Documentation Verification Report

Orthogonal

📁 Source: Mathlib/CategoryTheory/Triangulated/Orthogonal.lean

Statistics

MetricCount
Definitions0
TheoremsinstIsStableUnderShiftLeftOrthogonal, instIsStableUnderShiftRightOrthogonal, instIsTriangulatedClosed₂LeftOrthogonal, instIsTriangulatedClosed₂RightOrthogonal, instIsTriangulatedLeftOrthogonalOfIsStableUnderShiftInt, instIsTriangulatedRightOrthogonalOfIsStableUnderShiftInt, isColocal_trW, isLocal_trW, map_bijective_of_isTriangulated, map_bijective_of_isTriangulated
10
Total10

CategoryTheory.ObjectProperty

Theorems

NameKindAssumesProvesValidatesDepends On
instIsStableUnderShiftLeftOrthogonal 📖mathematical—IsStableUnderShift
leftOrthogonal
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
—Equiv.surjective
le_shift
IsStableUnderShift.isStableUnderShiftBy
CategoryTheory.Adjunction.homEquiv_counit
CategoryTheory.Functor.map_zero
CategoryTheory.Functor.preservesZeroMorphisms_of_full
CategoryTheory.Functor.IsEquivalence.full
CategoryTheory.instIsEquivalenceShiftFunctor
CategoryTheory.Limits.zero_comp
instIsStableUnderShiftRightOrthogonal 📖mathematical—IsStableUnderShift
rightOrthogonal
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
—Equiv.surjective
le_shift
IsStableUnderShift.isStableUnderShiftBy
CategoryTheory.Adjunction.homEquiv_unit
CategoryTheory.Functor.map_zero
CategoryTheory.Functor.preservesZeroMorphisms_of_full
CategoryTheory.Functor.IsEquivalence.full
CategoryTheory.instIsEquivalenceShiftFunctor
CategoryTheory.Limits.comp_zero
instIsTriangulatedClosed₂LeftOrthogonal 📖mathematicalCategoryTheory.Functor.Additive
CategoryTheory.shiftFunctor
Int.instAddMonoid
IsTriangulatedClosed₂
leftOrthogonal
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
—IsTriangulatedClosed₂.mk'
instIsClosedUnderIsomorphismsLeftOrthogonal
CategoryTheory.Pretriangulated.Triangle.yoneda_exact₂
CategoryTheory.Limits.comp_zero
instIsTriangulatedClosed₂RightOrthogonal 📖mathematicalCategoryTheory.Functor.Additive
CategoryTheory.shiftFunctor
Int.instAddMonoid
IsTriangulatedClosed₂
rightOrthogonal
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
—IsTriangulatedClosed₂.mk'
instIsClosedUnderIsomorphismsRightOrthogonal
CategoryTheory.Pretriangulated.Triangle.coyoneda_exact₂
CategoryTheory.Limits.zero_comp
instIsTriangulatedLeftOrthogonalOfIsStableUnderShiftInt 📖mathematicalCategoryTheory.Functor.Additive
CategoryTheory.shiftFunctor
Int.instAddMonoid
IsTriangulated
leftOrthogonal
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
—instContainsZeroLeftOrthogonalOfHasZeroObject
instIsStableUnderShiftLeftOrthogonal
instIsTriangulatedClosed₂LeftOrthogonal
instIsTriangulatedRightOrthogonalOfIsStableUnderShiftInt 📖mathematicalCategoryTheory.Functor.Additive
CategoryTheory.shiftFunctor
Int.instAddMonoid
IsTriangulated
rightOrthogonal
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
—instContainsZeroRightOrthogonalOfHasZeroObject
instIsStableUnderShiftRightOrthogonal
instIsTriangulatedClosed₂RightOrthogonal
isColocal_trW 📖mathematicalCategoryTheory.Functor.Additive
CategoryTheory.shiftFunctor
Int.instAddMonoid
CategoryTheory.MorphismProperty.isColocal
trW
leftOrthogonal
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
—Function.Bijective.injective
CategoryTheory.Pretriangulated.contractible_distinguished₂
le_shift
IsStableUnderShift.isStableUnderShiftBy
IsTriangulated.toIsStableUnderShift
CategoryTheory.Limits.comp_zero
trW_iff'
CategoryTheory.Pretriangulated.Triangle.coyoneda_exact₂
CategoryTheory.Limits.zero_comp
CategoryTheory.Preadditive.sub_comp
CategoryTheory.Pretriangulated.rot_of_distTriang
isLocal_trW 📖mathematicalCategoryTheory.Functor.Additive
CategoryTheory.shiftFunctor
Int.instAddMonoid
CategoryTheory.MorphismProperty.isLocal
trW
rightOrthogonal
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
—Function.Bijective.injective
CategoryTheory.Pretriangulated.contractible_distinguished₁
CategoryTheory.Limits.zero_comp
CategoryTheory.Limits.comp_zero
CategoryTheory.Pretriangulated.Triangle.yoneda_exact₂
CategoryTheory.Preadditive.comp_sub
CategoryTheory.Pretriangulated.inv_rot_of_distTriang
le_shift
IsStableUnderShift.isStableUnderShiftBy
IsTriangulated.toIsStableUnderShift

CategoryTheory.ObjectProperty.leftOrthogonal

Theorems

NameKindAssumesProvesValidatesDepends On
map_bijective_of_isTriangulated 📖mathematicalCategoryTheory.Functor.Additive
CategoryTheory.shiftFunctor
Int.instAddMonoid
CategoryTheory.ObjectProperty.leftOrthogonal
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
Function.Bijective
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
—CategoryTheory.MorphismProperty.map_eq_iff_postcomp
CategoryTheory.ObjectProperty.instHasLeftCalculusOfFractionsTrWOfIsTriangulatedOfIsTriangulated
CategoryTheory.ObjectProperty.isColocal_trW
CategoryTheory.Localization.inverts
CategoryTheory.Localization.exists_leftFraction
CategoryTheory.MorphismProperty.LeftFraction.hs
CategoryTheory.cancel_mono
CategoryTheory.mono_of_strongMono
CategoryTheory.instStrongMonoOfIsRegularMono
CategoryTheory.instIsRegularMonoOfIsSplitMono
CategoryTheory.IsSplitMono.of_iso
CategoryTheory.MorphismProperty.LeftFraction.map_comp_map_s
CategoryTheory.Functor.map_comp

CategoryTheory.ObjectProperty.rightOrthogonal

Theorems

NameKindAssumesProvesValidatesDepends On
map_bijective_of_isTriangulated 📖mathematicalCategoryTheory.Functor.Additive
CategoryTheory.shiftFunctor
Int.instAddMonoid
CategoryTheory.ObjectProperty.rightOrthogonal
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
Function.Bijective
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
—CategoryTheory.MorphismProperty.map_eq_iff_precomp
CategoryTheory.ObjectProperty.instHasRightCalculusOfFractionsTrWOfIsTriangulatedOfIsTriangulated
CategoryTheory.ObjectProperty.isLocal_trW
CategoryTheory.Localization.inverts
CategoryTheory.Localization.exists_rightFraction
CategoryTheory.MorphismProperty.RightFraction.hs
CategoryTheory.cancel_epi
CategoryTheory.epi_of_effectiveEpi
CategoryTheory.instEffectiveEpiOfIsIso
CategoryTheory.MorphismProperty.RightFraction.map_s_comp_map
CategoryTheory.Functor.map_comp

---

← Back to Index