Documentation Verification Report

Subcategory

📁 Source: Mathlib/CategoryTheory/Triangulated/Subcategory.lean

Statistics

MetricCount
DefinitionsIsTriangulated, IsTriangulatedClosed₁, IsTriangulatedClosed₂, IsTriangulatedClosed₃, instPretriangulatedFullSubcategory, trW
6
TheoremstoContainsZero, toIsStableUnderShift, toIsTriangulatedClosed₂, ext₁', mk', ext₂', mk', ext₃', mk', ext_of_isTriangulatedClosed₁, ext_of_isTriangulatedClosed₁', ext_of_isTriangulatedClosed₂, ext_of_isTriangulatedClosed₂', ext_of_isTriangulatedClosed₃, ext_of_isTriangulatedClosed₃', instContainsIdentitiesTrWOfContainsZero, instHasLeftCalculusOfFractionsTrWOfIsTriangulatedOfIsTriangulated, instHasRightCalculusOfFractionsTrWOfIsTriangulatedOfIsTriangulated, instIsClosedUnderBinaryProductsOfIsTriangulatedOfIsClosedUnderIsomorphisms, instIsClosedUnderFiniteProductsOfIsTriangulatedOfIsClosedUnderIsomorphisms, instIsCompatibleWithShiftTrWIntOfIsStableUnderShift, instIsCompatibleWithTriangulationTrWOfIsTriangulatedOfIsTriangulated, instIsMultiplicativeTrWOfIsTriangulatedOfIsTriangulated, instIsStableUnderFiniteProductsTrWOfIsTriangulated, instIsTriangulatedClosed₁OfIsTriangulated, instIsTriangulatedClosed₂IsoClosure, instIsTriangulatedClosed₂MinOfIsClosedUnderIsomorphisms, instIsTriangulatedClosed₃OfIsTriangulated, instIsTriangulatedEssImageOfIsTriangulatedOfFull, instIsTriangulatedFullSubcategory, instIsTriangulatedFullSubcategoryι, instIsTriangulatedInverseImage, instIsTriangulatedIsoClosure, instIsTriangulatedMapOfIsTriangulatedOfFull, instIsTriangulatedMinOfIsClosedUnderIsomorphisms, instRespectsIsoTrW, inverseImage_trW_iff, inverseImage_trW_isInverted, isTriangulated_lift, smul_mem_trW_iff, mk, mk', shift, unshift, trW_iff, trW_iff', trW_iff_of_distinguished, trW_iff_of_distinguished', trW_isoClosure, trW_of_isIso
50
Total56

CategoryTheory.ObjectProperty

Definitions

NameCategoryTheorems
IsTriangulated 📖CompData
9 mathmath: instIsTriangulatedIsoClosure, CategoryTheory.Functor.instIsTriangulatedHomologicalKernel, instIsTriangulatedEssImageOfIsTriangulatedOfFull, instIsTriangulatedLeftOrthogonalOfIsStableUnderShiftInt, instIsTriangulatedRightOrthogonalOfIsStableUnderShiftInt, HomotopyCategory.instIsTriangulatedIntUpSubcategoryAcyclic, instIsTriangulatedMapOfIsTriangulatedOfFull, instIsTriangulatedMinOfIsClosedUnderIsomorphisms, instIsTriangulatedInverseImage
IsTriangulatedClosed₁ 📖CompData
2 mathmath: instIsTriangulatedClosed₁OfIsTriangulated, IsTriangulatedClosed₁.mk'
IsTriangulatedClosed₂ 📖CompData
6 mathmath: IsTriangulated.toIsTriangulatedClosed₂, instIsTriangulatedClosed₂RightOrthogonal, instIsTriangulatedClosed₂MinOfIsClosedUnderIsomorphisms, instIsTriangulatedClosed₂LeftOrthogonal, IsTriangulatedClosed₂.mk', instIsTriangulatedClosed₂IsoClosure
IsTriangulatedClosed₃ 📖CompData
2 mathmath: IsTriangulatedClosed₃.mk', instIsTriangulatedClosed₃OfIsTriangulated
instPretriangulatedFullSubcategory 📖CompOp
3 mathmath: instIsTriangulatedFullSubcategoryΚ, instIsTriangulatedFullSubcategory, isTriangulated_lift
trW 📖CompOp
24 mathmath: inverseImage_trW_isInverted, instIsMultiplicativeTrWOfIsTriangulatedOfIsTriangulated, instIsCompatibleWithTriangulationTrWOfIsTriangulatedOfIsTriangulated, instHasRightCalculusOfFractionsTrWOfIsTriangulatedOfIsTriangulated, trW_iff_of_distinguished, instIsCompatibleWithShiftTrWIntOfIsStableUnderShift, trW.mk', trW_iff', trW_of_isIso, instRespectsIsoTrW, trW_iff_of_distinguished', isColocal_trW, HomotopyCategory.quasiIso_eq_subcategoryAcyclic_W, inverseImage_trW_iff, trW.mk, instContainsIdentitiesTrWOfContainsZero, instIsStableUnderFiniteProductsTrWOfIsTriangulated, instHasLeftCalculusOfFractionsTrWOfIsTriangulatedOfIsTriangulated, trW_isoClosure, CategoryTheory.Functor.mem_homologicalKernel_trW_iff, isLocal_trW, smul_mem_trW_iff, trW_iff, DerivedCategory.instIsLocalizationHomotopyCategoryIntUpQhTrWSubcategoryAcyclic

Theorems

NameKindAssumesProvesValidatesDepends On
ext_of_isTriangulatedClosed₁ 📖mathematicalCategoryTheory.Functor.Additive
CategoryTheory.shiftFunctor
Int.instAddMonoid
CategoryTheory.Pretriangulated.Triangle
Set
Set.instMembership
CategoryTheory.Pretriangulated.distinguishedTriangles
CategoryTheory.Pretriangulated.Triangle.obj₂
CategoryTheory.Pretriangulated.Triangle.obj₃
CategoryTheory.Pretriangulated.Triangle.obj₁—isoClosure_eq_self
ext_of_isTriangulatedClosed₁'
ext_of_isTriangulatedClosed₁' 📖mathematicalCategoryTheory.Functor.Additive
CategoryTheory.shiftFunctor
Int.instAddMonoid
CategoryTheory.Pretriangulated.Triangle
Set
Set.instMembership
CategoryTheory.Pretriangulated.distinguishedTriangles
CategoryTheory.Pretriangulated.Triangle.obj₂
CategoryTheory.Pretriangulated.Triangle.obj₃
isoClosure
CategoryTheory.Pretriangulated.Triangle.obj₁
—IsTriangulatedClosed₁.ext₁'
ext_of_isTriangulatedClosed₂ 📖mathematicalCategoryTheory.Functor.Additive
CategoryTheory.shiftFunctor
Int.instAddMonoid
CategoryTheory.Pretriangulated.Triangle
Set
Set.instMembership
CategoryTheory.Pretriangulated.distinguishedTriangles
CategoryTheory.Pretriangulated.Triangle.obj₁
CategoryTheory.Pretriangulated.Triangle.obj₃
CategoryTheory.Pretriangulated.Triangle.obj₂—isoClosure_eq_self
ext_of_isTriangulatedClosed₂'
ext_of_isTriangulatedClosed₂' 📖mathematicalCategoryTheory.Functor.Additive
CategoryTheory.shiftFunctor
Int.instAddMonoid
CategoryTheory.Pretriangulated.Triangle
Set
Set.instMembership
CategoryTheory.Pretriangulated.distinguishedTriangles
CategoryTheory.Pretriangulated.Triangle.obj₁
CategoryTheory.Pretriangulated.Triangle.obj₃
isoClosure
CategoryTheory.Pretriangulated.Triangle.obj₂
—IsTriangulatedClosed₂.ext₂'
ext_of_isTriangulatedClosed₃ 📖mathematicalCategoryTheory.Functor.Additive
CategoryTheory.shiftFunctor
Int.instAddMonoid
CategoryTheory.Pretriangulated.Triangle
Set
Set.instMembership
CategoryTheory.Pretriangulated.distinguishedTriangles
CategoryTheory.Pretriangulated.Triangle.obj₁
CategoryTheory.Pretriangulated.Triangle.obj₂
CategoryTheory.Pretriangulated.Triangle.obj₃—isoClosure_eq_self
ext_of_isTriangulatedClosed₃'
ext_of_isTriangulatedClosed₃' 📖mathematicalCategoryTheory.Functor.Additive
CategoryTheory.shiftFunctor
Int.instAddMonoid
CategoryTheory.Pretriangulated.Triangle
Set
Set.instMembership
CategoryTheory.Pretriangulated.distinguishedTriangles
CategoryTheory.Pretriangulated.Triangle.obj₁
CategoryTheory.Pretriangulated.Triangle.obj₂
isoClosure
CategoryTheory.Pretriangulated.Triangle.obj₃
—IsTriangulatedClosed₃.ext₃'
instContainsIdentitiesTrWOfContainsZero 📖mathematicalCategoryTheory.Functor.Additive
CategoryTheory.shiftFunctor
Int.instAddMonoid
CategoryTheory.MorphismProperty.ContainsIdentities
trW
—trW_isoClosure
CategoryTheory.Pretriangulated.contractible_distinguished
prop_zero
instContainsZeroIsoClosure
instIsClosedUnderIsomorphismsIsoClosure
instHasLeftCalculusOfFractionsTrWOfIsTriangulatedOfIsTriangulated 📖mathematicalCategoryTheory.Functor.Additive
CategoryTheory.shiftFunctor
Int.instAddMonoid
CategoryTheory.MorphismProperty.HasLeftCalculusOfFractions
trW
—instIsMultiplicativeTrWOfIsTriangulatedOfIsTriangulated
CategoryTheory.MorphismProperty.RightFraction.hs
CategoryTheory.Pretriangulated.distinguished_cocone_triangle₂
CategoryTheory.Pretriangulated.complete_distinguished_triangle_morphism₂
CategoryTheory.Category.id_comp
CategoryTheory.Preadditive.comp_sub
sub_self
CategoryTheory.Pretriangulated.Triangle.yoneda_exact₂
CategoryTheory.Pretriangulated.distinguished_cocone_triangle
CategoryTheory.Pretriangulated.rot_of_distTriang
le_shift
IsStableUnderShift.isStableUnderShiftBy
IsTriangulated.toIsStableUnderShift
CategoryTheory.Pretriangulated.comp_distTriang_mor_zero₁₂
sub_eq_zero
CategoryTheory.Preadditive.sub_comp
CategoryTheory.Category.assoc
CategoryTheory.Limits.comp_zero
instHasRightCalculusOfFractionsTrWOfIsTriangulatedOfIsTriangulated 📖mathematicalCategoryTheory.Functor.Additive
CategoryTheory.shiftFunctor
Int.instAddMonoid
CategoryTheory.MorphismProperty.HasRightCalculusOfFractions
trW
—instIsMultiplicativeTrWOfIsTriangulatedOfIsTriangulated
CategoryTheory.MorphismProperty.LeftFraction.hs
CategoryTheory.Pretriangulated.distinguished_cocone_triangle₁
CategoryTheory.Pretriangulated.complete_distinguished_triangle_morphism₁
CategoryTheory.Category.comp_id
trW_iff'
IsTriangulated.toIsStableUnderShift
CategoryTheory.Preadditive.sub_comp
sub_self
CategoryTheory.Pretriangulated.Triangle.coyoneda_exact₂
CategoryTheory.Pretriangulated.comp_distTriang_mor_zero₁₂
sub_eq_zero
CategoryTheory.Preadditive.comp_sub
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
CategoryTheory.Limits.zero_comp
instIsClosedUnderBinaryProductsOfIsTriangulatedOfIsClosedUnderIsomorphisms 📖mathematicalCategoryTheory.Functor.Additive
CategoryTheory.shiftFunctor
Int.instAddMonoid
IsClosedUnderBinaryProducts—prop_of_iso
CategoryTheory.Limits.HasBinaryBiproduct.hasLimit_pair
CategoryTheory.Limits.HasBinaryBiproducts.has_binary_biproduct
CategoryTheory.Pretriangulated.instHasBinaryBiproducts
ext_of_isTriangulatedClosed₂
IsTriangulated.toIsTriangulatedClosed₂
CategoryTheory.Pretriangulated.binaryProductTriangle_distinguished
LimitOfShape.prop_diag_obj
instIsClosedUnderFiniteProductsOfIsTriangulatedOfIsClosedUnderIsomorphisms 📖mathematicalCategoryTheory.Functor.Additive
CategoryTheory.shiftFunctor
Int.instAddMonoid
IsClosedUnderFiniteProducts—IsClosedUnderFiniteProducts.mk'
CategoryTheory.Pretriangulated.instHasFiniteProducts
instIsClosedUnderLimitsOfShapeDiscretePEmptyOfContainsZeroOfIsClosedUnderIsomorphisms
IsTriangulated.toContainsZero
instIsClosedUnderBinaryProductsOfIsTriangulatedOfIsClosedUnderIsomorphisms
instIsCompatibleWithShiftTrWIntOfIsStableUnderShift 📖mathematicalCategoryTheory.Functor.Additive
CategoryTheory.shiftFunctor
Int.instAddMonoid
CategoryTheory.MorphismProperty.IsCompatibleWithShift
trW
—CategoryTheory.MorphismProperty.ext
trW.unshift
trW.shift
instIsCompatibleWithTriangulationTrWOfIsTriangulatedOfIsTriangulated 📖mathematicalCategoryTheory.Functor.Additive
CategoryTheory.shiftFunctor
Int.instAddMonoid
CategoryTheory.MorphismProperty.IsCompatibleWithTriangulation
trW
—instIsCompatibleWithShiftTrWIntOfIsStableUnderShift
IsTriangulated.toIsStableUnderShift
CategoryTheory.Pretriangulated.distinguished_cocone_triangle
CategoryTheory.MorphismProperty.comp_mem
CategoryTheory.MorphismProperty.IsMultiplicative.toIsStableUnderComposition
instIsMultiplicativeTrWOfIsTriangulatedOfIsTriangulated
CategoryTheory.Triangulated.Octahedron.mem
trW.mk'
CategoryTheory.Category.comp_id
CategoryTheory.Pretriangulated.TriangleMorphism.comm₂
CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
CategoryTheory.Pretriangulated.TriangleMorphism.comm₃
instIsMultiplicativeTrWOfIsTriangulatedOfIsTriangulated 📖mathematicalCategoryTheory.Functor.Additive
CategoryTheory.shiftFunctor
Int.instAddMonoid
CategoryTheory.MorphismProperty.IsMultiplicative
trW
—instContainsIdentitiesTrWOfContainsZero
IsTriangulated.toContainsZero
trW_isoClosure
CategoryTheory.Pretriangulated.distinguished_cocone_triangle
ext_of_isTriangulatedClosed₂
instIsTriangulatedClosed₂IsoClosure
IsTriangulated.toIsTriangulatedClosed₂
instIsClosedUnderIsomorphismsIsoClosure
CategoryTheory.Triangulated.Octahedron.mem
instIsStableUnderFiniteProductsTrWOfIsTriangulated 📖mathematicalCategoryTheory.Functor.Additive
CategoryTheory.shiftFunctor
Int.instAddMonoid
CategoryTheory.MorphismProperty.IsStableUnderFiniteProducts
trW
—trW_isoClosure
instRespectsIsoTrW
CategoryTheory.Limits.hasProduct_of_hasBiproduct
CategoryTheory.Limits.HasBiproductsOfShape.has_biproduct
CategoryTheory.Limits.hasBiproductsOfShape_finite
CategoryTheory.Pretriangulated.instHasFiniteBiproducts
CategoryTheory.Functor.hasBiproduct_of_preserves'
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
CategoryTheory.Limits.PreservesBiproductsOfShape.preserves
CategoryTheory.Limits.PreservesFiniteBiproducts.preserves
CategoryTheory.Functor.preservesFiniteBiproductsOfAdditive
CategoryTheory.Pretriangulated.productTriangle_distinguished
prop_pi
instIsClosedUnderLimitsOfShapeDiscreteOfIsClosedUnderFiniteProductsOfFinite
instIsClosedUnderFiniteProductsOfIsTriangulatedOfIsClosedUnderIsomorphisms
instIsTriangulatedIsoClosure
instIsClosedUnderIsomorphismsIsoClosure
instIsTriangulatedClosed₁OfIsTriangulated 📖mathematicalCategoryTheory.Functor.Additive
CategoryTheory.shiftFunctor
Int.instAddMonoid
IsTriangulatedClosed₁—ext_of_isTriangulatedClosed₂'
IsTriangulated.toIsTriangulatedClosed₂
CategoryTheory.Pretriangulated.inv_rot_of_distTriang
le_shift
IsStableUnderShift.isStableUnderShiftBy
IsTriangulated.toIsStableUnderShift
instIsTriangulatedClosed₂IsoClosure 📖mathematicalCategoryTheory.Functor.Additive
CategoryTheory.shiftFunctor
Int.instAddMonoid
IsTriangulatedClosed₂
isoClosure
—le_isoClosure
ext_of_isTriangulatedClosed₂'
CategoryTheory.Pretriangulated.isomorphic_distinguished
CategoryTheory.Category.comp_id
CategoryTheory.Category.assoc
CategoryTheory.Iso.hom_inv_id
CategoryTheory.Category.id_comp
CategoryTheory.Functor.map_id
instIsTriangulatedClosed₂MinOfIsClosedUnderIsomorphisms 📖mathematicalCategoryTheory.Functor.Additive
CategoryTheory.shiftFunctor
Int.instAddMonoid
IsTriangulatedClosed₂
CategoryTheory.ObjectProperty
CategoryTheory.Category.toCategoryStruct
Pi.instMinForall_mathlib
SemilatticeInf.toMin
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
Prop.instCompleteLinearOrder
—ext_of_isTriangulatedClosed₂'
prop_of_iso
ext_of_isTriangulatedClosed₂
instIsTriangulatedClosed₃OfIsTriangulated 📖mathematicalCategoryTheory.Functor.Additive
CategoryTheory.shiftFunctor
Int.instAddMonoid
IsTriangulatedClosed₃—ext_of_isTriangulatedClosed₂'
IsTriangulated.toIsTriangulatedClosed₂
CategoryTheory.Pretriangulated.rot_of_distTriang
le_shift
IsStableUnderShift.isStableUnderShiftBy
IsTriangulated.toIsStableUnderShift
instIsTriangulatedEssImageOfIsTriangulatedOfFull 📖mathematicalCategoryTheory.Functor.Additive
CategoryTheory.shiftFunctor
Int.instAddMonoid
IsTriangulated
CategoryTheory.Functor.essImage
—IsTriangulatedClosed₂.mk'
CategoryTheory.Functor.instIsClosedUnderIsomorphismsEssImage
CategoryTheory.Functor.map_surjective
CategoryTheory.Pretriangulated.distinguished_cocone_triangle₂
CategoryTheory.Functor.map_distinguished
CategoryTheory.Category.assoc
CategoryTheory.Iso.inv_hom_id_app
CategoryTheory.Category.comp_id
CategoryTheory.Iso.inv_hom_id
CategoryTheory.Functor.map_id
CategoryTheory.Limits.isZero_zero
CategoryTheory.Functor.IsTriangulated.instPreservesZeroMorphisms
instIsTriangulatedFullSubcategory 📖mathematicalCategoryTheory.Functor.Additive
CategoryTheory.shiftFunctor
Int.instAddMonoid
CategoryTheory.IsTriangulated
FullSubcategory
FullSubcategory.category
CategoryTheory.Preadditive.fullSubcategory
instHasZeroObjectFullSubcategoryOfContainsZero
IsTriangulated.toContainsZero
hasShift
IsTriangulated.toIsStableUnderShift
instAdditiveFullSubcategoryShiftFunctor
instPretriangulatedFullSubcategory
—CategoryTheory.IsTriangulated.of_fully_faithful_triangulated_functor
IsTriangulated.toIsStableUnderShift
instHasZeroObjectFullSubcategoryOfContainsZero
IsTriangulated.toContainsZero
instAdditiveFullSubcategoryShiftFunctor
instIsTriangulatedFullSubcategoryΚ
full_Κ
faithful_Κ
instIsTriangulatedFullSubcategoryι 📖mathematicalCategoryTheory.Functor.Additive
CategoryTheory.shiftFunctor
Int.instAddMonoid
CategoryTheory.Functor.IsTriangulated
FullSubcategory
FullSubcategory.category
hasShift
IsTriangulated.toIsStableUnderShift
Κ
commShiftΚ
instHasZeroObjectFullSubcategoryOfContainsZero
IsTriangulated.toContainsZero
CategoryTheory.Preadditive.fullSubcategory
instAdditiveFullSubcategoryShiftFunctor
instPretriangulatedFullSubcategory
—IsTriangulated.toIsStableUnderShift
instHasZeroObjectFullSubcategoryOfContainsZero
IsTriangulated.toContainsZero
instAdditiveFullSubcategoryShiftFunctor
instIsTriangulatedInverseImage 📖mathematicalCategoryTheory.Functor.Additive
CategoryTheory.shiftFunctor
Int.instAddMonoid
IsTriangulated
inverseImage
—IsTriangulatedClosed₂.mk'
instIsClosedUnderIsomorphismsInverseImage
ext_of_isTriangulatedClosed₂
IsTriangulated.toIsTriangulatedClosed₂
CategoryTheory.Functor.map_distinguished
instContainsZeroInverseImageOfIsClosedUnderIsomorphismsOfPreservesZeroMorphismsOfHasZeroObject
IsTriangulated.toContainsZero
CategoryTheory.Functor.IsTriangulated.instPreservesZeroMorphisms
instIsStableUnderShiftInverseImageOfIsClosedUnderIsomorphismsOfCommShift
IsTriangulated.toIsStableUnderShift
instIsTriangulatedIsoClosure 📖mathematicalCategoryTheory.Functor.Additive
CategoryTheory.shiftFunctor
Int.instAddMonoid
IsTriangulated
isoClosure
—instContainsZeroIsoClosure
IsTriangulated.toContainsZero
instIsStableUnderShiftIsoClosure
IsTriangulated.toIsStableUnderShift
instIsTriangulatedClosed₂IsoClosure
IsTriangulated.toIsTriangulatedClosed₂
instIsTriangulatedMapOfIsTriangulatedOfFull 📖mathematicalCategoryTheory.Functor.Additive
CategoryTheory.shiftFunctor
Int.instAddMonoid
IsTriangulated
map
—CategoryTheory.Functor.essImage_ι_comp
instIsTriangulatedEssImageOfIsTriangulatedOfFull
instHasZeroObjectFullSubcategoryOfContainsZero
IsTriangulated.toContainsZero
IsTriangulated.toIsStableUnderShift
instAdditiveFullSubcategoryShiftFunctor
CategoryTheory.Functor.IsTriangulated.instComp
instIsTriangulatedFullSubcategoryΚ
CategoryTheory.Functor.Full.comp
full_Κ
instIsTriangulatedMinOfIsClosedUnderIsomorphisms 📖mathematicalCategoryTheory.Functor.Additive
CategoryTheory.shiftFunctor
Int.instAddMonoid
IsTriangulated
CategoryTheory.ObjectProperty
CategoryTheory.Category.toCategoryStruct
Pi.instMinForall_mathlib
SemilatticeInf.toMin
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
Prop.instCompleteLinearOrder
—instContainsZeroMinOfIsClosedUnderIsomorphisms
IsTriangulated.toContainsZero
instIsStableUnderShiftMin
IsTriangulated.toIsStableUnderShift
instIsTriangulatedClosed₂MinOfIsClosedUnderIsomorphisms
IsTriangulated.toIsTriangulatedClosed₂
instRespectsIsoTrW 📖mathematicalCategoryTheory.Functor.Additive
CategoryTheory.shiftFunctor
Int.instAddMonoid
CategoryTheory.MorphismProperty.RespectsIso
trW
—CategoryTheory.Pretriangulated.isomorphic_distinguished
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
CategoryTheory.Functor.map_isIso
CategoryTheory.Functor.map_inv
CategoryTheory.Category.assoc
CategoryTheory.IsIso.inv_hom_id
CategoryTheory.IsIso.hom_inv_id
CategoryTheory.Functor.map_id
inverseImage_trW_iff 📖mathematicalCategoryTheory.Functor.Additive
CategoryTheory.shiftFunctor
Int.instAddMonoid
trW
inverseImage
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
—CategoryTheory.Pretriangulated.distinguished_cocone_triangle
trW_iff_of_distinguished
instIsClosedUnderIsomorphismsInverseImage
CategoryTheory.Functor.map_distinguished
prop_inverseImage_iff
inverseImage_trW_isInverted 📖mathematicalCategoryTheory.Functor.Additive
CategoryTheory.shiftFunctor
Int.instAddMonoid
CategoryTheory.MorphismProperty.IsInvertedBy
trW
inverseImage
CategoryTheory.Functor.comp
—CategoryTheory.Localization.inverts
isTriangulated_lift 📖mathematicalCategoryTheory.Functor.Additive
CategoryTheory.shiftFunctor
Int.instAddMonoid
CategoryTheory.Functor.obj
CategoryTheory.Functor.IsTriangulated
FullSubcategory
FullSubcategory.category
hasShift
IsTriangulated.toIsStableUnderShift
lift
instCommShiftFullSubcategoryLift
instHasZeroObjectFullSubcategoryOfContainsZero
IsTriangulated.toContainsZero
CategoryTheory.Preadditive.fullSubcategory
instAdditiveFullSubcategoryShiftFunctor
instPretriangulatedFullSubcategory
—IsTriangulated.toIsStableUnderShift
instHasZeroObjectFullSubcategoryOfContainsZero
IsTriangulated.toContainsZero
instAdditiveFullSubcategoryShiftFunctor
CategoryTheory.Functor.isTriangulated_iff_comp_right
instCommShiftHomFunctorLiftCompΚIso
instIsTriangulatedFullSubcategoryΚ
full_Κ
faithful_Κ
smul_mem_trW_iff 📖mathematicalCategoryTheory.Functor.Additive
CategoryTheory.shiftFunctor
Int.instAddMonoid
trW
Units
Int.instMonoid
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Units.instSMul
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
CategoryTheory.Preadditive.homGroup
—CategoryTheory.MorphismProperty.arrow_mk_iso_iff
instRespectsIsoTrW
CategoryTheory.Linear.units_smul_comp
CategoryTheory.Category.id_comp
CategoryTheory.Category.comp_id
trW_iff 📖mathematicalCategoryTheory.Functor.Additive
CategoryTheory.shiftFunctor
Int.instAddMonoid
trW——
trW_iff' 📖mathematicalCategoryTheory.Functor.Additive
CategoryTheory.shiftFunctor
Int.instAddMonoid
trW—trW_iff
CategoryTheory.Pretriangulated.inv_rot_of_distTriang
le_shift
IsStableUnderShift.isStableUnderShiftBy
CategoryTheory.Pretriangulated.rot_of_distTriang
trW_iff_of_distinguished 📖mathematicalCategoryTheory.Functor.Additive
CategoryTheory.shiftFunctor
Int.instAddMonoid
CategoryTheory.Pretriangulated.Triangle
Set
Set.instMembership
CategoryTheory.Pretriangulated.distinguishedTriangles
trW
CategoryTheory.Pretriangulated.Triangle.obj₁
CategoryTheory.Pretriangulated.Triangle.obj₂
CategoryTheory.Pretriangulated.Triangle.mor₁
CategoryTheory.Pretriangulated.Triangle.obj₃
—CategoryTheory.Pretriangulated.exists_iso_of_arrow_iso
prop_of_iso
trW_iff_of_distinguished' 📖mathematicalCategoryTheory.Functor.Additive
CategoryTheory.shiftFunctor
Int.instAddMonoid
CategoryTheory.Pretriangulated.Triangle
Set
Set.instMembership
CategoryTheory.Pretriangulated.distinguishedTriangles
trW
CategoryTheory.Pretriangulated.Triangle.obj₂
CategoryTheory.Pretriangulated.Triangle.obj₃
CategoryTheory.Pretriangulated.Triangle.mor₂
CategoryTheory.Pretriangulated.Triangle.obj₁
—prop_shift_iff_of_isStableUnderShift
trW_iff_of_distinguished
CategoryTheory.Pretriangulated.rot_of_distTriang
trW_isoClosure 📖mathematicalCategoryTheory.Functor.Additive
CategoryTheory.shiftFunctor
Int.instAddMonoid
trW
isoClosure
—CategoryTheory.MorphismProperty.ext
CategoryTheory.Pretriangulated.isomorphic_distinguished
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
CategoryTheory.Category.assoc
CategoryTheory.Iso.hom_inv_id
CategoryTheory.Functor.map_id
le_isoClosure
trW_of_isIso 📖mathematicalCategoryTheory.Functor.Additive
CategoryTheory.shiftFunctor
Int.instAddMonoid
trW—CategoryTheory.MorphismProperty.arrow_mk_iso_iff
instRespectsIsoTrW
CategoryTheory.MorphismProperty.id_mem
instContainsIdentitiesTrWOfContainsZero

CategoryTheory.ObjectProperty.IsTriangulated

Theorems

NameKindAssumesProvesValidatesDepends On
toContainsZero 📖mathematicalCategoryTheory.Functor.Additive
CategoryTheory.shiftFunctor
Int.instAddMonoid
CategoryTheory.ObjectProperty.ContainsZero——
toIsStableUnderShift 📖mathematicalCategoryTheory.Functor.Additive
CategoryTheory.shiftFunctor
Int.instAddMonoid
CategoryTheory.ObjectProperty.IsStableUnderShift——
toIsTriangulatedClosed₂ 📖mathematicalCategoryTheory.Functor.Additive
CategoryTheory.shiftFunctor
Int.instAddMonoid
CategoryTheory.ObjectProperty.IsTriangulatedClosed₂——

CategoryTheory.ObjectProperty.IsTriangulatedClosed₁

Theorems

NameKindAssumesProvesValidatesDepends On
ext₁' 📖mathematicalCategoryTheory.Functor.Additive
CategoryTheory.shiftFunctor
Int.instAddMonoid
CategoryTheory.Pretriangulated.Triangle
Set
Set.instMembership
CategoryTheory.Pretriangulated.distinguishedTriangles
CategoryTheory.Pretriangulated.Triangle.obj₂
CategoryTheory.Pretriangulated.Triangle.obj₃
CategoryTheory.ObjectProperty.isoClosure
CategoryTheory.Pretriangulated.Triangle.obj₁
——
mk' 📖mathematicalCategoryTheory.Functor.Additive
CategoryTheory.shiftFunctor
Int.instAddMonoid
CategoryTheory.Pretriangulated.Triangle.obj₁
CategoryTheory.ObjectProperty.IsTriangulatedClosed₁—CategoryTheory.ObjectProperty.isoClosure_eq_self

CategoryTheory.ObjectProperty.IsTriangulatedClosed₂

Theorems

NameKindAssumesProvesValidatesDepends On
ext₂' 📖mathematicalCategoryTheory.Functor.Additive
CategoryTheory.shiftFunctor
Int.instAddMonoid
CategoryTheory.Pretriangulated.Triangle
Set
Set.instMembership
CategoryTheory.Pretriangulated.distinguishedTriangles
CategoryTheory.Pretriangulated.Triangle.obj₁
CategoryTheory.Pretriangulated.Triangle.obj₃
CategoryTheory.ObjectProperty.isoClosure
CategoryTheory.Pretriangulated.Triangle.obj₂
——
mk' 📖mathematicalCategoryTheory.Functor.Additive
CategoryTheory.shiftFunctor
Int.instAddMonoid
CategoryTheory.Pretriangulated.Triangle.obj₂
CategoryTheory.ObjectProperty.IsTriangulatedClosed₂—CategoryTheory.ObjectProperty.isoClosure_eq_self

CategoryTheory.ObjectProperty.IsTriangulatedClosed₃

Theorems

NameKindAssumesProvesValidatesDepends On
ext₃' 📖mathematicalCategoryTheory.Functor.Additive
CategoryTheory.shiftFunctor
Int.instAddMonoid
CategoryTheory.Pretriangulated.Triangle
Set
Set.instMembership
CategoryTheory.Pretriangulated.distinguishedTriangles
CategoryTheory.Pretriangulated.Triangle.obj₁
CategoryTheory.Pretriangulated.Triangle.obj₂
CategoryTheory.ObjectProperty.isoClosure
CategoryTheory.Pretriangulated.Triangle.obj₃
——
mk' 📖mathematicalCategoryTheory.Functor.Additive
CategoryTheory.shiftFunctor
Int.instAddMonoid
CategoryTheory.Pretriangulated.Triangle.obj₃
CategoryTheory.ObjectProperty.IsTriangulatedClosed₃—CategoryTheory.ObjectProperty.isoClosure_eq_self

CategoryTheory.ObjectProperty.trW

Theorems

NameKindAssumesProvesValidatesDepends On
mk 📖mathematicalCategoryTheory.Functor.Additive
CategoryTheory.shiftFunctor
Int.instAddMonoid
CategoryTheory.Pretriangulated.Triangle
Set
Set.instMembership
CategoryTheory.Pretriangulated.distinguishedTriangles
CategoryTheory.Pretriangulated.Triangle.obj₃
CategoryTheory.ObjectProperty.trW
CategoryTheory.Pretriangulated.Triangle.obj₁
CategoryTheory.Pretriangulated.Triangle.obj₂
CategoryTheory.Pretriangulated.Triangle.mor₁
——
mk' 📖mathematicalCategoryTheory.Functor.Additive
CategoryTheory.shiftFunctor
Int.instAddMonoid
CategoryTheory.Pretriangulated.Triangle
Set
Set.instMembership
CategoryTheory.Pretriangulated.distinguishedTriangles
CategoryTheory.Pretriangulated.Triangle.obj₁
CategoryTheory.ObjectProperty.trW
CategoryTheory.Pretriangulated.Triangle.obj₂
CategoryTheory.Pretriangulated.Triangle.obj₃
CategoryTheory.Pretriangulated.Triangle.mor₂
—CategoryTheory.ObjectProperty.trW_iff'
shift 📖mathematicalCategoryTheory.Functor.Additive
CategoryTheory.shiftFunctor
Int.instAddMonoid
CategoryTheory.ObjectProperty.trW
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
—CategoryTheory.ObjectProperty.smul_mem_trW_iff
CategoryTheory.Pretriangulated.Triangle.shift_distinguished
CategoryTheory.ObjectProperty.le_shift
CategoryTheory.ObjectProperty.IsStableUnderShift.isStableUnderShiftBy
unshift 📖—CategoryTheory.Functor.Additive
CategoryTheory.shiftFunctor
Int.instAddMonoid
CategoryTheory.ObjectProperty.trW
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
——CategoryTheory.MorphismProperty.arrow_mk_iso_iff
CategoryTheory.ObjectProperty.instRespectsIsoTrW
shift

---

← Back to Index