Documentation Verification Report

Rotate

šŸ“ Source: Mathlib/CategoryTheory/Triangulated/Rotate.lean

Statistics

MetricCount
DefinitionsinvRotate, rotate, invRotCompRot, invRotate, rotCompInvRot, rotate, triangleRotation
7
TheoremsinvRotate_mor₁, invRotate_morā‚‚, invRotate_morā‚ƒ, invRotate_obj₁, invRotate_objā‚‚, invRotate_objā‚ƒ, rotate_mor₁, rotate_morā‚‚, rotate_morā‚ƒ, rotate_obj₁, rotate_objā‚‚, rotate_objā‚ƒ, instIsEquivalenceTriangleInvRotate, instIsEquivalenceTriangleRotate, invRotCompRot_hom_app_hom₁, invRotCompRot_hom_app_homā‚‚, invRotCompRot_hom_app_homā‚ƒ, invRotCompRot_inv_app_hom₁, invRotCompRot_inv_app_homā‚‚, invRotCompRot_inv_app_homā‚ƒ, invRotate_map_hom₁, invRotate_map_homā‚‚, invRotate_map_homā‚ƒ, invRotate_obj, rotCompInvRot_hom_app_hom₁, rotCompInvRot_hom_app_homā‚‚, rotCompInvRot_hom_app_homā‚ƒ, rotCompInvRot_inv_app_hom₁, rotCompInvRot_inv_app_homā‚‚, rotCompInvRot_inv_app_homā‚ƒ, rotate_map_hom₁, rotate_map_homā‚‚, rotate_map_homā‚ƒ, rotate_obj, triangleRotation_counitIso, triangleRotation_functor, triangleRotation_inverse, triangleRotation_unitIso
38
Total45

CategoryTheory.Pretriangulated

Definitions

NameCategoryTheorems
invRotCompRot šŸ“–CompOp
7 mathmath: triangleRotation_counitIso, invRotCompRot_inv_app_homā‚ƒ, invRotCompRot_hom_app_homā‚‚, invRotCompRot_inv_app_hom₁, invRotCompRot_hom_app_homā‚ƒ, invRotCompRot_inv_app_homā‚‚, invRotCompRot_hom_app_hom₁
invRotate šŸ“–CompOp
24 mathmath: rotCompInvRot_hom_app_homā‚ƒ, rotCompInvRot_inv_app_homā‚‚, invRotCompRot_inv_app_homā‚ƒ, CategoryTheory.Functor.mapTriangleInvRotateIso_inv_app_homā‚ƒ, CategoryTheory.Functor.mapTriangleInvRotateIso_hom_app_homā‚ƒ, invRotate_map_hom₁, CategoryTheory.Functor.mapTriangleInvRotateIso_inv_app_homā‚‚, rotCompInvRot_inv_app_homā‚ƒ, CategoryTheory.Functor.mapTriangleInvRotateIso_inv_app_hom₁, invRotCompRot_hom_app_homā‚‚, invRotCompRot_inv_app_hom₁, invRotate_map_homā‚‚, rotCompInvRot_inv_app_hom₁, invRotCompRot_hom_app_homā‚ƒ, rotCompInvRot_hom_app_homā‚‚, CategoryTheory.Functor.mapTriangleInvRotateIso_hom_app_hom₁, invRotate_map_homā‚ƒ, triangleRotation_inverse, CategoryTheory.Functor.mapTriangleInvRotateIso_hom_app_homā‚‚, invRotCompRot_inv_app_homā‚‚, rotCompInvRot_hom_app_hom₁, invRotate_obj, invRotCompRot_hom_app_hom₁, instIsEquivalenceTriangleInvRotate
rotCompInvRot šŸ“–CompOp
7 mathmath: rotCompInvRot_hom_app_homā‚ƒ, rotCompInvRot_inv_app_homā‚‚, triangleRotation_unitIso, rotCompInvRot_inv_app_homā‚ƒ, rotCompInvRot_inv_app_hom₁, rotCompInvRot_hom_app_homā‚‚, rotCompInvRot_hom_app_hom₁
rotate šŸ“–CompOp
24 mathmath: rotCompInvRot_hom_app_homā‚ƒ, rotCompInvRot_inv_app_homā‚‚, CategoryTheory.Functor.mapTriangleRotateIso_inv_app_homā‚‚, invRotCompRot_inv_app_homā‚ƒ, CategoryTheory.Functor.mapTriangleRotateIso_inv_app_hom₁, CategoryTheory.Functor.mapTriangleRotateIso_hom_app_homā‚‚, rotCompInvRot_inv_app_homā‚ƒ, rotate_map_homā‚‚, invRotCompRot_hom_app_homā‚‚, CategoryTheory.Functor.mapTriangleRotateIso_hom_app_homā‚ƒ, invRotCompRot_inv_app_hom₁, rotate_map_homā‚ƒ, CategoryTheory.Functor.mapTriangleRotateIso_hom_app_hom₁, rotCompInvRot_inv_app_hom₁, rotate_map_hom₁, invRotCompRot_hom_app_homā‚ƒ, rotate_obj, rotCompInvRot_hom_app_homā‚‚, CategoryTheory.Functor.mapTriangleRotateIso_inv_app_homā‚ƒ, triangleRotation_functor, invRotCompRot_inv_app_homā‚‚, rotCompInvRot_hom_app_hom₁, invRotCompRot_hom_app_hom₁, instIsEquivalenceTriangleRotate
triangleRotation šŸ“–CompOp
4 mathmath: triangleRotation_counitIso, triangleRotation_unitIso, triangleRotation_inverse, triangleRotation_functor

Theorems

NameKindAssumesProvesValidatesDepends On
instIsEquivalenceTriangleInvRotate šŸ“–mathematicalCategoryTheory.Functor.Additive
CategoryTheory.shiftFunctor
Int.instAddMonoid
CategoryTheory.Functor.IsEquivalence
Triangle
triangleCategory
invRotate
—CategoryTheory.Equivalence.isEquivalence_inverse
instIsEquivalenceTriangleRotate šŸ“–mathematicalCategoryTheory.Functor.Additive
CategoryTheory.shiftFunctor
Int.instAddMonoid
CategoryTheory.Functor.IsEquivalence
Triangle
triangleCategory
rotate
—CategoryTheory.Equivalence.isEquivalence_functor
invRotCompRot_hom_app_hom₁ šŸ“–mathematicalCategoryTheory.Functor.Additive
CategoryTheory.shiftFunctor
Int.instAddMonoid
TriangleMorphism.hom₁
CategoryTheory.Functor.obj
Triangle
triangleCategory
CategoryTheory.Functor.comp
invRotate
rotate
CategoryTheory.Functor.id
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
invRotCompRot
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
Triangle.obj₁
——
invRotCompRot_hom_app_homā‚‚ šŸ“–mathematicalCategoryTheory.Functor.Additive
CategoryTheory.shiftFunctor
Int.instAddMonoid
TriangleMorphism.homā‚‚
CategoryTheory.Functor.obj
Triangle
triangleCategory
CategoryTheory.Functor.comp
invRotate
rotate
CategoryTheory.Functor.id
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
invRotCompRot
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
Triangle.objā‚‚
——
invRotCompRot_hom_app_homā‚ƒ šŸ“–mathematicalCategoryTheory.Functor.Additive
CategoryTheory.shiftFunctor
Int.instAddMonoid
TriangleMorphism.homā‚ƒ
CategoryTheory.Functor.obj
Triangle
triangleCategory
CategoryTheory.Functor.comp
invRotate
rotate
CategoryTheory.Functor.id
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
invRotCompRot
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
Int.instAddGroup
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
CategoryTheory.shiftFunctorCompIsoId
add_neg_cancel
Triangle.objā‚ƒ
——
invRotCompRot_inv_app_hom₁ šŸ“–mathematicalCategoryTheory.Functor.Additive
CategoryTheory.shiftFunctor
Int.instAddMonoid
TriangleMorphism.hom₁
CategoryTheory.Functor.obj
Triangle
triangleCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
invRotate
rotate
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
invRotCompRot
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
Triangle.obj₁
——
invRotCompRot_inv_app_homā‚‚ šŸ“–mathematicalCategoryTheory.Functor.Additive
CategoryTheory.shiftFunctor
Int.instAddMonoid
TriangleMorphism.homā‚‚
CategoryTheory.Functor.obj
Triangle
triangleCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
invRotate
rotate
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
invRotCompRot
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
Triangle.objā‚‚
——
invRotCompRot_inv_app_homā‚ƒ šŸ“–mathematicalCategoryTheory.Functor.Additive
CategoryTheory.shiftFunctor
Int.instAddMonoid
TriangleMorphism.homā‚ƒ
CategoryTheory.Functor.obj
Triangle
triangleCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
invRotate
rotate
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
invRotCompRot
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
Int.instAddGroup
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
CategoryTheory.shiftFunctorCompIsoId
add_neg_cancel
Triangle.objā‚ƒ
——
invRotate_map_hom₁ šŸ“–mathematical—TriangleMorphism.hom₁
Triangle.invRotate
CategoryTheory.Functor.map
Triangle
triangleCategory
invRotate
CategoryTheory.shiftFunctor
Int.instAddMonoid
Triangle.objā‚ƒ
TriangleMorphism.homā‚ƒ
——
invRotate_map_homā‚‚ šŸ“–mathematical—TriangleMorphism.homā‚‚
Triangle.invRotate
CategoryTheory.Functor.map
Triangle
triangleCategory
invRotate
TriangleMorphism.hom₁
——
invRotate_map_homā‚ƒ šŸ“–mathematical—TriangleMorphism.homā‚ƒ
Triangle.invRotate
CategoryTheory.Functor.map
Triangle
triangleCategory
invRotate
TriangleMorphism.homā‚‚
——
invRotate_obj šŸ“–mathematical—CategoryTheory.Functor.obj
Triangle
triangleCategory
invRotate
Triangle.invRotate
——
rotCompInvRot_hom_app_hom₁ šŸ“–mathematicalCategoryTheory.Functor.Additive
CategoryTheory.shiftFunctor
Int.instAddMonoid
TriangleMorphism.hom₁
CategoryTheory.Functor.obj
Triangle
triangleCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
rotate
invRotate
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
rotCompInvRot
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
Int.instAddGroup
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
CategoryTheory.Iso.inv
CategoryTheory.shiftFunctorCompIsoId
add_neg_cancel
Triangle.obj₁
——
rotCompInvRot_hom_app_homā‚‚ šŸ“–mathematicalCategoryTheory.Functor.Additive
CategoryTheory.shiftFunctor
Int.instAddMonoid
TriangleMorphism.homā‚‚
CategoryTheory.Functor.obj
Triangle
triangleCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
rotate
invRotate
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
rotCompInvRot
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
Triangle.objā‚‚
——
rotCompInvRot_hom_app_homā‚ƒ šŸ“–mathematicalCategoryTheory.Functor.Additive
CategoryTheory.shiftFunctor
Int.instAddMonoid
TriangleMorphism.homā‚ƒ
CategoryTheory.Functor.obj
Triangle
triangleCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
rotate
invRotate
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
rotCompInvRot
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
Triangle.objā‚ƒ
——
rotCompInvRot_inv_app_hom₁ šŸ“–mathematicalCategoryTheory.Functor.Additive
CategoryTheory.shiftFunctor
Int.instAddMonoid
TriangleMorphism.hom₁
CategoryTheory.Functor.obj
Triangle
triangleCategory
CategoryTheory.Functor.comp
rotate
invRotate
CategoryTheory.Functor.id
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
rotCompInvRot
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
Int.instAddGroup
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
CategoryTheory.Iso.hom
CategoryTheory.shiftFunctorCompIsoId
add_neg_cancel
Triangle.obj₁
——
rotCompInvRot_inv_app_homā‚‚ šŸ“–mathematicalCategoryTheory.Functor.Additive
CategoryTheory.shiftFunctor
Int.instAddMonoid
TriangleMorphism.homā‚‚
CategoryTheory.Functor.obj
Triangle
triangleCategory
CategoryTheory.Functor.comp
rotate
invRotate
CategoryTheory.Functor.id
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
rotCompInvRot
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
Triangle.objā‚‚
——
rotCompInvRot_inv_app_homā‚ƒ šŸ“–mathematicalCategoryTheory.Functor.Additive
CategoryTheory.shiftFunctor
Int.instAddMonoid
TriangleMorphism.homā‚ƒ
CategoryTheory.Functor.obj
Triangle
triangleCategory
CategoryTheory.Functor.comp
rotate
invRotate
CategoryTheory.Functor.id
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
rotCompInvRot
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
Triangle.objā‚ƒ
——
rotate_map_hom₁ šŸ“–mathematical—TriangleMorphism.hom₁
Triangle.rotate
CategoryTheory.Functor.map
Triangle
triangleCategory
rotate
TriangleMorphism.homā‚‚
——
rotate_map_homā‚‚ šŸ“–mathematical—TriangleMorphism.homā‚‚
Triangle.rotate
CategoryTheory.Functor.map
Triangle
triangleCategory
rotate
TriangleMorphism.homā‚ƒ
——
rotate_map_homā‚ƒ šŸ“–mathematical—TriangleMorphism.homā‚ƒ
Triangle.rotate
CategoryTheory.Functor.map
Triangle
triangleCategory
rotate
CategoryTheory.shiftFunctor
Int.instAddMonoid
Triangle.obj₁
TriangleMorphism.hom₁
——
rotate_obj šŸ“–mathematical—CategoryTheory.Functor.obj
Triangle
triangleCategory
rotate
Triangle.rotate
——
triangleRotation_counitIso šŸ“–mathematicalCategoryTheory.Functor.Additive
CategoryTheory.shiftFunctor
Int.instAddMonoid
CategoryTheory.Equivalence.counitIso
Triangle
triangleCategory
triangleRotation
invRotCompRot
——
triangleRotation_functor šŸ“–mathematicalCategoryTheory.Functor.Additive
CategoryTheory.shiftFunctor
Int.instAddMonoid
CategoryTheory.Equivalence.functor
Triangle
triangleCategory
triangleRotation
rotate
——
triangleRotation_inverse šŸ“–mathematicalCategoryTheory.Functor.Additive
CategoryTheory.shiftFunctor
Int.instAddMonoid
CategoryTheory.Equivalence.inverse
Triangle
triangleCategory
triangleRotation
invRotate
——
triangleRotation_unitIso šŸ“–mathematicalCategoryTheory.Functor.Additive
CategoryTheory.shiftFunctor
Int.instAddMonoid
CategoryTheory.Equivalence.unitIso
Triangle
triangleCategory
triangleRotation
rotCompInvRot
——

CategoryTheory.Pretriangulated.Triangle

Definitions

NameCategoryTheorems
invRotate šŸ“–CompOp
18 mathmath: invRotate_morā‚ƒ, invRotate_obj₁, CategoryTheory.Pretriangulated.Opposite.contractibleTriangleIso_hom_homā‚‚, CategoryTheory.Pretriangulated.Opposite.contractibleTriangleIso_hom_hom₁, CategoryTheory.Pretriangulated.Opposite.contractibleTriangleIso_inv_homā‚ƒ, CategoryTheory.Pretriangulated.Opposite.contractibleTriangleIso_hom_homā‚ƒ, invRotate_objā‚ƒ, CategoryTheory.Pretriangulated.invRotate_map_hom₁, CategoryTheory.Pretriangulated.Opposite.contractibleTriangleIso_inv_hom₁, invRotate_mor₁, CategoryTheory.Pretriangulated.invRotate_map_homā‚‚, CategoryTheory.Pretriangulated.inv_rot_of_distTriang, invRotate_objā‚‚, CategoryTheory.Pretriangulated.Opposite.contractibleTriangleIso_inv_homā‚‚, HomotopyCategory.Pretriangulated.invRotate_distinguished_triangle', CategoryTheory.Pretriangulated.invRotate_map_homā‚ƒ, CategoryTheory.Pretriangulated.invRotate_obj, invRotate_morā‚‚
rotate šŸ“–CompOp
21 mathmath: rotate_obj₁, rotate_morā‚ƒ, CochainComplex.mappingCone.triangleRotateShortComplex_Xā‚‚, CochainComplex.mappingCone.triangleRotateShortComplex_Xā‚ƒ, CochainComplex.mappingCone.triangleRotateShortComplex_X₁, rotate_mor₁, CategoryTheory.Pretriangulated.rotate_map_homā‚‚, CategoryTheory.Pretriangulated.rotate_map_homā‚ƒ, rotate_objā‚ƒ, CategoryTheory.Functor.rotate_essImageDistTriang, CategoryTheory.Pretriangulated.rotate_map_hom₁, CochainComplex.mappingCone.triangleRotateShortComplex_g, HomotopyCategory.Pretriangulated.rotate_distinguished_triangle', rotate_morā‚‚, CategoryTheory.Pretriangulated.rotate_obj, rotate_objā‚‚, HomotopyCategory.Pretriangulated.rotate_distinguished_triangle, CategoryTheory.Pretriangulated.rot_of_distTriang, CochainComplex.mappingCone.triangleRotateShortComplex_f, CategoryTheory.Pretriangulated.Opposite.rotate_distinguished_triangle, CategoryTheory.Pretriangulated.rotate_distinguished_triangle

Theorems

NameKindAssumesProvesValidatesDepends On
invRotate_mor₁ šŸ“–mathematical—mor₁
invRotate
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.shiftFunctor
Int.instAddMonoid
objā‚ƒ
obj₁
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
CategoryTheory.Preadditive.homGroup
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor.map
morā‚ƒ
CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
Int.instAddGroup
AddGroup.toSubtractionMonoid
CategoryTheory.Functor.id
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.shiftFunctorCompIsoId
add_neg_cancel
——
invRotate_morā‚‚ šŸ“–mathematical—morā‚‚
invRotate
mor₁
——
invRotate_morā‚ƒ šŸ“–mathematical—morā‚ƒ
invRotate
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
objā‚‚
objā‚ƒ
CategoryTheory.Functor.obj
CategoryTheory.shiftFunctor
Int.instAddMonoid
morā‚‚
CategoryTheory.NatTrans.app
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
Int.instAddGroup
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.shiftFunctorCompIsoId
add_neg_cancel
——
invRotate_obj₁ šŸ“–mathematical—obj₁
invRotate
CategoryTheory.Functor.obj
CategoryTheory.shiftFunctor
Int.instAddMonoid
objā‚ƒ
——
invRotate_objā‚‚ šŸ“–mathematical—objā‚‚
invRotate
obj₁
——
invRotate_objā‚ƒ šŸ“–mathematical—objā‚ƒ
invRotate
objā‚‚
——
rotate_mor₁ šŸ“–mathematical—mor₁
rotate
morā‚‚
——
rotate_morā‚‚ šŸ“–mathematical—morā‚‚
rotate
morā‚ƒ
——
rotate_morā‚ƒ šŸ“–mathematical—morā‚ƒ
rotate
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.shiftFunctor
Int.instAddMonoid
obj₁
objā‚‚
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
CategoryTheory.Preadditive.homGroup
CategoryTheory.Functor.map
mor₁
——
rotate_obj₁ šŸ“–mathematical—obj₁
rotate
objā‚‚
——
rotate_objā‚‚ šŸ“–mathematical—objā‚‚
rotate
objā‚ƒ
——
rotate_objā‚ƒ šŸ“–mathematical—objā‚ƒ
rotate
CategoryTheory.Functor.obj
CategoryTheory.shiftFunctor
Int.instAddMonoid
obj₁
——

---

← Back to Index