHomOfDegreewiseSplitIso_inv_comp_triangle_mor₃_assoc, DerivedCategory.HomologySequence.exact₁, isZero₂_iff, shiftFunctorAdd'_inv_app_hom₁, CategoryTheory.Functor.mapTriangle_map_hom₃, mor₃_eq_zero_iff_epi₂, CategoryTheory.Triangulated.TStructure.instIsLEObj₁ObjTriangleTriangleLTGEHSubIntOfNat, π₁_obj, mono₃, CategoryTheory.Pretriangulated.rotCompInvRot_inv_app_hom₁, CategoryTheory.Pretriangulated.contractibleTriangle_obj₁, CategoryTheory.Pretriangulated.productTriangle_mor₃, CategoryTheory.Pretriangulated.TriangleOpEquivalence.inverse_obj, CategoryTheory.Iso.inv_hom_id_triangle_hom₁_assoc, CategoryTheory.Functor.homologySequence_exact₁, CategoryTheory.Pretriangulated.productTriangle_mor₁, CategoryTheory.Functor.mapTriangleCompIso_hom_app_hom₁, CategoryTheory.Pretriangulated.comp_distTriang_mor_zero₃₁_assoc, CochainComplex.mappingCone.trianglehMapOfHomotopy_hom₁, CochainComplex.homologySequenceδ_quotient_mapTriangle_obj, shiftFunctor_map_hom₃, CategoryTheory.Pretriangulated.TriangleMorphism.comm₁, CategoryTheory.Functor.mapTriangleCommShiftIso_hom_app_hom₁, add_hom₁, shiftFunctorAdd'_hom_app_hom₁, CochainComplex.mappingCone.triangleMapOfHomotopy_comm₃_assoc, invRotate_obj₂, CochainComplex.mappingConeHomOfDegreewiseSplitIso_inv_comp_triangle_mor₃, mor₁_eq_zero_iff_epi₃, CategoryTheory.Pretriangulated.productTriangle_obj₁, CategoryTheory.ObjectProperty.trW.mk, CategoryTheory.Pretriangulated.triangleMorphismId_hom₁, mor₁_eq_zero_iff_mono₂, CategoryTheory.Functor.mapTriangleIdIso_inv_app_hom₁, mor₁_eq_zero_of_epi₃, CochainComplex.mappingCone.inr_f_triangle_mor₃_f_assoc, isZero₃_iff, CategoryTheory.Functor.mapTriangleRotateIso_inv_app_hom₃, CategoryTheory.Pretriangulated.exists_iso_of_arrow_iso, CochainComplex.mappingConeCompTriangle_mor₃_naturality_assoc, isZero₁_of_isZero₂₃, CategoryTheory.Pretriangulated.comp_hom₁, CochainComplex.mappingCone.triangleMapOfHomotopy_comm₃, CategoryTheory.Functor.homologySequenceδ_naturality_assoc, CategoryTheory.ObjectProperty.ext_of_isTriangulatedClosed₁', mor₃_eq_zero_of_mono₁, shiftFunctor_map_hom₂, CategoryTheory.Pretriangulated.complete_distinguished_triangle_morphism₁, isZero₁_of_isIso₂, epi₁, CategoryTheory.Pretriangulated.TriangleOpEquivalence.functor_map_hom₁, CategoryTheory.Triangulated.SpectralObject.triangle_obj₁, mor₂_eq_zero_iff_mono₃, isZero₁_iff, CategoryTheory.Pretriangulated.binaryProductTriangle_obj₁, CochainComplex.mappingConeCompTriangleh_comm₁, mor₃_eq_zero_iff_mono₁, DerivedCategory.HomologySequence.δ_comp_assoc, DerivedCategory.HomologySequence.δ_comp, CategoryTheory.Pretriangulated.comp_distTriang_mor_zero₁₂_assoc, CategoryTheory.Functor.mapTriangleInvRotateIso_hom_app_hom₂, DerivedCategory.HomologySequence.exact₃, DerivedCategory.HomologySequence.epi_homologyMap_mor₂_iff, CochainComplex.mappingCone.rotateHomotopyEquiv_comm₃, CategoryTheory.Pretriangulated.TriangleOpEquivalence.inverse_map, CategoryTheory.Iso.hom_inv_id_triangle_hom₁_assoc, CategoryTheory.Triangulated.SpectralObject.ω₂_obj_obj₁, CategoryTheory.Functor.mapTriangleIdIso_hom_app_hom₁, isZero₁_iff_isIso₂, CategoryTheory.Functor.homologySequenceδ_comp, mk_obj₁, CategoryTheory.Pretriangulated.isIso₁_of_isIso₂₃, CochainComplex.mappingCone.triangle_obj₁, CategoryTheory.Pretriangulated.TriangleOpEquivalence.counitIso_inv_app_hom₁, CategoryTheory.Functor.homologySequence_mono_shift_map_mor₂_iff, CategoryTheory.Pretriangulated.rotCompInvRot_hom_app_hom₁, smul_hom₁, CategoryTheory.Functor.comp_homologySequenceδ_assoc, CategoryTheory.Pretriangulated.invRotCompRot_hom_app_hom₁, CochainComplex.mappingConeCompHomotopyEquiv_hom_inv_id_assoc, CategoryTheory.Pretriangulated.id_hom₁, CategoryTheory.Functor.mapTriangle_map_hom₂, CategoryTheory.Pretriangulated.preadditiveCoyoneda_homologySequenceδ_apply, CochainComplex.mappingConeCompTriangle_obj₁, CategoryTheory.Functor.homologySequence_epi_shift_map_mor₂_iff, yoneda_exact₃, CochainComplex.mappingCone.map_δ
|
obj₂ 📖 | CompOp | 165 mathmath: CategoryTheory.Pretriangulated.contractibleTriangle_obj₂, CochainComplex.mappingConeCompTriangleh_comm₁_assoc, CategoryTheory.Pretriangulated.binaryProductTriangle_obj₂, CochainComplex.mappingConeCompTriangle_obj₂, CategoryTheory.Pretriangulated.TriangleMorphism.comp_hom₂, invRotate_mor₃, CategoryTheory.Pretriangulated.rotCompInvRot_inv_app_hom₂, instIsIsoHom₂, shiftFunctor_map_hom₁, CategoryTheory.Triangulated.TStructure.triangle_iso_exists, CategoryTheory.Iso.inv_hom_id_triangle_hom₂, CategoryTheory.Functor.mapTriangleCompIso_inv_app_hom₂, DerivedCategory.HomologySequence.comp_δ, CategoryTheory.Functor.mapTriangle_obj, CategoryTheory.Functor.homologySequence_comp_assoc, CategoryTheory.Pretriangulated.comp_distTriang_mor_zero₁₂, shiftFunctor_obj, CategoryTheory.Pretriangulated.shortComplexOfDistTriangle_X₂, eqToHom_hom₂, CategoryTheory.Functor.homologySequence_comp, mor₁_eq_zero_of_mono₂, CategoryTheory.Functor.mapTriangleCompIso_hom_app_hom₂, CategoryTheory.ObjectProperty.IsTriangulatedClosed₂.ext₂', CategoryTheory.Iso.inv_hom_id_triangle_hom₂_assoc, DerivedCategory.HomologySequence.exact₂, CategoryTheory.Pretriangulated.productTriangle_mor₂, CategoryTheory.Functor.mapTriangleRotateIso_inv_app_hom₁, CategoryTheory.Pretriangulated.TriangleOpEquivalence.functor_map_hom₂, isZero₂_of_isZero₁₃, epi₂, rotate_obj₁, smul_hom₂, CategoryTheory.Functor.mapTriangleInvRotateIso_inv_app_hom₃, DerivedCategory.HomologySequence.mono_homologyMap_mor₁_iff, CochainComplex.mappingConeCompHomotopyEquiv_comm₂_assoc, CochainComplex.mappingConeCompHomotopyEquiv_hom_inv_id, distinguished_iff_of_isZero₃, CategoryTheory.ObjectProperty.trW_iff_of_distinguished, CategoryTheory.Pretriangulated.TriangleMorphism.comm₁_assoc, CochainComplex.triangleOfDegreewiseSplit_obj₂, CochainComplex.MappingConeCompHomotopyEquiv.hom_inv_id_assoc, CategoryTheory.Pretriangulated.TriangleOpEquivalence.functor_map_hom₃, CategoryTheory.Functor.mapTriangleInvRotateIso_hom_app_hom₃, CategoryTheory.Iso.hom_inv_id_triangle_hom₂, CategoryTheory.Pretriangulated.TriangleOpEquivalence.unitIso_hom_app, CategoryTheory.Iso.hom_inv_id_triangle_hom₂_assoc, distinguished_iff_of_isZero₁, mor₂_eq_zero_of_mono₃, CategoryTheory.Triangulated.SpectralObject.triangle_obj₂, rotate_mor₃, CochainComplex.mappingConeCompHomotopyEquiv_comm₁, CochainComplex.mappingCone.triangleRotateShortComplex_X₂, CategoryTheory.Functor.mapTriangleIso_hom_app_hom₂, CategoryTheory.Triangulated.Octahedron.map_m₃, mor₂_eq_zero_of_epi₁, DerivedCategory.HomologySequence.comp_δ_assoc, CochainComplex.mappingConeCompHomotopyEquiv_comm₁_assoc, invRotate_obj₃, CategoryTheory.Functor.homologySequence_epi_shift_map_mor₁_iff, CategoryTheory.Pretriangulated.comp_distTriang_mor_zero₃₁, CategoryTheory.Functor.homologySequence_exact₂, CategoryTheory.Functor.mapTriangle_map_hom₁, CategoryTheory.Functor.homologySequenceδ_comp_assoc, CategoryTheory.Functor.homologySequence_mono_shift_map_mor₁_iff, coyoneda_exact₃, mono₁, isZero₂_iff_isIso₃, CategoryTheory.ShortComplex.ShortExact.singleTriangle_obj₂, isZero₃_iff_isIso₁, CategoryTheory.ObjectProperty.trW.mk', DerivedCategory.HomologySequence.epi_homologyMap_mor₁_iff, CategoryTheory.Functor.comp_homologySequenceδ, DerivedCategory.HomologySequence.mono_homologyMap_mor₂_iff, CategoryTheory.Pretriangulated.productTriangle.π_hom₂, CategoryTheory.Pretriangulated.TriangleOpEquivalence.counitIso_inv_app_hom₂, CategoryTheory.Functor.homologySequence_exact₃, CategoryTheory.Pretriangulated.isIso₂_of_isIso₁₃, CategoryTheory.Pretriangulated.comp_distTriang_mor_zero₂₃, CochainComplex.MappingConeCompHomotopyEquiv.hom_inv_id, mor₂_eq_zero_iff_epi₁, CategoryTheory.Pretriangulated.invRotCompRot_hom_app_hom₂, CategoryTheory.Triangulated.Octahedron.map_m₁, CategoryTheory.Pretriangulated.comp_hom₂_assoc, CategoryTheory.Pretriangulated.id_hom₂, CategoryTheory.Pretriangulated.triangleMorphismId_hom₂, CategoryTheory.Pretriangulated.TriangleOpEquivalence.unitIso_inv_app, CategoryTheory.Functor.mapTriangleRotateIso_hom_app_hom₁, shiftFunctorAdd'_inv_app_hom₂, isZero₂_of_isIso₃, CategoryTheory.Pretriangulated.complete_distinguished_triangle_morphism₂, CategoryTheory.Pretriangulated.TriangleOpEquivalence.functor_obj, CochainComplex.mappingConeCompHomotopyEquiv_comm₂, CategoryTheory.Pretriangulated.comp_distTriang_mor_zero₂₃_assoc, CategoryTheory.Pretriangulated.binaryBiproductTriangle_obj₂, CategoryTheory.ObjectProperty.trW_iff_of_distinguished', CategoryTheory.Functor.mapTriangleOpCompTriangleOpEquivalenceFunctorApp_inv_hom₂, DerivedCategory.HomologySequence.exact₁, isZero₂_iff, CategoryTheory.Functor.mapTriangle_map_hom₃, neg_hom₂, mor₃_eq_zero_iff_epi₂, CategoryTheory.Pretriangulated.comp_hom₂, CategoryTheory.Functor.mapTriangleCommShiftIso_inv_app_hom₂, add_hom₂, CategoryTheory.Pretriangulated.TriangleOpEquivalence.inverse_obj, CategoryTheory.Pretriangulated.TriangleOpEquivalence.counitIso_hom_app_hom₂, CategoryTheory.Functor.homologySequence_exact₁, CategoryTheory.Pretriangulated.productTriangle_mor₁, CategoryTheory.Pretriangulated.comp_distTriang_mor_zero₃₁_assoc, shiftFunctor_map_hom₃, CategoryTheory.Pretriangulated.TriangleMorphism.comm₁, π₂_obj, mk_obj₂, CochainComplex.mappingCone.trianglehMapOfHomotopy_hom₂, invRotate_obj₂, mor₁_eq_zero_iff_epi₃, CategoryTheory.Functor.mapTriangleIso_inv_app_hom₂, CategoryTheory.ObjectProperty.trW.mk, mor₁_eq_zero_iff_mono₂, CategoryTheory.Triangulated.Octahedron.triangle_obj₂, CategoryTheory.ObjectProperty.ext_of_isTriangulatedClosed₂, sub_hom₂, CategoryTheory.ObjectProperty.ext_of_isTriangulatedClosed₂', mor₁_eq_zero_of_epi₃, CategoryTheory.Pretriangulated.exists_iso_binaryBiproduct_of_distTriang, rotate_obj₂, CategoryTheory.Functor.mapTriangleIdIso_inv_app_hom₂, isZero₃_iff, CategoryTheory.Pretriangulated.rotCompInvRot_hom_app_hom₂, DerivedCategory.triangleOfSES_obj₂, CategoryTheory.Pretriangulated.productTriangle.lift_hom₂, CategoryTheory.Pretriangulated.exists_iso_of_arrow_iso, CategoryTheory.Triangulated.SpectralObject.ω₂_obj_obj₂, shiftFunctor_map_hom₂, CategoryTheory.Pretriangulated.TriangleOpEquivalence.functor_map_hom₁, CategoryTheory.Functor.mapTriangleCommShiftIso_hom_app_hom₂, shiftFunctorZero_inv_app_hom₂, mor₂_eq_zero_iff_mono₃, CategoryTheory.Pretriangulated.TriangleMorphism.comm₂_assoc, shiftFunctorAdd'_hom_app_hom₂, CategoryTheory.Pretriangulated.productTriangle_obj₂, isZero₁_iff, CochainComplex.mappingCone.triangle_obj₂, CochainComplex.mappingConeCompTriangleh_comm₁, mor₃_eq_zero_iff_mono₁, DerivedCategory.HomologySequence.δ_comp_assoc, DerivedCategory.HomologySequence.δ_comp, CategoryTheory.Pretriangulated.comp_distTriang_mor_zero₁₂_assoc, CategoryTheory.Triangulated.TStructure.triangleLTGE_obj_obj₂, CategoryTheory.Pretriangulated.TriangleMorphism.comm₂, DerivedCategory.HomologySequence.exact₃, shiftFunctorZero_hom_app_hom₂, CategoryTheory.Pretriangulated.invRotCompRot_inv_app_hom₂, DerivedCategory.HomologySequence.epi_homologyMap_mor₂_iff, CategoryTheory.Pretriangulated.TriangleOpEquivalence.inverse_map, isZero₁_iff_isIso₂, CategoryTheory.Functor.homologySequenceδ_comp, CategoryTheory.Functor.mapTriangleIdIso_hom_app_hom₂, CategoryTheory.Functor.mapTriangleOpCompTriangleOpEquivalenceFunctorApp_hom_hom₂, CategoryTheory.Functor.homologySequence_mono_shift_map_mor₂_iff, CategoryTheory.Functor.comp_homologySequenceδ_assoc, CochainComplex.mappingConeCompHomotopyEquiv_hom_inv_id_assoc, CategoryTheory.Functor.mapTriangle_map_hom₂, zero_hom₂, CategoryTheory.Functor.homologySequence_epi_shift_map_mor₂_iff
|
obj₃ 📖 | CompOp | 179 mathmath: CategoryTheory.Pretriangulated.rotCompInvRot_hom_app_hom₃, CategoryTheory.Iso.inv_hom_id_triangle_hom₃_assoc, CochainComplex.mappingConeCompTriangleh_comm₁_assoc, CategoryTheory.Functor.mapTriangleIdIso_inv_app_hom₃, isZero₃_of_isIso₁, CategoryTheory.Functor.mapTriangleOpCompTriangleOpEquivalenceFunctorApp_inv_hom₁, invRotate_mor₃, CategoryTheory.Functor.mapTriangleIso_inv_app_hom₃, invRotate_obj₁, shiftFunctor_map_hom₁, CategoryTheory.Functor.mapTriangleRotateIso_inv_app_hom₂, CategoryTheory.ObjectProperty.ext_of_isTriangulatedClosed₃', DerivedCategory.HomologySequence.comp_δ, CategoryTheory.Functor.mapTriangle_obj, CategoryTheory.Abelian.Ext.preadditiveYoneda_homologySequenceδ_singleTriangle_apply, CategoryTheory.Functor.homologySequence_comp_assoc, CategoryTheory.Pretriangulated.comp_distTriang_mor_zero₁₂, shiftFunctor_obj, CategoryTheory.Pretriangulated.invRotCompRot_inv_app_hom₃, CategoryTheory.Functor.homologySequence_comp, CochainComplex.mappingCone.rotateHomotopyEquiv_comm₂_assoc, DerivedCategory.HomologySequence.exact₂, CategoryTheory.Pretriangulated.productTriangle_mor₂, CategoryTheory.Pretriangulated.TriangleOpEquivalence.functor_map_hom₂, yoneda_exact₂, CategoryTheory.Functor.homologySequenceδ_naturality, CochainComplex.mappingCone.inl_v_triangle_mor₃_f, CategoryTheory.Pretriangulated.TriangleMorphism.comm₃, eqToHom_hom₃, CategoryTheory.Triangulated.TStructure.triangleLTGE_obj_obj₃, DerivedCategory.HomologySequence.mono_homologyMap_mor₁_iff, CategoryTheory.Abelian.Ext.preadditiveCoyoneda_homologySequenceδ_singleTriangle_apply, CategoryTheory.ObjectProperty.trW_iff_of_distinguished, CategoryTheory.Pretriangulated.triangleMorphismId_hom₃, CategoryTheory.Pretriangulated.TriangleOpEquivalence.functor_map_hom₃, CategoryTheory.Pretriangulated.id_hom₃, CategoryTheory.Pretriangulated.TriangleOpEquivalence.unitIso_hom_app, distinguished_iff_of_isZero₁, HomotopyCategory.Pretriangulated.complete_distinguished_triangle_morphism, mor₂_eq_zero_of_mono₃, DerivedCategory.triangleOfSES_obj₃, CategoryTheory.Pretriangulated.TriangleOpEquivalence.counitIso_inv_app_hom₃, CategoryTheory.Triangulated.Localization.complete_distinguished_triangle_morphism, CochainComplex.mappingCone.rotateHomotopyEquiv_comm₂, CochainComplex.homologySequenceδ_quotient_mapTriangle_obj_assoc, CategoryTheory.Functor.mapTriangleCompIso_inv_app_hom₃, CategoryTheory.Functor.mapTriangleOpCompTriangleOpEquivalenceFunctorApp_hom_hom₁, CategoryTheory.Functor.mapTriangleCompIso_hom_app_hom₃, CategoryTheory.Triangulated.Octahedron.map_m₃, distinguished_iff_of_isZero₂, mor₂_eq_zero_of_epi₁, DerivedCategory.HomologySequence.comp_δ_assoc, invRotate_obj₃, CategoryTheory.Functor.homologySequence_epi_shift_map_mor₁_iff, CochainComplex.mappingCone.triangleRotateShortComplex_X₃, CategoryTheory.Pretriangulated.invRotate_map_hom₁, CategoryTheory.Pretriangulated.comp_distTriang_mor_zero₃₁, mor₃_eq_zero_of_epi₂, CategoryTheory.Functor.homologySequence_exact₂, CategoryTheory.Functor.mapTriangle_map_hom₁, CochainComplex.mappingConeCompTriangle_mor₃_naturality, CategoryTheory.Functor.homologySequenceδ_comp_assoc, CategoryTheory.Functor.homologySequence_mono_shift_map_mor₁_iff, CategoryTheory.Pretriangulated.isIso₃_of_isIso₁₂, CategoryTheory.Pretriangulated.preadditiveYoneda_homologySequenceδ_apply, CategoryTheory.Triangulated.TStructure.instIsGEObj₃ObjTriangleTriangleLTGE, CategoryTheory.Functor.mapTriangleRotateIso_hom_app_hom₂, isZero₂_iff_isIso₃, isZero₃_iff_isIso₁, shiftFunctorZero_inv_app_hom₃, CategoryTheory.Pretriangulated.productTriangle.π_hom₃, CategoryTheory.Pretriangulated.comp_hom₃_assoc, neg_hom₃, CategoryTheory.Functor.mapTriangleCommShiftIso_hom_app_hom₃, CategoryTheory.ObjectProperty.trW.mk', instIsIsoHom₃, DerivedCategory.HomologySequence.epi_homologyMap_mor₁_iff, CategoryTheory.Functor.mapTriangleCommShiftIso_inv_app_hom₃, CategoryTheory.Functor.comp_homologySequenceδ, DerivedCategory.HomologySequence.mono_homologyMap_mor₂_iff, CochainComplex.mappingCone.inl_v_triangle_mor₃_f_assoc, invRotate_mor₁, CochainComplex.mappingCone.inr_f_triangle_mor₃_f, CategoryTheory.Functor.complete_distinguished_essImageDistTriang_morphism, CochainComplex.triangleOfDegreewiseSplit_obj₃, CategoryTheory.Functor.homologySequence_exact₃, CategoryTheory.Pretriangulated.comp_distTriang_mor_zero₂₃, mor₂_eq_zero_iff_epi₁, CategoryTheory.Pretriangulated.rotCompInvRot_inv_app_hom₃, CategoryTheory.Pretriangulated.contractibleTriangleFunctor_map_hom₃, CategoryTheory.Functor.mapTriangleInvRotateIso_inv_app_hom₁, CategoryTheory.Triangulated.Octahedron.map_m₁, CategoryTheory.Pretriangulated.contractibleTriangle_obj₃, CochainComplex.mappingConeCompTriangle_obj₃, CategoryTheory.Functor.mapTriangleIdIso_hom_app_hom₃, CategoryTheory.ObjectProperty.ext_of_isTriangulatedClosed₃, CategoryTheory.Pretriangulated.TriangleOpEquivalence.unitIso_inv_app, CategoryTheory.Pretriangulated.binaryBiproductTriangle_obj₃, CategoryTheory.Functor.mapTriangleIso_hom_app_hom₃, CategoryTheory.Pretriangulated.TriangleOpEquivalence.functor_obj, CategoryTheory.Pretriangulated.comp_distTriang_mor_zero₂₃_assoc, CategoryTheory.Pretriangulated.TriangleMorphism.comm₃_assoc, CategoryTheory.Iso.hom_inv_id_triangle_hom₃, CategoryTheory.ObjectProperty.trW_iff_of_distinguished', shiftFunctorZero_hom_app_hom₃, rotate_obj₃, CategoryTheory.Pretriangulated.productTriangle_obj₃, DerivedCategory.HomologySequence.exact₁, isZero₂_iff, CategoryTheory.Functor.mapTriangle_map_hom₃, mor₃_eq_zero_iff_epi₂, shiftFunctorAdd'_hom_app_hom₃, CategoryTheory.Pretriangulated.productTriangle.lift_hom₃, zero_hom₃, add_hom₃, CategoryTheory.Pretriangulated.productTriangle_mor₃, CategoryTheory.Pretriangulated.TriangleOpEquivalence.inverse_obj, CochainComplex.mappingCone.trianglehMapOfHomotopy_hom₃, CategoryTheory.Functor.homologySequence_exact₁, CategoryTheory.Pretriangulated.comp_distTriang_mor_zero₃₁_assoc, CategoryTheory.ObjectProperty.IsTriangulatedClosed₃.ext₃', epi₃, CochainComplex.homologySequenceδ_quotient_mapTriangle_obj, CategoryTheory.Pretriangulated.binaryProductTriangle_obj₃, shiftFunctor_map_hom₃, π₃_obj, smul_hom₃, mor₁_eq_zero_iff_epi₃, sub_hom₃, CategoryTheory.Pretriangulated.invRotCompRot_hom_app_hom₃, mor₁_eq_zero_iff_mono₂, CategoryTheory.Pretriangulated.shortComplexOfDistTriangle_X₃, CategoryTheory.Pretriangulated.comp_hom₃, CategoryTheory.ShortComplex.ShortExact.singleTriangle_obj₃, CochainComplex.mappingCone.inr_f_triangle_mor₃_f_assoc, rotate_obj₂, CategoryTheory.Iso.hom_inv_id_triangle_hom₃_assoc, CategoryTheory.Pretriangulated.complete_distinguished_triangle_morphism, isZero₃_iff, CategoryTheory.Triangulated.SpectralObject.triangle_obj₃, shiftFunctorAdd'_inv_app_hom₃, CochainComplex.mappingCone.triangleMapOfHomotopy_comm₃, CategoryTheory.Functor.homologySequenceδ_naturality_assoc, mor₃_eq_zero_of_mono₁, shiftFunctor_map_hom₂, CategoryTheory.MorphismProperty.IsCompatibleWithTriangulation.compatible_with_triangulation, CategoryTheory.Pretriangulated.TriangleOpEquivalence.functor_map_hom₁, mor₂_eq_zero_iff_mono₃, CategoryTheory.Pretriangulated.TriangleMorphism.comm₂_assoc, isZero₁_iff, CategoryTheory.Pretriangulated.TriangleOpEquivalence.counitIso_hom_app_hom₃, CategoryTheory.Functor.mapTriangleInvRotateIso_hom_app_hom₁, CochainComplex.mappingConeCompTriangleh_comm₁, mor₃_eq_zero_iff_mono₁, DerivedCategory.HomologySequence.δ_comp_assoc, DerivedCategory.HomologySequence.δ_comp, CategoryTheory.Iso.inv_hom_id_triangle_hom₃, CategoryTheory.Pretriangulated.Opposite.complete_distinguished_triangle_morphism, CategoryTheory.Pretriangulated.comp_distTriang_mor_zero₁₂_assoc, CategoryTheory.Pretriangulated.TriangleMorphism.comm₂, CategoryTheory.Pretriangulated.TriangleMorphism.comp_hom₃, DerivedCategory.HomologySequence.exact₃, isZero₃_of_isZero₁₂, mono₂, DerivedCategory.HomologySequence.epi_homologyMap_mor₂_iff, CategoryTheory.Pretriangulated.TriangleOpEquivalence.inverse_map, mk_obj₃, isZero₁_iff_isIso₂, CategoryTheory.Functor.homologySequenceδ_comp, CategoryTheory.Functor.homologySequence_mono_shift_map_mor₂_iff, CategoryTheory.Functor.comp_homologySequenceδ_assoc, CategoryTheory.Triangulated.Octahedron.triangle_obj₃, coyoneda_exact₁, CategoryTheory.Functor.mapTriangle_map_hom₂, CategoryTheory.Pretriangulated.preadditiveCoyoneda_homologySequenceδ_apply, CochainComplex.mappingCone.triangle_obj₃, CategoryTheory.Functor.homologySequence_epi_shift_map_mor₂_iff, CategoryTheory.Triangulated.SpectralObject.ω₂_obj_obj₃, CochainComplex.mappingCone.map_δ
|
π₁ 📖 | CompOp | 7 mathmath: π₁_map, functorHomMk'_app_hom₁, functorIsoMk'_hom_app_hom₁, π₁Toπ₂_app, π₃Toπ₁_app, π₁_obj, functorIsoMk'_inv_app_hom₁
|
π₁Toπ₂ 📖 | CompOp | 1 mathmath: π₁Toπ₂_app
|
π₂ 📖 | CompOp | 7 mathmath: π₂_map, functorIsoMk'_inv_app_hom₂, π₁Toπ₂_app, π₂Toπ₃_app, functorIsoMk'_hom_app_hom₂, π₂_obj, functorHomMk'_app_hom₂
|
π₂Toπ₃ 📖 | CompOp | 1 mathmath: π₂Toπ₃_app
|
π₃ 📖 | CompOp | 7 mathmath: π₃_map, functorIsoMk'_hom_app_hom₃, functorHomMk'_app_hom₃, π₂Toπ₃_app, π₃Toπ₁_app, π₃_obj, functorIsoMk'_inv_app_hom₃
|
π₃Toπ₁ 📖 | CompOp | 1 mathmath: π₃Toπ₁_app
|