Documentation Verification Report

Basic

๐Ÿ“ Source: Mathlib/CategoryTheory/Triangulated/TStructure/Basic.lean

Statistics

MetricCount
DefinitionsIsGE, IsLE, bounded, ge, le, minus, plus
7
Theoremsge, le, exists_triangle, exists_triangle_zero_one, ge_antitone, ge_isClosedUnderIsomorphisms, ge_of_isGE, ge_one_le, ge_shift, instIsClosedUnderIsomorphismsBounded, instIsClosedUnderIsomorphismsMinus, instIsClosedUnderIsomorphismsPlus, instIsStableUnderShiftBoundedInt, instIsStableUnderShiftMinusInt, instIsStableUnderShiftPlusInt, isGE_of_GE, isGE_of_ge, isGE_of_iso, isGE_of_shift, isGE_shift, isGE_shift_iff, isLE_of_LE, isLE_of_iso, isLE_of_le, isLE_of_shift, isLE_shift, isLE_shift_iff, isZero, le_isClosedUnderIsomorphisms, le_monotone, le_of_isLE, le_shift, le_zero_le, shift_ge, shift_le, zero, zero', zero_of_isLE_of_isGE
38
Total45

CategoryTheory.Triangulated.TStructure

Definitions

NameCategoryTheorems
IsGE ๐Ÿ“–CompData
8 mathmath: isGE_of_iso, isGE_shift_iff, instIsGEObjโ‚ƒObjTriangleTriangleLTGE, isGE_of_GE, instIsGEObjTruncGE, isGE_shift, isGE_of_ge, isGE_of_shift
IsLE ๐Ÿ“–CompData
8 mathmath: instIsLEObjTruncLTHSubIntOfNat, isLE_of_LE, isLE_shift_iff, isLE_shift, isLE_of_iso, isLE_of_le, instIsLEObjโ‚ObjTriangleTriangleLTGEHSubIntOfNat, isLE_of_shift
bounded ๐Ÿ“–CompOp
2 mathmath: instIsStableUnderShiftBoundedInt, instIsClosedUnderIsomorphismsBounded
ge ๐Ÿ“–CompOp
6 mathmath: ge_isClosedUnderIsomorphisms, shift_ge, ge_of_isGE, ge_antitone, IsGE.ge, ge_one_le
le ๐Ÿ“–CompOp
6 mathmath: le_of_isLE, le_monotone, shift_le, IsLE.le, le_zero_le, le_isClosedUnderIsomorphisms
minus ๐Ÿ“–CompOp
2 mathmath: instIsClosedUnderIsomorphismsMinus, instIsStableUnderShiftMinusInt
plus ๐Ÿ“–CompOp
2 mathmath: instIsClosedUnderIsomorphismsPlus, instIsStableUnderShiftPlusInt

Theorems

NameKindAssumesProvesValidatesDepends On
exists_triangle ๐Ÿ“–mathematicalCategoryTheory.Functor.Additive
CategoryTheory.shiftFunctor
Int.instAddMonoid
CategoryTheory.Pretriangulated.Triangle
Set
Set.instMembership
CategoryTheory.Pretriangulated.distinguishedTriangles
โ€”exists_triangle_zero_one
CategoryTheory.Pretriangulated.isomorphic_distinguished
CategoryTheory.Pretriangulated.Triangle.shift_distinguished
Int.negOnePow_neg
CategoryTheory.Linear.units_smul_comp
CategoryTheory.Category.assoc
CategoryTheory.Iso.hom_inv_id
CategoryTheory.Category.comp_id
CategoryTheory.Linear.comp_units_smul
CategoryTheory.Category.id_comp
CategoryTheory.Functor.map_id
le_shift
neg_add_cancel
ge_shift
exists_triangle_zero_one ๐Ÿ“–mathematicalCategoryTheory.Functor.Additive
CategoryTheory.shiftFunctor
Int.instAddMonoid
CategoryTheory.Pretriangulated.Triangle
Set
Set.instMembership
CategoryTheory.Pretriangulated.distinguishedTriangles
โ€”โ€”
ge_antitone ๐Ÿ“–mathematicalCategoryTheory.Functor.Additive
CategoryTheory.shiftFunctor
Int.instAddMonoid
Antitone
CategoryTheory.ObjectProperty
CategoryTheory.Category.toCategoryStruct
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
instLatticeInt
Pi.preorder
Prop.partialOrder
ge
โ€”Nat.cast_zero
add_zero
le_refl
shift_ge
ge_one_le
CategoryTheory.ObjectProperty.prop_shift_iff
Nat.cast_one
Nat.cast_add
add_assoc
LE.le.trans
ge_isClosedUnderIsomorphisms ๐Ÿ“–mathematicalCategoryTheory.Functor.Additive
CategoryTheory.shiftFunctor
Int.instAddMonoid
CategoryTheory.ObjectProperty.IsClosedUnderIsomorphisms
ge
โ€”โ€”
ge_of_isGE ๐Ÿ“–mathematicalCategoryTheory.Functor.Additive
CategoryTheory.shiftFunctor
Int.instAddMonoid
geโ€”IsGE.ge
ge_one_le ๐Ÿ“–mathematicalCategoryTheory.Functor.Additive
CategoryTheory.shiftFunctor
Int.instAddMonoid
CategoryTheory.ObjectProperty
CategoryTheory.Category.toCategoryStruct
Pi.hasLe
Prop.le
ge
โ€”โ€”
ge_shift ๐Ÿ“–mathematicalCategoryTheory.Functor.Additive
CategoryTheory.shiftFunctor
Int.instAddMonoid
ge
CategoryTheory.Functor.objโ€”โ€”
instIsClosedUnderIsomorphismsBounded ๐Ÿ“–mathematicalCategoryTheory.Functor.Additive
CategoryTheory.shiftFunctor
Int.instAddMonoid
CategoryTheory.ObjectProperty.IsClosedUnderIsomorphisms
bounded
โ€”CategoryTheory.ObjectProperty.instIsClosedUnderIsomorphismsMin
instIsClosedUnderIsomorphismsPlus
instIsClosedUnderIsomorphismsMinus
instIsClosedUnderIsomorphismsMinus ๐Ÿ“–mathematicalCategoryTheory.Functor.Additive
CategoryTheory.shiftFunctor
Int.instAddMonoid
CategoryTheory.ObjectProperty.IsClosedUnderIsomorphisms
minus
โ€”isLE_of_iso
instIsClosedUnderIsomorphismsPlus ๐Ÿ“–mathematicalCategoryTheory.Functor.Additive
CategoryTheory.shiftFunctor
Int.instAddMonoid
CategoryTheory.ObjectProperty.IsClosedUnderIsomorphisms
plus
โ€”isGE_of_iso
instIsStableUnderShiftBoundedInt ๐Ÿ“–mathematicalCategoryTheory.Functor.Additive
CategoryTheory.shiftFunctor
Int.instAddMonoid
CategoryTheory.ObjectProperty.IsStableUnderShift
bounded
โ€”CategoryTheory.ObjectProperty.instIsStableUnderShiftMin
instIsStableUnderShiftPlusInt
instIsStableUnderShiftMinusInt
instIsStableUnderShiftMinusInt ๐Ÿ“–mathematicalCategoryTheory.Functor.Additive
CategoryTheory.shiftFunctor
Int.instAddMonoid
CategoryTheory.ObjectProperty.IsStableUnderShift
minus
โ€”isLE_shift
instIsStableUnderShiftPlusInt ๐Ÿ“–mathematicalCategoryTheory.Functor.Additive
CategoryTheory.shiftFunctor
Int.instAddMonoid
CategoryTheory.ObjectProperty.IsStableUnderShift
plus
โ€”isGE_shift
isGE_of_GE ๐Ÿ“–mathematicalCategoryTheory.Functor.Additive
CategoryTheory.shiftFunctor
Int.instAddMonoid
IsGEโ€”isGE_of_ge
isGE_of_ge ๐Ÿ“–mathematicalCategoryTheory.Functor.Additive
CategoryTheory.shiftFunctor
Int.instAddMonoid
IsGEโ€”ge_antitone
ge_of_isGE
isGE_of_iso ๐Ÿ“–mathematicalCategoryTheory.Functor.Additive
CategoryTheory.shiftFunctor
Int.instAddMonoid
IsGEโ€”CategoryTheory.ObjectProperty.prop_of_iso
ge_isClosedUnderIsomorphisms
ge_of_isGE
isGE_of_shift ๐Ÿ“–mathematicalCategoryTheory.Functor.Additive
CategoryTheory.shiftFunctor
Int.instAddMonoid
IsGEโ€”isGE_shift
isGE_of_iso
isGE_shift ๐Ÿ“–mathematicalCategoryTheory.Functor.Additive
CategoryTheory.shiftFunctor
Int.instAddMonoid
IsGE
CategoryTheory.Functor.obj
โ€”ge_shift
ge_of_isGE
isGE_shift_iff ๐Ÿ“–mathematicalCategoryTheory.Functor.Additive
CategoryTheory.shiftFunctor
Int.instAddMonoid
IsGE
CategoryTheory.Functor.obj
โ€”isGE_of_shift
isGE_shift
isLE_of_LE ๐Ÿ“–mathematicalCategoryTheory.Functor.Additive
CategoryTheory.shiftFunctor
Int.instAddMonoid
IsLEโ€”isLE_of_le
isLE_of_iso ๐Ÿ“–mathematicalCategoryTheory.Functor.Additive
CategoryTheory.shiftFunctor
Int.instAddMonoid
IsLEโ€”CategoryTheory.ObjectProperty.prop_of_iso
le_isClosedUnderIsomorphisms
le_of_isLE
isLE_of_le ๐Ÿ“–mathematicalCategoryTheory.Functor.Additive
CategoryTheory.shiftFunctor
Int.instAddMonoid
IsLEโ€”le_monotone
le_of_isLE
isLE_of_shift ๐Ÿ“–mathematicalCategoryTheory.Functor.Additive
CategoryTheory.shiftFunctor
Int.instAddMonoid
IsLEโ€”isLE_shift
isLE_of_iso
isLE_shift ๐Ÿ“–mathematicalCategoryTheory.Functor.Additive
CategoryTheory.shiftFunctor
Int.instAddMonoid
IsLE
CategoryTheory.Functor.obj
โ€”le_shift
le_of_isLE
isLE_shift_iff ๐Ÿ“–mathematicalCategoryTheory.Functor.Additive
CategoryTheory.shiftFunctor
Int.instAddMonoid
IsLE
CategoryTheory.Functor.obj
โ€”isLE_of_shift
isLE_shift
isZero ๐Ÿ“–mathematicalCategoryTheory.Functor.Additive
CategoryTheory.shiftFunctor
Int.instAddMonoid
CategoryTheory.Limits.IsZeroโ€”CategoryTheory.Limits.IsZero.iff_id_eq_zero
zero
le_isClosedUnderIsomorphisms ๐Ÿ“–mathematicalCategoryTheory.Functor.Additive
CategoryTheory.shiftFunctor
Int.instAddMonoid
CategoryTheory.ObjectProperty.IsClosedUnderIsomorphisms
le
โ€”โ€”
le_monotone ๐Ÿ“–mathematicalCategoryTheory.Functor.Additive
CategoryTheory.shiftFunctor
Int.instAddMonoid
Monotone
CategoryTheory.ObjectProperty
CategoryTheory.Category.toCategoryStruct
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
instLatticeInt
Pi.preorder
Prop.partialOrder
le
โ€”Nat.cast_zero
add_zero
le_refl
shift_le
CategoryTheory.ObjectProperty.prop_shift_iff
le_zero_le
Nat.cast_add
add_assoc
LE.le.trans
le_of_isLE ๐Ÿ“–mathematicalCategoryTheory.Functor.Additive
CategoryTheory.shiftFunctor
Int.instAddMonoid
leโ€”IsLE.le
le_shift ๐Ÿ“–mathematicalCategoryTheory.Functor.Additive
CategoryTheory.shiftFunctor
Int.instAddMonoid
le
CategoryTheory.Functor.objโ€”โ€”
le_zero_le ๐Ÿ“–mathematicalCategoryTheory.Functor.Additive
CategoryTheory.shiftFunctor
Int.instAddMonoid
CategoryTheory.ObjectProperty
CategoryTheory.Category.toCategoryStruct
Pi.hasLe
Prop.le
le
โ€”โ€”
shift_ge ๐Ÿ“–mathematicalCategoryTheory.Functor.Additive
CategoryTheory.shiftFunctor
Int.instAddMonoid
CategoryTheory.ObjectProperty.shift
ge
โ€”CategoryTheory.ObjectProperty.prop_iff_of_iso
ge_isClosedUnderIsomorphisms
ge_shift
shift_le ๐Ÿ“–mathematicalCategoryTheory.Functor.Additive
CategoryTheory.shiftFunctor
Int.instAddMonoid
CategoryTheory.ObjectProperty.shift
le
โ€”CategoryTheory.ObjectProperty.prop_iff_of_iso
le_isClosedUnderIsomorphisms
le_shift
zero ๐Ÿ“–mathematicalCategoryTheory.Functor.Additive
CategoryTheory.shiftFunctor
Int.instAddMonoid
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
โ€”isLE_shift
add_zero
isGE_shift
isGE_of_ge
CategoryTheory.Functor.map_injective
CategoryTheory.Functor.IsEquivalence.faithful
CategoryTheory.instIsEquivalenceShiftFunctor
CategoryTheory.Functor.map_zero
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
zero'
le_of_isLE
ge_of_isGE
zero' ๐Ÿ“–mathematicalCategoryTheory.Functor.Additive
CategoryTheory.shiftFunctor
Int.instAddMonoid
le
ge
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
โ€”โ€”
zero_of_isLE_of_isGE ๐Ÿ“–mathematicalCategoryTheory.Functor.Additive
CategoryTheory.shiftFunctor
Int.instAddMonoid
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
โ€”zero

CategoryTheory.Triangulated.TStructure.IsGE

Theorems

NameKindAssumesProvesValidatesDepends On
ge ๐Ÿ“–mathematicalCategoryTheory.Functor.Additive
CategoryTheory.shiftFunctor
Int.instAddMonoid
CategoryTheory.Triangulated.TStructure.geโ€”โ€”

CategoryTheory.Triangulated.TStructure.IsLE

Theorems

NameKindAssumesProvesValidatesDepends On
le ๐Ÿ“–mathematicalCategoryTheory.Functor.Additive
CategoryTheory.shiftFunctor
Int.instAddMonoid
CategoryTheory.Triangulated.TStructure.leโ€”โ€”

---

โ† Back to Index