Documentation Verification Report

Whiskering

📁 Source: Mathlib/CategoryTheory/Whiskering.lean

Statistics

MetricCount
DefinitionswhiskeringRight, isoWhiskerLeft, isoWhiskerRight, postcompose₂, postcompose₃, whiskerLeft, whiskerRight, whiskeringLeft, whiskeringLeftObjCompIso, whiskeringLeftObjIdIso, whiskeringLeft₂, whiskeringLeft₃, whiskeringLeft₃Map, whiskeringLeft₃Obj, whiskeringLeft₃ObjMap, whiskeringLeft₃ObjObj, whiskeringLeft₃ObjObjMap, whiskeringLeft₃ObjObjObj, whiskeringRight, whiskeringRightObjCompIso, whiskeringRightObjIdIso
21
TheoremswhiskeringRight_preimage_app, hcomp_eq_whiskerLeft_comp_whiskerRight, faithful_whiskeringRight_obj, full_whiskeringRight_obj, hcomp_id, id_hcomp, inv_whiskerLeft, inv_whiskerRight, isIso_whiskerLeft, isIso_whiskerRight, isoWhiskerLeft_hom, isoWhiskerLeft_inv, isoWhiskerLeft_refl, isoWhiskerLeft_right, isoWhiskerLeft_right_assoc, isoWhiskerLeft_symm, isoWhiskerLeft_trans, isoWhiskerLeft_trans_assoc, isoWhiskerLeft_trans_isoWhiskerRight, isoWhiskerLeft_trans_isoWhiskerRight_assoc, isoWhiskerLeft_twice, isoWhiskerRight_hom, isoWhiskerRight_inv, isoWhiskerRight_left, isoWhiskerRight_left_assoc, isoWhiskerRight_refl, isoWhiskerRight_symm, isoWhiskerRight_trans, isoWhiskerRight_trans_assoc, isoWhiskerRight_twice, isoWhiskerRight_twice_assoc, pentagon, pentagonIso, pentagonIso_assoc, postcompose₂_map_app_app_app, postcompose₂_obj_map_app_app, postcompose₂_obj_obj_map_app, postcompose₂_obj_obj_obj_map, postcompose₂_obj_obj_obj_obj, postcompose₃_map_app_app_app_app, postcompose₃_obj_map_app_app_app, postcompose₃_obj_obj_map_app_app, postcompose₃_obj_obj_obj_map_app, postcompose₃_obj_obj_obj_obj_map, postcompose₃_obj_obj_obj_obj_obj, triangle, triangleIso, triangleIso_assoc, whiskerLeft_app, whiskerLeft_comp, whiskerLeft_comp_assoc, whiskerLeft_comp_whiskerRight, whiskerLeft_comp_whiskerRight_assoc, whiskerLeft_id, whiskerLeft_id', whiskerLeft_twice, whiskerRight_app, whiskerRight_comp, whiskerRight_comp_assoc, whiskerRight_id, whiskerRight_id', whiskerRight_left, whiskerRight_twice, whiskeringLeftObjCompIso_hom_app_app, whiskeringLeftObjCompIso_inv_app_app, whiskeringLeftObjIdIso_hom_app_app, whiskeringLeftObjIdIso_inv_app_app, whiskeringLeft_map_app_app, whiskeringLeft_obj_comp, whiskeringLeft_obj_id, whiskeringLeft_obj_map, whiskeringLeft_obj_obj, whiskeringLeft₂_map_app_app_app_app, whiskeringLeft₂_obj_map_app_app_app, whiskeringLeft₂_obj_obj_map_app_app, whiskeringLeft₂_obj_obj_obj_map_app, whiskeringLeft₂_obj_obj_obj_obj_map, whiskeringLeft₂_obj_obj_obj_obj_obj, whiskeringLeft₃Map_app_app, whiskeringLeft₃ObjMap_app, whiskeringLeft₃ObjObjMap_app, whiskeringLeft₃ObjObjObj_map_app_app_app, whiskeringLeft₃ObjObjObj_obj_map_app_app, whiskeringLeft₃ObjObjObj_obj_obj_map_app, whiskeringLeft₃ObjObjObj_obj_obj_obj_map, whiskeringLeft₃ObjObjObj_obj_obj_obj_obj, whiskeringLeft₃ObjObj_map, whiskeringLeft₃ObjObj_obj, whiskeringLeft₃Obj_map, whiskeringLeft₃Obj_obj, whiskeringLeft₃_map_app_app_app_app_app_app, whiskeringLeft₃_obj_map_app_app_app_app_app, whiskeringLeft₃_obj_obj_map_app_app_app_app, whiskeringLeft₃_obj_obj_obj_map_app_app_app, whiskeringLeft₃_obj_obj_obj_obj_map_app_app, whiskeringLeft₃_obj_obj_obj_obj_obj_map_app, whiskeringLeft₃_obj_obj_obj_obj_obj_obj_map, whiskeringLeft₃_obj_obj_obj_obj_obj_obj_obj, whiskeringRightObjCompIso_hom_app_app, whiskeringRightObjCompIso_inv_app_app, whiskeringRightObjIdIso_hom_app_app, whiskeringRightObjIdIso_inv_app_app, whiskeringRight_map_app_app, whiskeringRight_obj_comp, whiskeringRight_obj_id, whiskeringRight_obj_map, whiskeringRight_obj_obj
107
Total128

CategoryTheory.Functor

Definitions

NameCategoryTheorems
isoWhiskerLeft 📖CompOp
75 mathmath: CategoryTheory.SingleFunctors.shiftIso_add, SheafOfModules.pushforward_assoc, CategoryTheory.Limits.CategoricalPullback.CatCommSqOver.transform_obj_map_snd_app, shiftIso_add', CategoryTheory.NatIso.op_rightUnitor, PresheafOfModules.pullback_comp_id, CategoryTheory.NatIso.unop_rightUnitor, CategoryTheory.SingleFunctors.shiftIso_add', CategoryTheory.Equivalence.congrFullSubcategory_counitIso, CategoryTheory.Pi.equivalenceOfEquiv_unitIso, isoWhiskerLeft_trans_isoWhiskerRight, CategoryTheory.NatIso.op_isoWhiskerLeft, isoWhiskerLeft_twice, CategoryTheory.Limits.fiberwiseColimitLimitIso_hom_app, triangleIso, CategoryTheory.Localization.Lifting.ofIsos_iso, CategoryTheory.shiftFunctorAdd'_assoc, CategoryTheory.Limits.CategoricalPullback.functorEquiv_functor_map_fst_app, CategoryTheory.Limits.CategoricalPullback.CatCommSqOver.transform_map_app_fst_app, isoWhiskerLeft_right, CategoryTheory.Limits.Cones.equivalenceOfReindexing_counitIso, PresheafOfModules.pullback_assoc, isoWhiskerRight_left_assoc, CategoryTheory.Limits.CategoricalPullback.functorEquiv_functor_map_snd_app, pentagonIso, CategoryTheory.Iso.coreAssociator, SheafOfModules.pullback_comp_id, shiftIso_add, commShiftPullback_iso_eq, CategoryTheory.Limits.Cones.functorialityEquivalence_unitIso, CategoryTheory.Equivalence.congrFullSubcategory_unitIso, pentagonIso_assoc, isoWhiskerLeft_right_assoc, CategoryTheory.Limits.fiberwiseColimitLimitIso_inv_app, CategoryTheory.Limits.IsColimit.coconePointsIsoOfEquivalence_inv, CategoryTheory.shiftFunctorAdd'_add_zero, isoWhiskerLeft_inv, CategoryTheory.Limits.CategoricalPullback.CatCommSqOver.transform_map_app_snd_app, CategoryTheory.Limits.CategoricalPullback.CatCommSqOver.precompose_obj_map_fst_app, CategoryTheory.NatIso.op_associator, isoWhiskerLeft_trans_isoWhiskerRight_assoc, triangleIso_assoc, CategoryTheory.shiftFunctorAdd_assoc, isoWhiskerLeft_trans_assoc, CategoryTheory.NatIso.unop_associator, CategoryTheory.Limits.Cones.functorialityEquivalence_inverse, CategoryTheory.Limits.CategoricalPullback.toCatCommSqOver_map_fst_app, CategoryTheory.SingleFunctors.shiftIso_zero, CategoryTheory.Limits.Cocones.functorialityEquivalence_counitIso, CategoryTheory.Equivalence.trans_counitIso, isoWhiskerLeft_refl, CategoryTheory.Limits.Cones.functorialityEquivalence_counitIso, SheafOfModules.pullback_assoc, CategoryTheory.Iso.coreRightUnitor, CategoryTheory.Limits.CategoricalPullback.CatCommSqOver.precompose_map_app_fst_app, CategoryTheory.Limits.IsLimit.conePointsIsoOfEquivalence_hom, PresheafOfModules.pushforward_assoc, isoWhiskerRight_left, CategoryTheory.Limits.Cones.equivalenceOfReindexing_unitIso, SheafOfModules.pushforward_comp_id, CategoryTheory.Limits.CategoricalPullback.CatCommSqOver.precompose_obj_map_snd_app, ShiftSequence.shiftIso_add, CategoryTheory.Limits.Cocones.functorialityEquivalence_inverse, CategoryTheory.Limits.CategoricalPullback.CatCommSqOver.precompose_map_app_snd_app, isoWhiskerLeft_trans, CategoryTheory.Adjunction.leftAdjointCompIso_comp_id, CategoryTheory.Limits.CategoricalPullback.CatCommSqOver.transform_obj_map_fst_app, isoWhiskerLeft_hom, CategoryTheory.Equivalence.trans_unitIso, CategoryTheory.NatIso.unop_whiskerLeft, CategoryTheory.Limits.CategoricalPullback.toCatCommSqOver_map_snd_app, CategoryTheory.Limits.Cocones.functorialityEquivalence_unitIso, CategoryTheory.Iso.coreWhiskerLeft, PresheafOfModules.pushforward_comp_id, isoWhiskerLeft_symm
isoWhiskerRight 📖CompOp
63 mathmath: CategoryTheory.SingleFunctors.shiftIso_add, SheafOfModules.pushforward_assoc, isoWhiskerRight_twice_assoc, PresheafOfModules.pullback_id_comp, CategoryTheory.Limits.CategoricalPullback.CatCommSqOver.transform_obj_map_snd_app, shiftIso_add', isoWhiskerRight_trans, CategoryTheory.shiftFunctorAdd'_zero_add, mapCoconePrecomposeEquivalenceFunctor_inv_hom, CategoryTheory.SingleFunctors.shiftIso_add', CategoryTheory.Pi.equivalenceOfEquiv_counitIso, isoWhiskerLeft_trans_isoWhiskerRight, triangleIso, CategoryTheory.shiftFunctorAdd'_assoc, CategoryTheory.Localization.Lifting.compRight_iso, CategoryTheory.Iso.coreLeftUnitor, CategoryTheory.Limits.CategoricalPullback.CatCommSqOver.transform_map_app_fst_app, isoWhiskerLeft_right, CategoryTheory.NatIso.op_isoWhiskerRight, CategoryTheory.Limits.Cones.equivalenceOfReindexing_counitIso, PresheafOfModules.pullback_assoc, isoWhiskerRight_left_assoc, isoWhiskerRight_twice, pentagonIso, shiftIso_zero, CategoryTheory.Iso.coreAssociator, shiftIso_add, commShiftPullback_iso_eq, pentagonIso_assoc, isoWhiskerLeft_right_assoc, mapCoconePrecomposeEquivalenceFunctor_hom_hom, CategoryTheory.Limits.CategoricalPullback.CatCommSqOver.transform_map_app_snd_app, CategoryTheory.NatIso.unop_whiskerRight, SheafOfModules.pullback_id_comp, CategoryTheory.NatIso.op_associator, isoWhiskerLeft_trans_isoWhiskerRight_assoc, triangleIso_assoc, CategoryTheory.shiftFunctorAdd_assoc, CategoryTheory.NatIso.unop_leftUnitor, CategoryTheory.NatIso.unop_associator, mapConePostcomposeEquivalenceFunctor_inv_hom, CategoryTheory.NatIso.op_leftUnitor, mapConePostcomposeEquivalenceFunctor_hom_hom, CategoryTheory.Equivalence.trans_counitIso, isoWhiskerRight_hom, SheafOfModules.pullback_assoc, isoWhiskerRight_symm, leftKanExtensionIsoFiberwiseColimit_hom_app, isoWhiskerRight_refl, PresheafOfModules.pushforward_assoc, isoWhiskerRight_left, CategoryTheory.Adjunction.leftAdjointCompIso_id_comp, CategoryTheory.Limits.Cones.equivalenceOfReindexing_unitIso, ShiftSequence.shiftIso_add, isoWhiskerRight_trans_assoc, SheafOfModules.pushforward_id_comp, CategoryTheory.Limits.CategoricalPullback.CatCommSqOver.transform_obj_map_fst_app, CategoryTheory.Iso.coreWhiskerRight, CategoryTheory.Equivalence.trans_unitIso, isoWhiskerRight_inv, ShiftSequence.shiftIso_zero, PresheafOfModules.pushforward_id_comp, leftKanExtensionIsoFiberwiseColimit_inv_app
postcompose₂ 📖CompOp
9 mathmath: postcompose₂_obj_obj_obj_map, CategoryTheory.MonoidalCategory.externalProductBifunctor_map_app, CategoryTheory.MonoidalCategory.externalProductFlip_hom_app_app_app_app, CategoryTheory.Localization.Monoidal.lifting₂CurriedTensorPost_iso, postcompose₂_obj_map_app_app, postcompose₂_obj_obj_obj_obj, postcompose₂_obj_obj_map_app, postcompose₂_map_app_app_app, CategoryTheory.MonoidalCategory.externalProductFlip_inv_app_app_app_app
postcompose₃ 📖CompOp
6 mathmath: postcompose₃_obj_obj_obj_map_app, postcompose₃_obj_obj_map_app_app, postcompose₃_obj_obj_obj_obj_obj, postcompose₃_obj_obj_obj_obj_map, postcompose₃_map_app_app_app_app, postcompose₃_obj_map_app_app_app
whiskerLeft 📖CompOp
263 mathmath: PresheafOfModules.instIsRightAdjointPushforwardCompFunctorOppositeRingCatWhiskerLeftOp, liftOfIsRightKanExtension_fac, CategoryTheory.Limits.CategoricalPullback.CatCommSqOver.precompose_map_associator, CategoryTheory.NatTrans.unop_whiskerLeft, CategoryTheory.Limits.CategoricalPullback.CatCommSqOver.precompose_map_whiskerRight, leftDerivedNatTrans_fac_assoc, CategoryTheory.Limits.ι_colimitCompWhiskeringLeftIsoCompColimit_hom_assoc, isLimitConeOfIsRightKanExtension_lift, CategoryTheory.Sum.associativityFunctorEquivNaturalityFunctorIso_inv_app_snd_fst, CategoryTheory.Sum.functorEquiv_functor_map, descOfIsLeftKanExtension_fac_assoc, isColimitCoconeOfIsLeftKanExtension_desc, CategoryTheory.Limits.Cocone.whisker_ι, CategoryTheory.ParametrizedAdjunction.whiskerLeft_map_counit, CategoryTheory.Grothendieck.pre_comp_map_assoc, IsCoverDense.restrictHomEquivHom_naturality_left_symm_assoc, PresheafOfModules.limitPresheafOfModules_map, pentagon, CategoryTheory.NatTrans.unop_whiskerLeft_assoc, CategoryTheory.Limits.CatCospanTransformMorphism.right_coherence_assoc, CategoryTheory.ChosenPullbacksAlong.unit_pullbackComp_hom_assoc, CategoryTheory.Limits.colimitObjIsoColimitCompEvaluation_inv_colimit_map_assoc, CategoryTheory.Limits.Cone.whisker_π, CategoryTheory.Adjunction.Triple.rightToLeft_eq_units, CategoryTheory.NatTrans.CommShift.shift_comm, CategoryTheory.Join.mapWhiskerLeft_whiskerLeft, AlgebraicGeometry.Scheme.Modules.pseudofunctor_right_unitality_assoc, CategoryTheory.MonoidalCategory.DayFunctor.η_comp_tensorDec, CategoryTheory.TransfiniteCompositionOfShape.ofOrderIso_incl, Condensed.lanPresheafExt_inv, CategoryTheory.Presheaf.compULiftYonedaIsoULiftYonedaCompLan.presheafHom_naturality, CategoryTheory.Sum.associativityFunctorEquivNaturalityFunctorIso_hom_app_snd_snd, CategoryTheory.Presheaf.isLocallySurjective_whisker, rightDerived_fac_assoc, functorialityCompPostcompose_hom_app_hom, ranCounit_app_whiskerLeft_ranAdjunction_unit_app_assoc, CategoryTheory.Adjunction.leftAdjointCompNatTrans₀₁₃_eq_conjugateEquiv_symm, IsCoverDense.sheafHom_eq, CategoryTheory.NatTrans.shift_comm_assoc, CategoryTheory.Limits.colimitObjIsoColimitCompEvaluation_inv_colimit_map, IsCoverDense.restrictHomEquivHom_naturality_right_symm, CategoryTheory.ComposableArrows.opEquivalence_unitIso_inv_app, AlgebraicGeometry.Scheme.Hom.coequifibered_normalizationDiagramMap, IsCoverDense.restrictHomEquivHom_naturality_left, CategoryTheory.BasedCategory.whiskerLeft_toNatTrans, CategoryTheory.Adjunction.unit_rightAdjointUniq_hom, ModuleCat.extendScalars_assoc_assoc, lanUnit_app_whiskerLeft_lanAdjunction_counit_app, IsCoverDense.sheafHom_restrict_eq, whiskeringLeft₃ObjObjMap_app, CategoryTheory.Sum.associativityFunctorEquivNaturalityFunctorIso_inv_app_snd_snd, whiskerLeft_comp_whiskerRight_assoc, leftDerived_fac_assoc, leftKanExtensionCompIsoOfPreserves_hom_fac_assoc, CategoryTheory.MonoidalCategory.DayConvolution.unit_uniqueUpToIso_inv, CategoryTheory.Adjunction.leftAdjointUniq_hom_counit, CategoryTheory.Adjunction.toComonad_δ, CategoryTheory.Presheaf.isLocallyInjective_whisker, CategoryTheory.Limits.LimitPresentation.reindex_π, leftKanExtensionCompIsoOfPreserves_inv_fac_assoc, CategoryTheory.Limits.CategoricalPullback.CatCommSqOver.transform_map_whiskerLeft, CategoryTheory.Limits.ι_colimitCompWhiskeringLeftIsoCompColimit_hom, IsCoverDense.restrictHomEquivHom_naturality_left_assoc, whiskerLeft_app, CategoryTheory.ShortComplex.FunctorEquivalence.inverse_map_τ₁, CategoryTheory.Limits.CategoricalPullback.CatCommSqOver.precompose_map_leftUnitor, CategoryTheory.GrothendieckTopology.plusCompIso_whiskerLeft_assoc, PresheafOfModules.pullback_assoc, CategoryTheory.MonoidalCategory.DayConvolution.unit_uniqueUpToIso_hom, CategoryTheory.LocalizerMorphism.rightDerivedFunctorComparison_fac, CategoryTheory.GrothendieckTopology.overMapPullback_assoc_assoc, CategoryTheory.conjugateEquiv_whiskerRight, CategoryTheory.NatTrans.shift_comm, functorialityCompPrecompose_hom_app_hom, CategoryTheory.Limits.CatCospanTransformMorphism.whiskerLeft_right, CategoryTheory.Adjunction.comp_counit, NatTrans.hcomp_eq_whiskerLeft_comp_whiskerRight, whiskeringLeft₃Map_app_app, CategoryTheory.Join.mapWhiskerLeft_associator_hom, CategoryTheory.Adjunction.Triple.rightToLeft_eq_counits, AlgebraicGeometry.Scheme.Modules.pseudofunctor_right_unitality, CategoryTheory.NatTrans.op_whiskerLeft_assoc, whiskerLeft_comp, rightKanExtension_hom_ext_iff, CategoryTheory.ExactFunctor.whiskeringLeft_obj_map, pointwiseLeftKanExtensionCompIsoOfPreserves_hom_fac, postcomposeWhiskerLeftMapCone_inv_hom, CategoryTheory.Presheaf.isLocallyInjective_whisker_iff, CategoryTheory.Adjunction.toMonad_μ, CategoryTheory.CartesianMonoidalCategory.prodComparisonNatTrans_comp, precomposeWhiskerLeftMapCocone_hom_hom, CategoryTheory.ComposableArrows.opEquivalence_unitIso_hom_app, rightDerivedNatTrans_fac, CategoryTheory.Limits.fiberwiseColim_map_app, triangle, precomposeWhiskerLeftMapCocone_inv_hom, CategoryTheory.Limits.limitCompWhiskeringLeftIsoCompLimit_inv_π_assoc, pointwiseRightKanExtensionCompIsoOfPreserves_inv_fac_assoc, AlgebraicGeometry.Scheme.Hom.preservesLocalization_normalizationDiagramMap, CategoryTheory.Limits.CategoricalPullback.CatCommSqOver.transformObjPrecomposeObjSquare_iso_hom_id, AlgebraicTopology.DoldKan.whiskerLeft_toKaroubi_N₂Γ₂_hom, CategoryTheory.Limits.CategoricalPullback.CatCommSqOver.precomposeObjTransformObjSquare_iso_hom_comp, isoWhiskerLeft_inv, leftKanExtension_hom_ext_iff, whiskerLeft_twice, CategoryTheory.Limits.CatCospanTransformMorphism.left_coherence, CategoryTheory.mateEquiv_symm_apply, CategoryTheory.Adjunction.whiskerLeft_counit_iso_of_L_fully_faithful, CategoryTheory.Join.mapWhiskerRight_associator_hom, IsCoverDense.restrictHomEquivHom_naturality_right_assoc, CategoryTheory.Limits.CategoricalPullback.CatCommSqOver.precompose_map_whiskerLeft, CategoryTheory.NatTrans.CommShiftCore.shift_comm, CategoryTheory.Grothendieck.pre_comp_map, CategoryTheory.GrothendieckTopology.W_whiskerLeft_iff, CategoryTheory.SimplicialObject.Augmented.whiskering_map_app_left, CategoryTheory.NatTrans.CommShiftCore.shift_comm_assoc, CategoryTheory.Limits.CatCospanTransformMorphism.whiskerLeft_left, lanUnit_app_whiskerLeft_lanAdjunction_counit_app_assoc, PresheafOfModules.colimitPresheafOfModules_map, CategoryTheory.Adjunction.CoreUnitCounit.right_triangle, leftKanExtensionCompIsoOfPreserves_hom_fac, rightKanExtensionCompIsoOfPreserves_hom_fac, CategoryTheory.Limits.limitObjIsoLimitCompEvaluation_inv_limit_map, toSheafify_pullbackSheafificationCompatibility, CategoryTheory.Limits.limit_map_limitObjIsoLimitCompEvaluation_hom_assoc, rightKanExtensionCompIsoOfPreserves_inv_fac, CategoryTheory.Limits.CategoricalPullback.CatCommSqOver.precomposeObjTransformObjSquare_iso_hom_naturality₂, CategoryTheory.ShortComplex.FunctorEquivalence.inverse_obj_f, CategoryTheory.ParametrizedAdjunction.unit_whiskerRight_map_assoc, CategoryTheory.Join.mapWhiskerRight_whiskerLeft, CategoryTheory.Adjunction.leftAdjointUniq_hom_counit_assoc, CategoryTheory.NatTrans.Equifibered.whiskerLeft, CategoryTheory.Adjunction.Triple.leftToRight_eq_counits, CategoryTheory.Join.mapWhiskerRight_whiskerLeft_assoc, whiskeringLeft_obj_map, whiskerLeft_id, CategoryTheory.Localization.Construction.whiskerLeft_natTransExtension, rightKanExtensionCompIsoOfPreserves_hom_fac_assoc, pointwiseRightKanExtensionCompIsoOfPreserves_inv_fac, CategoryTheory.NatTrans.leftOpWhiskerRight, whiskerLeft_comp_assoc, CategoryTheory.MonoidalCategory.DayConvolution.unit_uniqueUpToIso_hom_assoc, CategoryTheory.Limits.colimit.pre_map, pointwiseRightKanExtensionCompIsoOfPreserves_hom_fac_assoc, CategoryTheory.Join.mapWhiskerLeft_associator_hom_assoc, CategoryTheory.Limits.ColimitPresentation.reindex_ι, CategoryTheory.Join.mapWhiskerLeft_rightUnitor_hom, whiskerLeft_id', leftDerived_fac, postcomposeWhiskerLeftMapCone_hom_hom, CategoryTheory.Limits.CatCospanTransformMorphism.whiskerLeft_base, CategoryTheory.Join.mapWhiskerRight_rightUnitor_hom, CategoryTheory.ChosenPullbacksAlong.unit_pullbackId_hom, CategoryTheory.Limits.CategoricalPullback.CatCommSqOver.transform_map_associator, ModuleCat.extendScalars_assoc', CategoryTheory.Limits.CategoricalPullback.CatCommSqOver.precomposeObjTransformObjSquare_iso_hom_id, CategoryTheory.Triangulated.SpectralObject.mapTriangulatedFunctor_δ', CategoryTheory.Sum.associativityFunctorEquivNaturalityFunctorIso_hom_app_snd_fst, CategoryTheory.NatTrans.leftOpWhiskerRight_assoc, CategoryTheory.Adjunction.left_triangle, CategoryTheory.Limits.CategoricalPullback.CatCommSqOver.precompose_map_app_fst_app, leftKanExtensionCompIsoOfPreserves_inv_fac, inv_whiskerLeft, CategoryTheory.Limits.CatCospanTransformMorphism.left_coherence_assoc, CategoryTheory.Presheaf.isLocallySurjective_whisker_iff, CategoryTheory.ComposableArrows.opEquivalence_inverse_map, CategoryTheory.Adjunction.CoreUnitCounit.left_triangle, isRightKanExtension_iff_precomp, PresheafOfModules.pushforward_assoc, CategoryTheory.Adjunction.Triple.whiskerLeft_leftToRight_assoc, CategoryTheory.Limits.CategoricalPullback.CatCommSqOver.transformObjPrecomposeObjSquare_iso_hom_naturality₂, AlgebraicGeometry.Scheme.Modules.pseudofunctor_associativity_assoc, CategoryTheory.ExponentiableMorphism.unit_pushforwardId_hom, CategoryTheory.CosimplicialObject.Augmented.whiskering_map_app_right, whiskerLeft_comp_whiskerRight, rightDerivedNatTrans_fac_assoc, CategoryTheory.NatTrans.op_whiskerLeft, CategoryTheory.Limits.limitCompWhiskeringLeftIsoCompLimit_hom_whiskerLeft_π_assoc, LightCondensed.lanPresheafExt_inv, Condensed.lanPresheafExt_hom, CategoryTheory.ParametrizedAdjunction.unit_whiskerRight_map, functorialityCompPrecompose_inv_app_hom, pointwiseRightKanExtensionCompIsoOfPreserves_hom_fac, CategoryTheory.conjugateEquiv_whiskerLeft, CategoryTheory.Adjunction.unit_rightAdjointUniq_hom_assoc, ModuleCat.extendScalars_comp_id_assoc, CategoryTheory.Limits.limitCompWhiskeringLeftIsoCompLimit_inv_π, CategoryTheory.Join.mapWhiskerLeft_whiskerLeft_assoc, CategoryTheory.GrothendieckTopology.overMapPullback_id_comp_assoc, CategoryTheory.Adjunction.leftAdjointCompNatTrans₀₂₃_eq_conjugateEquiv_symm, CategoryTheory.Limits.colimit_map_colimitObjIsoColimitCompEvaluation_hom, CategoryTheory.Presheaf.compULiftYonedaIsoULiftYonedaCompLan.presheafHom_naturality_assoc, descOfIsLeftKanExtension_fac, isLeftKanExtension_iff_precomp, CategoryTheory.Limits.colimit_map_colimitObjIsoColimitCompEvaluation_hom_assoc, CategoryTheory.Adjunction.right_triangle, CategoryTheory.ExponentiableMorphism.unit_pushforwardId_hom_assoc, isIso_whiskerLeft, CategoryTheory.GrothendieckTopology.plusCompIso_whiskerLeft, ModuleCat.extendScalars_comp_id, leftDerivedNatTrans_fac, CategoryTheory.NatTrans.Coequifibered.whiskerLeft, CategoryTheory.Limits.CategoricalPullback.CatCommSqOver.precompose_map_app_snd_app, CategoryTheory.ChosenPullbacksAlong.unit_pullbackComp_hom, CategoryTheory.Limits.CategoricalPullback.CatCommSqOver.transformPrecomposeObjSquare_iso_hom_comp, CategoryTheory.Limits.limit.map_pre, CategoryTheory.Adjunction.comp_unit, CategoryTheory.ExponentiableMorphism.unit_pushforwardComp_hom, ranCounit_app_whiskerLeft_ranAdjunction_unit_app, CategoryTheory.Cat.whiskerLeft_toNatTrans, CategoryTheory.RightExactFunctor.whiskeringLeft_obj_map, CategoryTheory.LocalizerMorphism.rightDerivedFunctorComparison_fac_assoc, functorialityCompPostcompose_inv_app_hom, IsCoverDense.restrictHomEquivHom_naturality_right_symm_assoc, isoWhiskerLeft_hom, CategoryTheory.Limits.whiskerLeft_ι_colimitCompWhiskeringLeftIsoCompColimit_inv, CategoryTheory.ShortComplex.FunctorEquivalence.inverse_obj_g, CategoryTheory.Equivalence.congrRight_unitIso_hom_app, pointwiseLeftKanExtensionCompIsoOfPreserves_hom_fac_assoc, ContinuousCohomology.MultiInd.d_succ, CategoryTheory.GrothendieckTopology.overMapPullback_assoc, CategoryTheory.NatTrans.CommShift.whiskerLeft, LightCondensed.lanPresheafExt_hom, CategoryTheory.GrothendieckTopology.overMapPullback_id_comp, whiskerRight_left, CategoryTheory.Join.eq_mkNatTrans, CategoryTheory.LeftExactFunctor.whiskeringLeft_obj_map, CategoryTheory.Limits.whiskerLeft_ι_colimitCompWhiskeringLeftIsoCompColimit_inv_assoc, CategoryTheory.Sum.functorEquiv_unitIso, CategoryTheory.TransfiniteCompositionOfShape.ici_incl, CategoryTheory.ShortComplex.FunctorEquivalence.inverse_map_τ₃, CategoryTheory.Limits.CategoricalPullback.CatCommSqOver.transform_map_rightUnitor, CategoryTheory.Limits.limitObjIsoLimitCompEvaluation_inv_limit_map_assoc, id_hcomp, CategoryTheory.CartesianMonoidalCategory.prodComparisonBifunctorNatTrans_comp, CategoryTheory.ShortComplex.FunctorEquivalence.inverse_map_τ₂, pushforwardContinuousSheafificationCompatibility_hom_app_val, IsCoverDense.restrictHomEquivHom_naturality_right, CategoryTheory.ChosenPullbacksAlong.unit_pullbackId_hom_assoc, CategoryTheory.Limits.CatCospanTransformMorphism.right_coherence, AlgebraicGeometry.Scheme.Modules.pseudofunctor_associativity, CategoryTheory.Adjunction.whiskerLeft_unit_iso_of_R_fully_faithful, rightDerived_fac, CategoryTheory.Adjunction.Triple.whiskerLeft_leftToRight, CategoryTheory.Equivalence.congrRight_counitIso_inv_app, rightKanExtensionCompIsoOfPreserves_inv_fac_assoc, pointwiseLeftKanExtensionCompIsoOfPreserves_inv_fac_assoc, CategoryTheory.MonoidalCategory.DayConvolution.unit_uniqueUpToIso_inv_assoc, CategoryTheory.Equivalence.congrRight_counitIso_hom_app, CategoryTheory.Limits.limitCompWhiskeringLeftIsoCompLimit_hom_whiskerLeft_π, CategoryTheory.ExponentiableMorphism.unit_pushforwardComp_hom_assoc, CategoryTheory.Sum.functorEquiv_counitIso, IsCoverDense.restrictHomEquivHom_naturality_left_symm, CategoryTheory.SmallObject.SuccStruct.ofNatTrans_toSucc, ModuleCat.extendScalars_assoc, CategoryTheory.Equivalence.congrRight_unitIso_inv_app, liftOfIsRightKanExtension_fac_assoc, CategoryTheory.Limits.limit_map_limitObjIsoLimitCompEvaluation_hom, pointwiseLeftKanExtensionCompIsoOfPreserves_inv_fac, CategoryTheory.NatTrans.IsMonoidal.whiskerLeft, CategoryTheory.ParametrizedAdjunction.whiskerLeft_map_counit_assoc, whiskeringLeft_map_app_app, CategoryTheory.mateEquiv_apply
whiskerRight 📖CompOp
256 mathmath: CategoryTheory.Presheaf.instIsLocallySurjectiveHomWhiskerRightOppositeForget, CategoryTheory.SingleFunctors.Hom.comm, CategoryTheory.Cat.whiskerRight_toNatTrans, CategoryTheory.Limits.CategoricalPullback.CatCommSqOver.precompose_map_associator, HomotopicalAlgebra.FibrantObject.instIsIsoFunctorWhiskerRightHoCatιCompResolutionNatTransOfIsLocalizationWeakEquivalences, CategoryTheory.Limits.fiberwiseColimit_map, CategoryTheory.IndParallelPairPresentation.hf, CategoryTheory.Limits.CategoricalPullback.CatCommSqOver.precompose_map_whiskerRight, CategoryTheory.Limits.CatCospanTransformMorphism.whiskerRight_base, CategoryTheory.NonemptyParallelPairPresentationAux.hf, CategoryTheory.instMonoFunctorWhiskerRightOfPreservesMonomorphisms, CategoryTheory.GrothendieckTopology.overMapPullback_comp_id, CategoryTheory.Sum.associativityFunctorEquivNaturalityFunctorIso_inv_app_snd_fst, CategoryTheory.Limits.CategoricalPullback.CatCommSqOver.transform_map_leftUnitor, CategoryTheory.GrothendieckTopology.plusCompIso_whiskerRight, CategoryTheory.ParametrizedAdjunction.whiskerLeft_map_counit, mapCoconePrecompose_inv_hom, CategoryTheory.Join.mapWhiskerRight_leftUnitor_hom, CategoryTheory.GrothendieckTopology.whiskerRight_toSheafify_sheafifyCompIso_hom_assoc, pentagon, CategoryTheory.Join.isoMkFunctor_hom_app, CategoryTheory.SimplicialObject.Truncated.whiskering_map_app_app, CategoryTheory.Limits.CatCospanTransformMorphism.right_coherence_assoc, mapConePostcompose_inv_hom, CategoryTheory.Join.mapWhiskerLeft_whiskerRight, CategoryTheory.Localization.HasProductsOfShapeAux.adj_counit_app, CategoryTheory.Limits.Cocones.whiskeringEquivalence_unitIso, CategoryTheory.sheafCompose_map_val, CategoryTheory.Adjunction.Triple.rightToLeft_eq_units, CategoryTheory.NatTrans.CommShift.shift_comm, CategoryTheory.Limits.Cocones.whiskeringEquivalence_inverse, PreservesRightKanExtension.preserves, CategoryTheory.limitCompWhiskeringRightIsoLimitComp_hom_whiskerRight_π_assoc, CategoryTheory.Join.mkFunctor_edgeTransform, CategoryTheory.Sum.Swap.equivalenceFunctorEquivFunctorIso_inv_app_fst, CategoryTheory.Sum.associativityFunctorEquivNaturalityFunctorIso_hom_app_snd_snd, CategoryTheory.limitCompWhiskeringRightIsoLimitComp_inv_π_assoc, CategoryTheory.WithTerminal.commaFromOver_map_left, isIso_whiskerRight, CategoryTheory.Adjunction.leftAdjointCompNatTrans₀₁₃_eq_conjugateEquiv_symm, CategoryTheory.GrothendieckTopology.sheafifyCompIso_inv_eq_sheafifyLift, CategoryTheory.Limits.CategoricalPullback.natTrans_ext_iff, CategoryTheory.sheafComposeIso_hom_fac, CategoryTheory.NatTrans.Coequifibered.whiskerRight, sheafPushforwardContinuousNatTrans_app_val, CategoryTheory.NatTrans.shift_comm_assoc, CategoryTheory.SingleFunctors.Hom.comm_assoc, CategoryTheory.LeftExactFunctor.whiskeringRight_obj_map, CategoryTheory.NatTrans.CommShift.whiskerRight, CategoryTheory.GrothendieckTopology.whiskerRight_toPlus_comp_plusCompIso_hom, CategoryTheory.NatTrans.op_whiskerRight_assoc, CategoryTheory.GrothendieckTopology.preservesSheafification_iff_of_adjunctions, CategoryTheory.Adjunction.Triple.whiskerRight_rightToLeft_assoc, whiskerRight_id', CategoryTheory.Sum.Swap.equivalenceFunctorEquivFunctorIso_hom_app_snd, ModuleCat.extendScalars_assoc_assoc, CategoryTheory.Join.mapWhiskerRight_whiskerRight, CategoryTheory.Sum.associativityFunctorEquivNaturalityFunctorIso_inv_app_snd_snd, whiskerLeft_comp_whiskerRight_assoc, leftKanExtensionCompIsoOfPreserves_hom_fac_assoc, CategoryTheory.Limits.ColimitPresentation.map_ι, CategoryTheory.Triangulated.SpectralObject.ω₂_map_hom₁, LeftExtension.postcompose₂ObjMkIso_inv_right_app, CategoryTheory.Adjunction.toComonad_δ, CategoryTheory.NatTrans.rightOpWhiskerRight, CategoryTheory.ExponentiableMorphism.pushforwardId_hom_counit_assoc, leftKanExtensionCompIsoOfPreserves_inv_fac_assoc, CategoryTheory.CosimplicialObject.Truncated.whiskering_map_app_app, CategoryTheory.Limits.CategoricalPullback.CatCommSqOver.transform_map_app_fst_app, CategoryTheory.Join.mapWhiskerLeft_whiskerRight_assoc, CategoryTheory.Join.isoMkFunctor_inv_app, CategoryTheory.GrothendieckTopology.W_of_preservesSheafification, CategoryTheory.GrothendieckTopology.toSheafify_comp_sheafifyCompIso_inv_assoc, CategoryTheory.Limits.colimitLimitToLimitColimitCone_hom, whiskeringLeft₃ObjMap_app, CategoryTheory.ShortComplex.FunctorEquivalence.inverse_map_τ₁, CategoryTheory.LocalizerMorphism.rightDerivedFunctorComparison_fac, CategoryTheory.GrothendieckTopology.overMapPullback_assoc_assoc, CategoryTheory.conjugateEquiv_whiskerRight, CategoryTheory.NatTrans.op_whiskerRight, CategoryTheory.Adjunction.whiskerRight_counit_iso_of_L_fully_faithful, CategoryTheory.NatTrans.shift_comm, CategoryTheory.NatTrans.unop_whiskerRight, CategoryTheory.Adjunction.comp_counit, NatTrans.hcomp_eq_whiskerLeft_comp_whiskerRight, CategoryTheory.toPresheafToSheafCompComposeAndSheafify_app, CategoryTheory.BasedCategory.whiskerRight_toNatTrans, CategoryTheory.TransfiniteCompositionOfShape.map_isColimit, CategoryTheory.Join.mapWhiskerLeft_associator_hom, CategoryTheory.Adjunction.Triple.rightToLeft_eq_counits, CategoryTheory.GrothendieckTopology.toPlus_comp_plusCompIso_inv, pointwiseLeftKanExtensionCompIsoOfPreserves_hom_fac, CategoryTheory.Sum.associativityFunctorEquivNaturalityFunctorIso_inv_app_fst, CategoryTheory.Presheaf.isLocallyInjective_forget_iff, CategoryTheory.Adjunction.toMonad_μ, CategoryTheory.Presheaf.isLocallySurjective_iff_range_sheafify_eq_top, CategoryTheory.CartesianMonoidalCategory.prodComparisonNatTrans_comp, triangle, postcompose₃_map_app_app_app_app, CategoryTheory.ChosenPullbacksAlong.pullbackId_hom_counit, CategoryTheory.ι_colimitCompWhiskeringRightIsoColimitComp_hom, pointwiseRightKanExtensionCompIsoOfPreserves_inv_fac_assoc, CategoryTheory.Limits.CategoricalPullback.CatCommSqOver.transformObjPrecomposeObjSquare_iso_hom_id, CategoryTheory.NatTrans.IsMonoidal.whiskerRight, CategoryTheory.Limits.colimit.map_post, CategoryTheory.Limits.CategoricalPullback.CatCommSqOver.precomposeObjTransformObjSquare_iso_hom_comp, CategoryTheory.Presheaf.isLocallySurjective_iff_whisker_forget, CategoryTheory.Limits.CatCospanTransformMorphism.whiskerRight_left, CategoryTheory.Limits.CategoricalPullback.CatCommSqOver.transform_map_app_snd_app, HomotopicalAlgebra.CofibrantObject.instIsIsoFunctorWhiskerRightHoCatιCompResolutionNatTransOfIsLocalizationWeakEquivalences, CategoryTheory.Limits.CatCospanTransformMorphism.left_coherence, LeftExtension.postcompose₂ObjMkIso_hom_right_app, CategoryTheory.mateEquiv_symm_apply, CategoryTheory.Join.mapWhiskerRight_associator_hom, CategoryTheory.SimplicialObject.whiskering_map_app_app, CategoryTheory.ExponentiableMorphism.pushforwardComp_hom_counit_assoc, CategoryTheory.whiskerRight_ι_colimitCompWhiskeringRightIsoColimitComp_inv_assoc, CategoryTheory.Limits.CategoricalPullback.CatCommSqOver.precompose_map_whiskerLeft, CategoryTheory.NatTrans.CommShiftCore.shift_comm, CategoryTheory.Limits.limit.map_post, CategoryTheory.NatTrans.CommShiftCore.shift_comm_assoc, CategoryTheory.Adjunction.rightAdjointUniq_hom_counit_assoc, CategoryTheory.Sheaf.adjunction_unit_app_val, CategoryTheory.Adjunction.CoreUnitCounit.right_triangle, CategoryTheory.ChosenPullbacksAlong.pullbackId_hom_counit_assoc, leftKanExtensionCompIsoOfPreserves_hom_fac, whiskerRight_zero, whiskeringLeft₂_map_app_app_app_app, rightKanExtensionCompIsoOfPreserves_hom_fac, CategoryTheory.Adjunction.rightAdjointUniq_hom_counit, CategoryTheory.NatTrans.rightOpWhiskerRight_assoc, CategoryTheory.ChosenPullbacksAlong.pullbackComp_hom_counit, whiskerRight_id, CategoryTheory.functorProdToProdFunctor_map, CategoryTheory.Limits.CatCospanTransformMorphism.whiskerRight_right, rightKanExtensionCompIsoOfPreserves_inv_fac, CategoryTheory.Limits.CategoricalPullback.CatCommSqOver.precomposeObjTransformObjSquare_iso_hom_naturality₂, CategoryTheory.WithInitial.commaFromUnder_map_right, CategoryTheory.Presheaf.imageSieve_eq_sieveOfSection, CategoryTheory.Adjunction.unit_leftAdjointUniq_hom_assoc, CategoryTheory.NatTrans.Equifibered.whiskerRight, CategoryTheory.ParametrizedAdjunction.unit_whiskerRight_map_assoc, isLeftKanExtension_iff_postcomp₁, CategoryTheory.Adjunction.Triple.leftToRight_eq_counits, CategoryTheory.Limits.colimit.pre_map', CategoryTheory.GrothendieckTopology.toSheafify_comp_sheafifyCompIso_inv, CategoryTheory.GrothendieckTopology.overMapPullback_comp_id_assoc, isoWhiskerRight_hom, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.shortComplex_g, CategoryTheory.Limits.CategoricalPullback.CatCommSqOver.Hom.w_assoc, CategoryTheory.IndParallelPairPresentation.hg, CategoryTheory.GrothendieckTopology.plusCompIso_whiskerRight_assoc, mapPresheaf_map_c, CategoryTheory.Limits.LimitPresentation.map_π, rightKanExtensionCompIsoOfPreserves_hom_fac_assoc, pointwiseRightKanExtensionCompIsoOfPreserves_inv_fac, CategoryTheory.Presheaf.imageSieve_whisker_forget, CategoryTheory.Limits.CategoricalPullback.CatCommSqOver.Hom.w, CategoryTheory.Limits.CategoricalPullback.CatCommSqOver.transform_map_whiskerRight, pointwiseRightKanExtensionCompIsoOfPreserves_hom_fac_assoc, RightExtension.postcompose₂ObjMkIso_inv_left_app, CategoryTheory.Join.mapWhiskerLeft_associator_hom_assoc, CategoryTheory.sheafComposeIso_inv_fac_assoc, whiskeringRight_obj_map, CategoryTheory.Limits.limit.map_pre', CategoryTheory.presheafToSheafCompComposeAndSheafifyIso_inv_app, PreservesLeftKanExtension.preserves, whiskerRight_app, ModuleCat.extendScalars_id_comp_assoc, CategoryTheory.Limits.CategoricalPullback.CatCommSqOver.transform_map_associator, ModuleCat.extendScalars_assoc', CategoryTheory.Limits.CategoricalPullback.CatCommSqOver.precomposeObjTransformObjSquare_iso_hom_id, CategoryTheory.Triangulated.SpectralObject.mapTriangulatedFunctor_δ', CategoryTheory.Sum.associativityFunctorEquivNaturalityFunctorIso_hom_app_snd_fst, ModuleCat.extendScalars_id_comp, CategoryTheory.Adjunction.left_triangle, leftKanExtensionCompIsoOfPreserves_inv_fac, whiskerRight_comp_assoc, CategoryTheory.ι_colimitCompWhiskeringRightIsoColimitComp_hom_assoc, CategoryTheory.Sum.Swap.equivalenceFunctorEquivFunctorIso_hom_app_fst, CategoryTheory.Adjunction.Triple.whiskerRight_rightToLeft, CategoryTheory.GrothendieckTopology.whiskerRight_toPlus_comp_plusCompIso_hom_assoc, CategoryTheory.Limits.CatCospanTransformMorphism.left_coherence_assoc, CategoryTheory.ExponentiableMorphism.pushforwardComp_hom_counit, CategoryTheory.Adjunction.CoreUnitCounit.left_triangle, mapConePostcompose_hom_hom, CategoryTheory.CosimplicialObject.whiskering_map_app_app, CategoryTheory.Limits.CategoricalPullback.CatCommSqOver.transformObjPrecomposeObjSquare_iso_hom_naturality₂, AlgebraicGeometry.Scheme.Modules.pseudofunctor_left_unitality, AlgebraicGeometry.Scheme.Modules.pseudofunctor_associativity_assoc, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.shortComplex_f, whiskerLeft_comp_whiskerRight, CategoryTheory.ParametrizedAdjunction.unit_whiskerRight_map, whiskerRight_comp, pointwiseRightKanExtensionCompIsoOfPreserves_hom_fac, CategoryTheory.conjugateEquiv_whiskerLeft, CategoryTheory.GrothendieckTopology.whiskerRight_toSheafify_sheafifyCompIso_hom, CategoryTheory.Sum.Swap.equivalenceFunctorEquivFunctorIso_inv_app_snd, postcompose₂_map_app_app_app, CategoryTheory.Adjunction.leftAdjointCompNatTrans₀₂₃_eq_conjugateEquiv_symm, mapCoconePrecompose_hom_hom, CategoryTheory.Join.mapWhiskerRight_whiskerRight_assoc, CategoryTheory.Join.mapWhiskerLeft_leftUnitor_hom, AlgebraicGeometry.Scheme.Modules.pseudofunctor_left_unitality_assoc, CategoryTheory.Triangulated.SpectralObject.ω₂_map_hom₂, CategoryTheory.Adjunction.right_triangle, CategoryTheory.Limits.CategoricalPullback.CatCommSqOver.precompose_map_rightUnitor, CategoryTheory.whiskerRight_ι_colimitCompWhiskeringRightIsoColimitComp_inv, CategoryTheory.Limits.CategoricalPullback.CatCommSqOver.transformPrecomposeObjSquare_iso_hom_comp, CategoryTheory.Adjunction.unit_leftAdjointUniq_hom, CategoryTheory.TransfiniteCompositionOfShape.map_incl, CategoryTheory.Adjunction.comp_unit, whiskerRight_twice, CategoryTheory.LocalizerMorphism.rightDerivedFunctorComparison_fac_assoc, CategoryTheory.SingleFunctors.postcompFunctor_map_hom, CategoryTheory.sheafComposeIso_hom_fac_assoc, pointwiseLeftKanExtensionCompIsoOfPreserves_hom_fac_assoc, CategoryTheory.sheafComposeIso_inv_fac, CategoryTheory.Sum.associativityFunctorEquivNaturalityFunctorIso_hom_app_fst, CategoryTheory.NatTrans.unop_whiskerRight_assoc, CategoryTheory.Triangulated.SpectralObject.ω₂_map_hom₃, ContinuousCohomology.MultiInd.d_succ, CategoryTheory.Adjunction.whiskerRight_unit_iso_of_R_fully_faithful, CategoryTheory.GrothendieckTopology.overMapPullback_assoc, CategoryTheory.ExponentiableMorphism.pushforwardId_hom_counit, CategoryTheory.limitCompWhiskeringRightIsoLimitComp_inv_π, CategoryTheory.ExactFunctor.whiskeringRight_obj_map, isoWhiskerRight_inv, whiskerRight_left, CategoryTheory.Presheaf.isLocallyInjective_forget, CategoryTheory.ChosenPullbacksAlong.pullbackComp_hom_counit_assoc, CategoryTheory.ShortComplex.FunctorEquivalence.inverse_map_τ₃, isRightKanExtension_iff_postcomp₁, CategoryTheory.CartesianMonoidalCategory.prodComparisonBifunctorNatTrans_comp, CategoryTheory.NonemptyParallelPairPresentationAux.hg, CategoryTheory.ShortComplex.FunctorEquivalence.inverse_map_τ₂, hcomp_id, CategoryTheory.Limits.reflexivePair.whiskerRightMkNatTrans, CategoryTheory.Limits.CatCospanTransformMorphism.right_coherence, whiskeringRight_map_app_app, inv_whiskerRight, CategoryTheory.instEpiFunctorWhiskerRightOfPreservesEpimorphisms, RightExtension.postcompose₂ObjMkIso_hom_left_app, CategoryTheory.Limits.Cocones.whiskeringEquivalence_counitIso, AlgebraicGeometry.Scheme.Modules.pseudofunctor_associativity, CategoryTheory.GrothendieckTopology.plusCompIso_inv_eq_plusLift, CategoryTheory.sheafComposeNatTrans_fac, rightKanExtensionCompIsoOfPreserves_inv_fac_assoc, pointwiseLeftKanExtensionCompIsoOfPreserves_inv_fac_assoc, ModuleCat.extendScalars_assoc, CategoryTheory.RightExactFunctor.whiskeringRight_obj_map, CategoryTheory.limitCompWhiskeringRightIsoLimitComp_hom_whiskerRight_π, pointwiseLeftKanExtensionCompIsoOfPreserves_inv_fac, CategoryTheory.ParametrizedAdjunction.whiskerLeft_map_counit_assoc, CategoryTheory.mateEquiv_apply, CategoryTheory.MonoidalCategory.dayConvolutionInternalHomDiagramFunctor_map_app_app_app
whiskeringLeft 📖CompOp
353 mathmath: LeftExtension.coconeAtFunctor_map_hom, CategoryTheory.Adjunction.compUliftCoyonedaIso_hom_app_app_down, CategoryTheory.GrothendieckTopology.plusFunctorWhiskerLeftIso_inv_app, CategoryTheory.whiskeringLeft_comp_evaluation, leftExtensionEquivalenceOfIso₁_functor_map_left, CategoryTheory.GrothendieckTopology.yonedaOpCompCoyoneda_hom_app_app_down, LeftExtension.precomp₂_obj_hom_app, instIsIsoAppCounitRanAdjunctionOfHasPointwiseRightKanExtension, whiskeringRight₂_obj_obj_map_app, CategoryTheory.Sum.functorEquivFunctorCompFstIso_inv_app_app, LeftExtension.precomp₂_map_right, CategoryTheory.sheafToPresheafCompCoyonedaCompWhiskeringLeftSheafToPresheaf_hom_app_app_val, CategoryTheory.Idempotents.functorExtension₁CompWhiskeringLeftToKaroubiIso_inv_app_app_f, CategoryTheory.Limits.ι_colimitCompWhiskeringLeftIsoCompColimit_hom_assoc, whiskeringLeft₃ObjObjObj_obj_map_app_app, CategoryTheory.Idempotents.instIsEquivalenceFunctorKaroubiObjWhiskeringLeftToKaroubi, instIsIsoAppRanCounit, RightExtension.postcompose₂_obj_left_map, CategoryTheory.Adjunction.compCoyonedaIso_inv_app_app, CategoryTheory.sheafToPresheafCompYonedaCompWhiskeringLeftSheafToPresheaf_inv_app_app, RightExtension.postcompose₂_obj_right, smoothSheafCommRing.ι_evalHom_apply, LeftExtension.postcomp₁_map_right_app, CategoryTheory.whiskeringLeft_preservesLimitsOfShape, CategoryTheory.MonoidalCategory.externalProductCompDiagIso_hom_app_app, CategoryTheory.Limits.yonedaCompLimIsoCocones_inv_app, LaxMonoidal.ofBifunctor.secondMap₁_app_app_app, leftExtensionEquivalenceOfIso₁_functor_obj_left, instIsIsoAppUnitLanAdjunctionOfHasPointwiseLeftKanExtension, IsRightKanExtension.nonempty_isUniversal, CategoryTheory.MonoidalCategory.DayConvolution.corepresentableBy₂_homEquiv, CategoryTheory.Limits.coyonedaCompLimIsoCones_inv_app, LeftExtension.IsPointwiseLeftKanExtensionAt.isIso_hom_app, whiskeringLeft_obj_id, RightExtension.coneAt_pt, LeftExtension.postcomp₁_obj_left, CategoryTheory.sheafToPresheafCompCoyonedaCompWhiskeringLeftSheafToPresheaf_inv_app_app, reflective', FullyFaithful.compUliftCoyonedaCompWhiskeringLeft_hom_app_app_down, LeftExtension.precomp_map_right, CategoryTheory.sheafToPresheafCompYonedaCompWhiskeringLeftSheafToPresheaf_app_app, LeftExtension.precomp₂_obj_left, RightExtension.coneAt_π_app, RightExtension.postcomp₁_obj_left_map, CategoryTheory.Adjunction.compYonedaIso_hom_app_app, RightExtension.postcomp₁_map_right, CategoryTheory.CostructuredArrow.overEquivPresheafCostructuredArrow_inverse_map_toOverCompCoyoneda, CategoryTheory.IsSifted.factorization_prodComparison_colim, ranCompLimIso_inv_app, whiskeringLeft₃_map_app_app_app_app_app_app, whiskeringLeft_obj_comp, CategoryTheory.sheafToPresheafCompYonedaCompWhiskeringLeftSheafToPresheaf_hom_app_app_val, CategoryTheory.CartesianMonoidalCategory.prodComparisonBifunctorNatIso_inv, sheafAdjunctionCocontinuous_counit_app_val, CategoryTheory.Limits.PreservesFiniteLimitsOfIsFilteredCostructuredArrowYonedaAux.functorToInterchangeIso_inv_app_app, LeftExtension.precomp_obj_hom_app, CategoryTheory.Equivalence.congrLeft_counitIso_inv_app, curryObjProdComp_hom_app_app, CategoryTheory.RightExactFunctor.whiskeringLeft_map_app, LeftExtension.coconeAtWhiskerRightIso_inv_hom, RightExtension.precomp_map_left, LeftExtension.IsPointwiseLeftKanExtension.isLeftKanExtension, ranCounit_app_whiskerLeft_ranAdjunction_unit_app_assoc, CategoryTheory.Limits.fiberwiseColimitLimitIso_hom_app, CategoryTheory.SimplicialObject.Truncated.rightExtensionInclusion_hom_app, instIsLeftKanExtensionObjLanAppLanUnit, CategoryTheory.Idempotents.functorExtension₂CompWhiskeringLeftToKaroubiIso_hom_app_app_f, LeftExtension.postcompose₂_obj_right_map, CategoryTheory.Idempotents.functorExtension₁CompWhiskeringLeftToKaroubiIso_hom_app_app_f, sheafPushforwardContinuous_map_val_app, RightExtension.mk_hom, leftExtensionEquivalenceOfIso₁_inverse_map_left, FullyFaithful.compUliftYonedaCompWhiskeringLeft_inv_app_app_down, leftExtensionEquivalenceOfIso₁_inverse_obj_left, CategoryTheory.Adjunction.compPreadditiveYonedaIso_inv_app_app_apply, CategoryTheory.Enriched.FunctorCategory.diagram_map_app, CategoryTheory.LeftExactFunctor.whiskeringLeft_map_app, lanUnit_app_app_lanAdjunction_counit_app_app, CategoryTheory.Adjunction.compUliftCoyonedaIso_inv_app_app_down, lanUnit_app_whiskerLeft_lanAdjunction_counit_app, whiskerLeft_obj_map_bijective_of_isCoverDense, CategoryTheory.SimplicialObject.Truncated.rightExtensionInclusion_left, CategoryTheory.Limits.opHomCompWhiskeringLimYonedaIsoCocones_hom_app_app_app, whiskeringLeft₂_obj_obj_obj_map_app, instIsIsoAppLanUnit, LeftExtension.postcompose₂ObjMkIso_inv_right_app, sheafPushforwardContinuousCompSheafToPresheafIso_inv_app_app, CategoryTheory.TwoSquare.isIso_lanBaseChange_app, instIsEquivalenceRightExtensionPostcomp₁OfIsIso, CategoryTheory.Limits.yonedaCompLimIsoCocones_hom_app_app, smoothSheafCommRing.ι_evalHom, CategoryTheory.Limits.ι_colimitCompWhiskeringLeftIsoCompColimit_hom, CategoryTheory.Localization.faithful_whiskeringLeft, CategoryTheory.Presheaf.restrictedULiftYoneda_map_app, CategoryTheory.Presheaf.compULiftYonedaIsoULiftYonedaCompLan_inv_app_app_apply_eq_id, CategoryTheory.Sum.functorEquivInverseCompWhiskeringLeftInrIso_inv_app_app, RightExtension.coneAtFunctor_obj, whiskeringLeft₃ObjMap_app, whiskeringLeftObjIdIso_hom_app_app, LeftExtension.IsPointwiseLeftKanExtensionAt.ι_isoColimit_hom, LeftExtension.postcompose₂_map_right_app, CategoryTheory.CartesianMonoidalCategory.prodComparisonBifunctorNatIso_hom, CategoryTheory.Equivalence.congrLeft_functor, Monoidal.whiskeringLeft_ε_app, FullyFaithful.compYonedaCompWhiskeringLeftMaxRight_inv_app_app, CategoryTheory.ExactFunctor.whiskeringLeft_map_app, Monoidal.whiskeringLeft_μ_app, TopCat.Presheaf.presheafEquivOfIso_unitIso_hom_app_app, CategoryTheory.MonoidalCategory.DayConvolution.corepresentableBy₂'_homEquiv, RightExtension.postcomp₁_obj_left_obj, CategoryTheory.Limits.whiskeringLimYonedaIsoCones_inv_app_app, CategoryTheory.GrothendieckTopology.yonedaOpCompCoyoneda_inv_app_app, instIsEquivalenceLeftExtensionPostcomp₁OfIsIso, isIso_ranAdjunction_unit_app_iff, LeftExtension.postcompose₂_obj_hom_app, CategoryTheory.GrothendieckTopology.plusFunctorWhiskerLeftIso_hom_app, whiskeringLeft₃_obj_obj_map_app_app_app_app, whiskeringLeft₃Map_app_app, CategoryTheory.GrothendieckTopology.W_inverseImage_whiskeringLeft, SSet.Truncated.rightExtensionInclusion_right_as, RightExtension.coneAtWhiskerRightIso_inv_hom, HomotopyCategory.instFullFunctorHomologicalComplexObjWhiskeringLeftQuotient, CategoryTheory.Sum.functorEquivInverseCompWhiskeringLeftInlIso_hom_app_app, LeftExtension.postcomp₁_obj_hom_app, CategoryTheory.Localization.Construction.WhiskeringLeftEquivalence.functor_map_hom_app, whiskeringLeft₃_obj_map_app_app_app_app_app, AugmentedSimplexCategory.equivAugmentedSimplicialObjectFunctorCompDropIso_hom_app_app, CategoryTheory.Localization.full_whiskeringLeft, CategoryTheory.CostructuredArrow.mapCompιCompGrothendieckProj_inv_app, constCompWhiskeringLeftIso_hom_app_app, lanCompColimIso_inv_app, CategoryTheory.Limits.PreservesFiniteLimitsOfIsFilteredCostructuredArrowYonedaAux.functorToInterchangeIso_hom_app_app, leftExtensionEquivalenceOfIso₁_inverse_map_right, CategoryTheory.MonoidalCategory.externalProductCompDiagIso_inv_app_app, LeftExtension.postcompose₂_obj_right_obj, whiskeringLeft₂_obj_map_app_app_app, CategoryTheory.TwoSquare.isIso_lanBaseChange_app_iff, CategoryTheory.TwoSquare.instIsIsoFunctorLanBaseChangeOfGuitartExact, ranObjObjIsoLimit_inv_π_assoc, CategoryTheory.MonoidalCategory.DayConvolutionUnit.rightUnitorCorepresentingIso_hom_app_app, RightExtension.precomp_obj_right, CategoryTheory.Limits.limitCompWhiskeringLeftIsoCompLimit_inv_π_assoc, CategoryTheory.Limits.fiberwiseColimitLimitIso_inv_app, CategoryTheory.whiskeringLeft_preservesLimits, CategoryTheory.Idempotents.whiskeringLeft_obj_preimage_app, CategoryTheory.MonoidalCategory.DayConvolution.corepresentableBy_homEquiv_symm_apply, CategoryTheory.Limits.PreservesFiniteLimitsOfIsFilteredCostructuredArrowYonedaAux.isoAux_hom_app, LeftExtension.IsPointwiseLeftKanExtensionAt.ι_isoColimit_hom_assoc, leftExtensionEquivalenceOfIso₁_inverse_obj_right, HomotopyCategory.instFaithfulFunctorHomologicalComplexObjWhiskeringLeftQuotient, CategoryTheory.sheafToPresheafCompCoyonedaCompWhiskeringLeftSheafToPresheaf_app_app, RightExtension.IsPointwiseRightKanExtension.isIso_hom, RightExtension.mk_right_as, LeftExtension.IsPointwiseLeftKanExtensionAt.ι_isoColimit_inv_assoc, leftExtensionEquivalenceOfIso₁_counitIso_inv_app_right_app, isIso_ranAdjunction_homEquiv_iff, CategoryTheory.Equivalence.congrLeft_unitIso_inv_app, LeftExtension.postcompose₂ObjMkIso_hom_right_app, ranCounit_app_app_ranAdjunction_unit_app_app_assoc, RightExtension.postcomp₁_map_left_app, CategoryTheory.Equivalence.congrLeft_unitIso_hom_app, CategoryTheory.SimplicialObject.Truncated.rightExtensionInclusion_right_as, instIsEquivalenceObjWhiskeringLeft, LeftExtension.postcomp₁_obj_right_map, ranObjObjIsoLimit_hom_π_assoc, CategoryTheory.Adjunction.compPreadditiveYonedaIso_hom_app_app_apply, PreservesPointwiseLeftKanExtensionAt.preserves, Monoidal.whiskeringLeft_η_app, instReflectsIsomorphismsDiscreteObjWhiskeringLeftIncl, CategoryTheory.whiskeringLeft_preservesColimit, LeftExtension.coconeAtFunctor_obj, CategoryTheory.MonoidalCategory.externalProductBifunctorCurried_map_app_app_app, instIsRightKanExtensionObjRanAppRanCounit, LeftExtension.coconeAtWhiskerRightIso_hom_hom, RightExtension.IsPointwiseRightKanExtensionAt.isIso_hom_app, instIsEquivalenceLeftExtensionCompPrecomp, leftExtensionEquivalenceOfIso₁_inverse_obj_hom_app, whiskeringLeft₃_obj_obj_obj_map_app_app_app, CategoryTheory.Idempotents.KaroubiUniversal₁.counitIso_hom_app_app_f, CategoryTheory.Idempotents.KaroubiUniversal₁.counitIso_inv_app_app_f, instPreservesLimitOfIsCoreflexivePairDiscreteObjWhiskeringLeftIncl, AugmentedSimplexCategory.equivAugmentedCosimplicialObjectFunctorCompDropIso_hom_app_app, DerivedCategory.instFaithfulFunctorHomotopyCategoryIntUpObjWhiskeringLeftQh, LeftExtension.precomp_obj_right, CategoryTheory.Adjunction.compYonedaIso_inv_app_app, whiskeringRight₂_map_app_app_app, CategoryTheory.Limits.PreservesFiniteLimitsOfIsFilteredCostructuredArrowYonedaAux.flipFunctorToInterchange_inv_app_app, lanUnit_app_whiskerLeft_lanAdjunction_counit_app_assoc, LeftExtension.postcompose₂_obj_left, isIso_lanAdjunction_homEquiv_symm_iff, CategoryTheory.MonoidalCategory.externalProductBifunctorCurried_obj_obj_map_app, LeftExtension.IsPointwiseLeftKanExtension.isIso_hom, RightExtension.IsPointwiseRightKanExtensionAt.isoLimit_inv_π, LeftExtension.precomp_obj_left, CategoryTheory.Equivalence.congrLeftFunctor_map, SSet.Truncated.rightExtensionInclusion_left, leftExtensionEquivalenceOfIso₁_functor_obj_hom_app, whiskeringLeft₂_map_app_app_app_app, TopCat.Presheaf.presheafEquivOfIso_unitIso_inv_app_app, toSheafify_pullbackSheafificationCompatibility, lanAdjunction_unit, PreservesPointwiseRightKanExtensionAt.preserves, RightExtension.IsPointwiseRightKanExtension.isRightKanExtension, CategoryTheory.Limits.fiberwiseColimCompEvaluationIso_hom_app, CategoryTheory.Sum.functorEquivInverseCompWhiskeringLeftInrIso_hom_app_app, CategoryTheory.GrothendieckTopology.pseudofunctorOver_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_map_toFunctor_map_val_app, RightExtension.mk_left, CategoryTheory.Limits.FormalCoproduct.evalOpCompInlIsoId_hom_app_app, whiskeringLeft_obj_map, RightExtension.postcomp₁_obj_right, CategoryTheory.Sum.functorEquivFunctorCompSndIso_inv_app_app, FullyFaithful.compYonedaCompWhiskeringLeftMaxRight_hom_app_app_down, LeftExtension.postcompose₂_map_left, LeftExtension.postcomp₁_obj_right_obj, CategoryTheory.Adjunction.compCoyonedaIso_hom_app_app, closedIhom_map_app, whiskeringLeftObjIdIso_inv_app_app, CategoryTheory.MonoidalCategory.DayConvolutionUnit.leftUnitorCorepresentingIso_inv_app_app, RightExtension.postcompose₂_obj_hom_app, RightExtension.precomp_obj_hom_app, ranCounit_app_app_ranAdjunction_unit_app_app, RightExtension.precomp_map_right, CategoryTheory.GrothendieckTopology.uliftYonedaOpCompCoyoneda_hom_app_app_down, CategoryTheory.MonoidalCategory.DayConvolution.corepresentableBy_homEquiv_apply_app, CategoryTheory.Idempotents.functorExtension₂CompWhiskeringLeftToKaroubiIso_inv_app_app_f, RightExtension.postcompose₂ObjMkIso_inv_left_app, IsCoverDense.sheafCoyonedaHom_app, reflective, RightExtension.postcompose₂_map_left_app, FullyFaithful.compUliftYonedaCompWhiskeringLeft_hom_app_app_down, RightExtension.postcompose₂_obj_left_obj, FullyFaithful.compUliftCoyonedaCompWhiskeringLeft_inv_app_app_down, CategoryTheory.MonoidalCategory.DayConvolution.associatorCorepresentingIso_inv_app_app, CategoryTheory.GrothendieckTopology.uliftYonedaOpCompCoyoneda_app_app, constCompWhiskeringLeftIso_inv_app_app, RightExtension.postcompose₂_map_right, CategoryTheory.CartesianMonoidalCategory.prodComparisonBifunctorNatTrans_app, CategoryTheory.instPreservesFiniteLimitsFunctorObjWhiskeringLeftOfHasFiniteLimits, sheafPushforwardContinuousCompSheafToPresheafIso_hom_app_app, RightExtension.IsPointwiseRightKanExtensionAt.isoLimit_inv_π_assoc, LeftExtension.precomp_map_left, TopCat.Presheaf.presheafEquivOfIso_counitIso_inv_app_app, CategoryTheory.Quotient.full_whiskeringLeft_functor, CategoryTheory.Quotient.faithful_whiskeringLeft_functor, LeftExtension.IsPointwiseLeftKanExtensionAt.comp_homEquiv_symm, LeftExtension.precomp₂_obj_right, ranObjObjIsoLimit_hom_π, CategoryTheory.GrothendieckTopology.sheafificationWhiskerLeftIso_hom_app, CategoryTheory.whiskeringLeft_preservesColimitsOfShape, LeftExtension.coconeAt_pt, CategoryTheory.MonoidalCategory.dayConvolutionInternalHomDiagramFunctor_obj_map_app_app, CategoryTheory.Limits.whiskeringLimYonedaIsoCones_hom_app_app_app, CategoryTheory.Idempotents.karoubiUniversal₁_unitIso, LeftExtension.postcomp₁_map_left, RightExtension.coneAtFunctor_map_hom, RightExtension.coneAtWhiskerRightIso_hom_hom, CategoryTheory.MonoidalCategory.externalProductSwap_inv_app_app, CategoryTheory.MonoidalCategory.DayConvolutionUnit.leftUnitorCorepresentingIso_hom_app_app, CategoryTheory.MonoidalCategory.DayConvolution.associatorCorepresentingIso_hom_app_app, CategoryTheory.Idempotents.karoubiUniversal₁_inverse, LeftExtension.mk_right, CategoryTheory.CostructuredArrow.mapCompιCompGrothendieckProj_hom_app, CategoryTheory.Limits.fiberwiseColimCompEvaluationIso_inv_app, RightExtension.IsPointwiseRightKanExtensionAt.isoLimit_hom_π, smoothSheafCommRing.ι_evalHom_assoc, CategoryTheory.MonoidalCategory.DayConvolutionUnit.corepresentableByLeft_homEquiv, CategoryTheory.Limits.FormalCoproduct.evalCompInclIsoId_inv_app_app, CategoryTheory.GrothendieckTopology.uliftYonedaOpCompCoyoneda_inv_app_app, AugmentedSimplexCategory.equivAugmentedSimplicialObjectFunctorCompDropIso_inv_app_app, CategoryTheory.Limits.limitCompWhiskeringLeftIsoCompLimit_hom_whiskerLeft_π_assoc, CategoryTheory.GrothendieckTopology.sheafificationWhiskerLeftIso_inv_app, CategoryTheory.Adjunction.whiskerLeft_unit_app_app, leftExtensionEquivalenceOfIso₁_unitIso_hom_app_right_app, whiskeringLeft₃ObjObjObj_obj_obj_map_app, TopCat.Presheaf.presheafEquivOfIso_counitIso_hom_app_app, CategoryTheory.Limits.limitCompWhiskeringLeftIsoCompLimit_inv_π, DerivedCategory.instFullFunctorHomotopyCategoryIntUpObjWhiskeringLeftQh, CategoryTheory.CostructuredArrow.overEquivPresheafCostructuredArrow_functor_map_toOverCompCoyoneda, ranObjObjIsoLimit_inv_π, CategoryTheory.Equivalence.congrLeft_counitIso_hom_app, LeftExtension.IsPointwiseLeftKanExtensionAt.ι_isoColimit_inv, curryObjProdComp_inv_app_app, CategoryTheory.MonoidalCategory.DayConvolutionUnit.rightUnitorCorepresentingIso_inv_app_app, RightExtension.postcomp₁_obj_hom_app, ranAdjunction_counit, whiskeringLeft₃_obj_obj_obj_obj_obj_map_app, instIsIsoAppLanUnit_1, CategoryTheory.MonoidalCategory.externalProductBifunctorCurried_obj_map_app_app, CategoryTheory.Equivalence.congrLeft_inverse, ranCounit_app_whiskerLeft_ranAdjunction_unit_app, LeftExtension.coconeAt_ι_app, Monoidal.whiskeringLeft_δ_app, LeftExtension.mk_left_as, whiskeringLeftObjCompIso_hom_app_app, LeftExtension.precomp₂_map_left, CategoryTheory.MonoidalCategory.dayConvolutionInternalHomDiagramFunctor_obj_obj_map_app, SSet.Truncated.rightExtensionInclusion_hom_app, CategoryTheory.Limits.whiskerLeft_ι_colimitCompWhiskeringLeftIsoCompColimit_inv, CategoryTheory.MonoidalCategory.externalProductSwap_hom_app_app, coreflective', CategoryTheory.Limits.PreservesFiniteLimitsOfIsFilteredCostructuredArrowYonedaAux.flipFunctorToInterchange_hom_app_app, OplaxMonoidal.ofBifunctor.firstMap₃_app_app_app, IsDenseSubsite.isIso_ranCounit_app_of_isDenseSubsite, CategoryTheory.Sum.functorEquivFunctorCompSndIso_hom_app_app, CategoryTheory.TwoSquare.lanBaseChange_app, CategoryTheory.Sum.functorEquivFunctorCompFstIso_hom_app_app, CategoryTheory.whiskeringLeftCompEvaluation_inv_app, whiskeringLeft_obj_obj, ranCompLimIso_hom_app, CategoryTheory.Limits.FormalCoproduct.cosimplicialObjectFunctor_map_app, sheafAdjunctionCocontinuous_homEquiv_apply_val, leftExtensionEquivalenceOfIso₁_counitIso_hom_app_right_app, CategoryTheory.Limits.coyonedaCompLimIsoCones_hom_app_app, CategoryTheory.Limits.whiskerLeft_ι_colimitCompWhiskeringLeftIsoCompColimit_inv_assoc, AugmentedSimplexCategory.equivAugmentedCosimplicialObjectFunctorCompDropIso_inv_app_app, CategoryTheory.Limits.FormalCoproduct.evalCompInclIsoId_hom_app_app, ranAdjunction_unit_app, lanAdjunction_counit_app, RightExtension.IsPointwiseRightKanExtensionAt.isoLimit_hom_π_assoc, isIso_lanAdjunction_counit_app_iff, CategoryTheory.CartesianMonoidalCategory.prodComparisonBifunctorNatTrans_comp, coreflective, pushforwardContinuousSheafificationCompatibility_hom_app_val, whiskeringLeft₃_obj_obj_obj_obj_map_app_app, CategoryTheory.Limits.opHomCompWhiskeringLimYonedaIsoCocones_inv_app_app, sheafAdjunctionCocontinuous_unit_app_val, lanUnit_app_app_lanAdjunction_counit_app_app_assoc, leftExtensionEquivalenceOfIso₁_functor_map_right, CategoryTheory.Limits.FormalCoproduct.evalOpCompInlIsoId_inv_app_app, whiskeringLeft₂_obj_obj_map_app_app, instIsIsoAppRanCounit_1, RightExtension.postcompose₂ObjMkIso_hom_left_app, whiskeringRight₂_obj_map_app_app, CategoryTheory.whiskeringLeftCompEvaluation_hom_app, leftExtensionEquivalenceOfIso₁_unitIso_inv_app_right_app, CategoryTheory.MonoidalCategory.DayConvolutionUnit.corepresentableByRight_homEquiv, CategoryTheory.instPreservesFiniteColimitsFunctorObjWhiskeringLeftOfHasFiniteColimits, CategoryTheory.GrothendieckTopology.uliftYonedaOpCompCoyoneda_inv_app_app_val_app, CategoryTheory.Limits.limitCompWhiskeringLeftIsoCompLimit_hom_whiskerLeft_π, lanCompColimIso_hom_app, LeftExtension.IsPointwiseLeftKanExtensionAt.comp_homEquiv_symm_assoc, whiskeringLeft₃ObjObjObj_map_app_app_app, LeftExtension.mk_hom, IsLeftKanExtension.nonempty_isUniversal, whiskeringLeft_map_app_app, CategoryTheory.Adjunction.whiskerLeft_counit_app_app, RightExtension.precomp_obj_left, instIsEquivalenceRightExtensionCompPrecomp, leftExtensionEquivalenceOfIso₁_functor_obj_right, CategoryTheory.Sum.functorEquivInverseCompWhiskeringLeftInlIso_inv_app_app, whiskeringLeftObjCompIso_inv_app_app, CategoryTheory.CartesianMonoidalCategory.instIsIsoFunctorProdComparisonBifunctorNatTransOfProdComparison, CategoryTheory.MonoidalCategory.dayConvolutionInternalHomDiagramFunctor_map_app_app_app
whiskeringLeftObjCompIso 📖CompOp
2 mathmath: whiskeringLeftObjCompIso_hom_app_app, whiskeringLeftObjCompIso_inv_app_app
whiskeringLeftObjIdIso 📖CompOp
2 mathmath: whiskeringLeftObjIdIso_hom_app_app, whiskeringLeftObjIdIso_inv_app_app
whiskeringLeft₂ 📖CompOp
54 mathmath: whiskeringLeft₃ObjObjObj_obj_map_app_app, LaxMonoidal.ofBifunctor.secondMap₁_app_app_app, CategoryTheory.IsSifted.factorization_prodComparison_colim, CategoryTheory.Limits.PreservesColimit₂.map_ι_comp_isoColimitUncurryWhiskeringLeft₂_inv_assoc, whiskeringLeft₃_map_app_app_app_app_app_app, CategoryTheory.Limits.PreservesLimit₂.isoObjConePointsOfIsColimit_inv_comp_map_π, CategoryTheory.Limits.PreservesColimit₂.map_ι_comp_isoColimitUncurryWhiskeringLeft₂_inv, curry₃ObjProdComp_inv_app_app_app, whiskeringLeft₃ObjObjMap_app, whiskeringLeft₂_obj_obj_obj_map_app, whiskeringLeft₂_obj_obj_obj_obj_obj, CategoryTheory.Localization.lift₂_iso_hom_app_app₂, CategoryTheory.Limits.PreservesColimit₂.map_ι_comp_isoObjConePointsOfIsColimit_hom, whiskeringLeft₃ObjMap_app, curry₃ObjProdComp_hom_app_app_app, CategoryTheory.Limits.PreservesLimit₂.isoObjConePointsOfIsLimit_hom_comp_π, whiskeringLeft₃_obj_obj_map_app_app_app_app, whiskeringLeft₃Map_app_app, whiskeringLeft₃_obj_map_app_app_app_app_app, CategoryTheory.Limits.PreservesColimit₂.map_ι_comp_isoObjConePointsOfIsColimit_hom_assoc, whiskeringLeft₂_obj_map_app_app_app, CategoryTheory.Limits.PreservesLimit₂.isoObjConePointsOfIsColimit_inv_comp_map_π_assoc, CategoryTheory.MonoidalCategory.externalProductBifunctorCurried_map_app_app_app, mapCone₂_pt, CategoryTheory.Limits.PreservesLimit₂.nonempty_isLimit_mapCone₂, whiskeringLeft₃_obj_obj_obj_map_app_app_app, mapCone₂_π_app, CategoryTheory.Limits.PreservesLimit₂.isoObjConePointsOfIsLimit_hom_comp_π_assoc, CategoryTheory.Localization.Monoidal.lifting₂CurriedTensorPost_iso, whiskeringLeft₂_map_app_app_app_app, CategoryTheory.Limits.PreservesLimit₂.isoLimitUncurryWhiskeringLeft₂_inv_comp_π, mapCocone₂_pt, mapCocone₂_ι_app, CategoryTheory.Limits.PreservesLimit₂.isoLimitUncurryWhiskeringLeft₂_inv_comp_π_assoc, CategoryTheory.Localization.lift₂NatTrans_app_app, CategoryTheory.Limits.PreservesColimit₂.ι_comp_isoObjConePointsOfIsColimit_inv, CategoryTheory.Limits.PreservesLimit₂.isoLimitUncurryWhiskeringLeft₂_hom_comp_map_π, CategoryTheory.MonoidalCategory.dayConvolutionInternalHomDiagramFunctor_obj_map_app_app, whiskeringLeft₂_obj_obj_obj_obj_map, CategoryTheory.Limits.PreservesLimit₂.isoLimitUncurryWhiskeringLeft₂_hom_comp_map_π_assoc, CategoryTheory.Limits.PreservesColimit₂.ι_comp_isoColimitUncurryWhiskeringLeft₂_hom_assoc, CategoryTheory.MonoidalCategory.externalProductBifunctorCurried_obj_map_app_app, OplaxMonoidal.ofBifunctor.firstMap₃_app_app_app, CategoryTheory.Limits.PreservesColimit₂.ι_comp_isoObjConePointsOfIsColimit_inv_assoc, CategoryTheory.Localization.lift₂_iso_hom_app_app₁, CategoryTheory.Limits.PreservesColimit₂.ι_comp_isoColimitUncurryWhiskeringLeft₂_hom, CategoryTheory.Limits.instHasLimitProdObjFunctorUncurryWhiskeringLeft₂OfPreservesLimit₂, whiskeringLeft₃_obj_obj_obj_obj_map_app_app, CategoryTheory.Limits.instHasColimitProdObjFunctorUncurryWhiskeringLeft₂OfPreservesColimit₂, whiskeringLeft₂_obj_obj_map_app_app, CategoryTheory.Localization.associator_hom_app_app_app, whiskeringLeft₃ObjObjObj_map_app_app_app, CategoryTheory.Limits.PreservesColimit₂.nonempty_isColimit_mapCocone₂, CategoryTheory.MonoidalCategory.dayConvolutionInternalHomDiagramFunctor_map_app_app_app
whiskeringLeft₃ 📖CompOp
9 mathmath: whiskeringLeft₃_map_app_app_app_app_app_app, whiskeringLeft₃_obj_obj_obj_obj_obj_obj_obj, whiskeringLeft₃_obj_obj_map_app_app_app_app, whiskeringLeft₃_obj_map_app_app_app_app_app, whiskeringLeft₃_obj_obj_obj_map_app_app_app, CategoryTheory.Localization.lift₃NatTrans_app_app_app, whiskeringLeft₃_obj_obj_obj_obj_obj_map_app, whiskeringLeft₃_obj_obj_obj_obj_obj_obj_map, whiskeringLeft₃_obj_obj_obj_obj_map_app_app
whiskeringLeft₃Map 📖CompOp
1 mathmath: whiskeringLeft₃Map_app_app
whiskeringLeft₃Obj 📖CompOp
4 mathmath: whiskeringLeft₃Obj_map, whiskeringLeft₃_map_app_app_app_app_app_app, whiskeringLeft₃Map_app_app, whiskeringLeft₃Obj_obj
whiskeringLeft₃ObjMap 📖CompOp
2 mathmath: whiskeringLeft₃Obj_map, whiskeringLeft₃ObjMap_app
whiskeringLeft₃ObjObj 📖CompOp
5 mathmath: whiskeringLeft₃ObjMap_app, whiskeringLeft₃_obj_map_app_app_app_app_app, whiskeringLeft₃Obj_obj, whiskeringLeft₃ObjObj_map, whiskeringLeft₃ObjObj_obj
whiskeringLeft₃ObjObjMap 📖CompOp
2 mathmath: whiskeringLeft₃ObjObjMap_app, whiskeringLeft₃ObjObj_map
whiskeringLeft₃ObjObjObj 📖CompOp
8 mathmath: whiskeringLeft₃ObjObjObj_obj_map_app_app, whiskeringLeft₃ObjObjMap_app, whiskeringLeft₃_obj_obj_map_app_app_app_app, whiskeringLeft₃ObjObjObj_obj_obj_obj_obj, whiskeringLeft₃ObjObjObj_obj_obj_obj_map, whiskeringLeft₃ObjObjObj_obj_obj_map_app, whiskeringLeft₃ObjObjObj_map_app_app_app, whiskeringLeft₃ObjObj_obj
whiskeringRight 📖CompOp
194 mathmath: whiskeringRightObjIdIso_hom_app_app, CategoryTheory.whiskeringRightPreservesLimits, CategoryTheory.GrothendieckTopology.yonedaOpCompCoyoneda_hom_app_app_down, CategoryTheory.Idempotents.toKaroubi_comp_karoubiFunctorCategoryEmbedding, whiskeringRight₂_obj_obj_map_app, CategoryTheory.whiskeringRightPreservesColimits, full_whiskeringRight_obj, CategoryTheory.Idempotents.functorExtension₂_map_app_f, curryObjCompIso_hom_app_app, CategoryTheory.whiskering_linearCoyoneda, whiskeringLeft₃ObjObjObj_obj_map_app_app, CategoryTheory.GrothendieckTopology.plusFunctorWhiskerRightIso_hom_app, LaxMonoidal.ofBifunctor.secondMap₁_app_app_app, whiskeringRight_obj_id, IsLocalization.instDiscreteObjWhiskeringRightFunctorCategoryOfFiniteOfContainsIdentities, CategoryTheory.Equivalence.congrFullSubcategory_counitIso, IsCoverDense.isoOver_hom_app, CategoryTheory.Idempotents.functorExtension_map_app, CategoryTheory.GrothendieckTopology.sheafificationWhiskerRightIso_hom_app, CategoryTheory.Localization.HasProductsOfShapeAux.adj_counit_app, whiskeringLeft₃_map_app_app_app_app_app_app, LaxMonoidal.ofBifunctor.firstMap₃_app_app_app, CategoryTheory.preservesColimitNatIso_inv_app, CategoryTheory.CartesianMonoidalCategory.prodComparisonBifunctorNatIso_inv, CategoryTheory.limitCompWhiskeringRightIsoLimitComp_hom_whiskerRight_π_assoc, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.biprodAddEquiv_symm_biprodIsoProd_hom_toBiprod_apply, compConstIso_hom_app_app, CategoryTheory.limitCompWhiskeringRightIsoLimitComp_inv_π_assoc, postcompose₃_obj_obj_obj_map_app, CategoryTheory.RightExactFunctor.whiskeringRight_map_app, CategoryTheory.Idempotents.functorExtension₂CompWhiskeringLeftToKaroubiIso_hom_app_app_f, CategoryTheory.instReflectsIsomorphismsFunctorObjWhiskeringRight, CategoryTheory.LeftExactFunctor.whiskeringRight_map_app, postcompose₃_obj_obj_map_app_app, CategoryTheory.Adjunction.compPreadditiveYonedaIso_inv_app_app_apply, CategoryTheory.instIsIsoFunctorOppositeSheafSheafComposeNatTrans, AddCommGrpCat.coyonedaForget_inv_app_app, AlgebraicTopology.DoldKan.Γ₂_obj_p_app, whiskeringLeft₃ObjObjMap_app, AddCommGrpCat.coyonedaForget_hom_app_app_hom, CategoryTheory.GrothendieckTopology.W_isInvertedBy_whiskeringRight_presheafToSheaf, CategoryTheory.Limits.opHomCompWhiskeringLimYonedaIsoCocones_hom_app_app_app, CategoryTheory.Idempotents.functorExtension₂_obj_map_f, CategoryTheory.GrothendieckTopology.PreservesSheafification.le, CategoryTheory.Limits.limCompFlipIsoWhiskerLim_inv_app_app, whiskeringLeft₂_obj_obj_obj_map_app, CommMonCat.coyonedaForget_inv_app_app, CategoryTheory.PreGaloisCategory.continuous_mapAut_whiskeringRight, ranCompIsoOfPreserves_inv_app, whiskeringLeft₃ObjMap_app, LeftExtension.postcompose₂_map_right_app, CategoryTheory.CartesianMonoidalCategory.prodComparisonBifunctorNatIso_hom, CategoryTheory.δ_app, CategoryTheory.GrothendieckTopology.instIsIsoFunctorOppositeSheafSheafComposeNatTransPlusPlusAdjunction, CategoryTheory.whiskering_linearYoneda, ranCompIsoOfPreserves_hom_app, CategoryTheory.whiskeringRightCompEvaluation_inv_app, CategoryTheory.Limits.whiskeringLimYonedaIsoCones_inv_app_app, CategoryTheory.whiskering_linearCoyoneda₂, CategoryTheory.GrothendieckTopology.yonedaOpCompCoyoneda_inv_app_app, CategoryTheory.Equivalence.congrRight_functor, CategoryTheory.Cat.exp_map, LeftExtension.postcompose₂_obj_hom_app, CategoryTheory.preservesLimitNatIso_inv_app, CategoryTheory.toPresheafToSheafCompComposeAndSheafify_app, whiskeringLeft₃_obj_obj_map_app_app_app_app, whiskeringLeft₃Map_app_app, CategoryTheory.GrothendieckTopology.plusFunctorWhiskerRightIso_inv_app, whiskeringLeft₃_obj_map_app_app_app_app_app, OplaxMonoidal.whiskeringRight_δ_app, CategoryTheory.Equivalence.congrFullSubcategory_unitIso, CategoryTheory.whiskering_preadditiveYoneda, CategoryTheory.Sheaf.adjunction_counit_app_val, CategoryTheory.preservesColimitNatIso_hom_app, whiskeringLeft₂_obj_map_app_app_app, CategoryTheory.Limits.CategoricalPullback.CatCommSqOver.e_hom_app, CategoryTheory.whiskeringRight_preservesColimitsOfShape, CategoryTheory.Limits.colimCompFlipIsoWhiskerColim_hom_app_app, postcompose₃_map_app_app_app_app, CategoryTheory.ι_colimitCompWhiskeringRightIsoColimitComp_hom, FullyFaithful.whiskeringRight_preimage_app, CategoryTheory.GrothendieckTopology.sheafToPresheaf_map_sheafComposeNatTrans_eq_sheafifyCompIso_inv, CategoryTheory.sheafComposeNatTrans_app_uniq, CategoryTheory.whiskerRight_ι_colimitCompWhiskeringRightIsoColimitComp_inv_assoc, CategoryTheory.Adjunction.compPreadditiveYonedaIso_hom_app_app_apply, CategoryTheory.Limits.colimIsoFlipCompWhiskerColim_hom_app_app, CategoryTheory.whiskeringRightCompEvaluation_hom_app, CategoryTheory.MonoidalCategory.externalProductBifunctorCurried_map_app_app_app, whiskeringLeft₃_obj_obj_obj_map_app_app_app, LaxMonoidal.whiskeringRight_μ_app, CategoryTheory.Localization.Monoidal.isInvertedBy₂, CategoryTheory.GrothendieckTopology.preservesSheafification_iff_of_adjunctions_of_hasSheafCompose, CategoryTheory.Sheaf.adjunction_unit_app_val, whiskeringRight₂_map_app_app_app, CategoryTheory.Cat.ihom_map, CategoryTheory.MonoidalCategory.externalProductBifunctorCurried_obj_obj_map_app, CategoryTheory.Limits.CategoricalPullback.CatCommSqOver.e_inv_app, CategoryTheory.uliftYoneda_map_app, whiskeringLeft₂_map_app_app_app_app, postcompose₂_obj_map_app_app, curryObjCompIso_inv_app_app, LaxMonoidal.whiskeringRight_ε_app, CommGrpCat.coyonedaForget_hom_app_app_hom, instIsEquivalenceObjWhiskeringRight, lanCompIsoOfPreserves_inv_app, CategoryTheory.ExactFunctor.whiskeringRight_map_app, CategoryTheory.η_app, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.isPushoutAddCommGrpFreeSheaf, CategoryTheory.Limits.limIsoFlipCompWhiskerLim_hom_app_app, CategoryTheory.Limits.colimIsoFlipCompWhiskerColim_inv_app_app, LeftExtension.postcompose₂_map_left, closedIhom_map_app, RightExtension.postcompose₂_obj_hom_app, AddCommMonCat.coyonedaForget_inv_app_app, CategoryTheory.GrothendieckTopology.uliftYonedaOpCompCoyoneda_hom_app_app_down, CategoryTheory.Idempotents.functorExtension₂CompWhiskeringLeftToKaroubiIso_inv_app_app_f, whiskeringRight_obj_map, RightExtension.postcompose₂_map_left_app, whiskeringRightObjCompIso_hom_app_app, CategoryTheory.presheafToSheafCompComposeAndSheafifyIso_inv_app, CategoryTheory.GrothendieckTopology.uliftYonedaOpCompCoyoneda_app_app, RightExtension.postcompose₂_map_right, CategoryTheory.CartesianMonoidalCategory.prodComparisonBifunctorNatTrans_app, CategoryTheory.ι_colimitCompWhiskeringRightIsoColimitComp_hom_assoc, OplaxMonoidal.ofBifunctor.secondMap₁_app_app_app, CategoryTheory.MonoidalCategory.dayConvolutionInternalHomDiagramFunctor_obj_map_app_app, CategoryTheory.Limits.whiskeringLimYonedaIsoCones_hom_app_app_app, whiskeringRightObjIdIso_inv_app_app, CommGrpCat.coyonedaForget_inv_app_app, CategoryTheory.whiskeringRight_preservesLimitsOfShape, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.shortComplex_f, IsCoverDense.isoOver_inv_app, CommMonCat.coyonedaForget_hom_app_app_hom, postcompose₂_obj_obj_map_app, CategoryTheory.instIsIsoFunctorOppositeSheafToPresheafToSheafCompComposeAndSheafify, CategoryTheory.GrothendieckTopology.uliftYonedaOpCompCoyoneda_inv_app_app, CategoryTheory.Limits.limCompFlipIsoWhiskerLim_hom_app_app, whiskeringRight_obj_obj, lanCompIsoOfPreserves_hom_app, postcompose₃_obj_map_app_app_app, whiskeringLeft₃ObjObjObj_obj_obj_map_app, postcompose₂_map_app_app_app, OplaxMonoidal.whiskeringRight_η_app, PresheafOfModules.freeAdjunction_unit_app, faithful_whiskeringRight_obj, CategoryTheory.Limits.limIsoFlipCompWhiskerLim_inv_app_app, whiskeringLeft₃_obj_obj_obj_obj_obj_map_app, CategoryTheory.whiskerRight_ι_colimitCompWhiskeringRightIsoColimitComp_inv, CategoryTheory.MonoidalCategory.externalProductBifunctorCurried_obj_map_app_app, CategoryTheory.GrothendieckTopology.instIsIsoSheafAppFunctorOppositeSheafComposeNatTransPlusPlusAdjunction, whiskeringRight_obj_comp, CategoryTheory.Equivalence.congrRight_inverse, AlgebraicTopology.DoldKan.Γ₂_map_f_app, CategoryTheory.whiskering_linearYoneda₂, AddCommMonCat.coyonedaForget_hom_app_app_hom, CategoryTheory.Adjunction.whiskerRight_counit_app_app, CategoryTheory.MonoidalCategory.dayConvolutionInternalHomDiagramFunctor_obj_obj_map_app, CategoryTheory.GrothendieckTopology.sheafificationWhiskerRightIso_inv_app, CategoryTheory.preservesLimitNatIso_hom_app, CategoryTheory.Equivalence.congrRight_unitIso_hom_app, CategoryTheory.Limits.isIndObject_limit_comp_yoneda_comp_colim, CategoryTheory.GrothendieckTopology.Point.sheafFiberCompIso_hom_app, OplaxMonoidal.ofBifunctor.firstMap₃_app_app_app, CategoryTheory.limitCompWhiskeringRightIsoLimitComp_inv_π, compConstIso_inv_app_app, CategoryTheory.GrothendieckTopology.Point.toPresheafFiber_presheafFiberCompIso_hom_app_assoc, CategoryTheory.Limits.colimCompFlipIsoWhiskerColim_inv_app_app, curry_obj_comp_flip, PresheafOfModules.freeAdjunction_homEquiv, CategoryTheory.Adjunction.whiskerRight_unit_app_app, CategoryTheory.CartesianMonoidalCategory.prodComparisonBifunctorNatTrans_comp, whiskeringLeft₃_obj_obj_obj_obj_map_app_app, CategoryTheory.Limits.opHomCompWhiskeringLimYonedaIsoCocones_inv_app_app, whiskeringRight_map_app_app, CategoryTheory.GrothendieckTopology.Point.sheafFiberCompIso_inv_app, CategoryTheory.ε_app, whiskeringLeft₂_obj_obj_map_app_app, whiskeringRight₂_obj_map_app_app, CategoryTheory.GrothendieckTopology.Point.toPresheafFiber_presheafFiberCompIso_hom_app, CategoryTheory.Equivalence.congrRightFunctor_map, whiskeringRightObjCompIso_inv_app_app, CategoryTheory.whiskeringRight_comp_evaluation, CategoryTheory.Localization.associator_hom_app_app_app, CategoryTheory.Equivalence.congrRight_counitIso_inv_app, CategoryTheory.sheafComposeNatTrans_fac, CategoryTheory.GrothendieckTopology.uliftYonedaOpCompCoyoneda_inv_app_app_val_app, CategoryTheory.Equivalence.congrRight_counitIso_hom_app, CategoryTheory.μ_app, whiskeringLeft₃ObjObjObj_map_app_app_app, CategoryTheory.Equivalence.congrRight_unitIso_inv_app, CategoryTheory.limitCompWhiskeringRightIsoLimitComp_hom_whiskerRight_π, CategoryTheory.whiskering_preadditiveCoyoneda, CategoryTheory.CartesianMonoidalCategory.instIsIsoFunctorProdComparisonBifunctorNatTransOfProdComparison, CategoryTheory.MonoidalCategory.dayConvolutionInternalHomDiagramFunctor_map_app_app_app
whiskeringRightObjCompIso 📖CompOp
2 mathmath: whiskeringRightObjCompIso_hom_app_app, whiskeringRightObjCompIso_inv_app_app
whiskeringRightObjIdIso 📖CompOp
2 mathmath: whiskeringRightObjIdIso_hom_app_app, whiskeringRightObjIdIso_inv_app_app

Theorems

NameKindAssumesProvesValidatesDepends On
faithful_whiskeringRight_obj 📖mathematical—Faithful
CategoryTheory.Functor
category
obj
whiskeringRight
—CategoryTheory.NatTrans.ext'
map_injective
full_whiskeringRight_obj 📖mathematical—Full
CategoryTheory.Functor
category
obj
whiskeringRight
—FullyFaithful.full
hcomp_id 📖mathematical—CategoryTheory.NatTrans.hcomp
CategoryTheory.CategoryStruct.id
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
category
whiskerRight
—CategoryTheory.NatTrans.ext'
CategoryTheory.Category.id_comp
id_hcomp 📖mathematical—CategoryTheory.NatTrans.hcomp
CategoryTheory.CategoryStruct.id
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
category
whiskerLeft
—CategoryTheory.NatTrans.ext'
map_id
CategoryTheory.Category.comp_id
inv_whiskerLeft 📖mathematical—CategoryTheory.inv
CategoryTheory.Functor
category
comp
whiskerLeft
isIso_whiskerLeft
—isIso_whiskerLeft
CategoryTheory.IsIso.eq_inv_of_inv_hom_id
CategoryTheory.IsIso.inv_hom_id
inv_whiskerRight 📖mathematical—CategoryTheory.inv
CategoryTheory.Functor
category
comp
whiskerRight
isIso_whiskerRight
—isIso_whiskerRight
CategoryTheory.IsIso.eq_inv_of_inv_hom_id
CategoryTheory.IsIso.inv_hom_id
whiskerRight_id'
isIso_whiskerLeft 📖mathematical—CategoryTheory.IsIso
CategoryTheory.Functor
category
comp
whiskerLeft
—CategoryTheory.Iso.isIso_hom
isIso_whiskerRight 📖mathematical—CategoryTheory.IsIso
CategoryTheory.Functor
category
comp
whiskerRight
—CategoryTheory.Iso.isIso_hom
isoWhiskerLeft_hom 📖mathematical—CategoryTheory.Iso.hom
CategoryTheory.Functor
category
comp
isoWhiskerLeft
whiskerLeft
——
isoWhiskerLeft_inv 📖mathematical—CategoryTheory.Iso.inv
CategoryTheory.Functor
category
comp
isoWhiskerLeft
whiskerLeft
——
isoWhiskerLeft_refl 📖mathematical—isoWhiskerLeft
CategoryTheory.Iso.refl
CategoryTheory.Functor
category
comp
——
isoWhiskerLeft_right 📖mathematical—isoWhiskerLeft
comp
isoWhiskerRight
CategoryTheory.Iso.trans
CategoryTheory.Functor
category
CategoryTheory.Iso.symm
associator
—CategoryTheory.Iso.ext
CategoryTheory.NatTrans.ext'
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
isoWhiskerLeft_right_assoc 📖mathematical—CategoryTheory.Iso.trans
CategoryTheory.Functor
category
comp
isoWhiskerLeft
isoWhiskerRight
CategoryTheory.Iso.symm
associator
—CategoryTheory.Iso.trans_assoc
Mathlib.Tactic.Reassoc.Iso.eq_whisker
isoWhiskerLeft_right
isoWhiskerLeft_symm 📖mathematical—CategoryTheory.Iso.symm
CategoryTheory.Functor
category
comp
isoWhiskerLeft
——
isoWhiskerLeft_trans 📖mathematical—isoWhiskerLeft
CategoryTheory.Iso.trans
CategoryTheory.Functor
category
comp
——
isoWhiskerLeft_trans_assoc 📖mathematical—CategoryTheory.Iso.trans
CategoryTheory.Functor
category
comp
isoWhiskerLeft
—CategoryTheory.Iso.trans_assoc
Mathlib.Tactic.Reassoc.Iso.eq_whisker
isoWhiskerLeft_trans
isoWhiskerLeft_trans_isoWhiskerRight 📖mathematical—CategoryTheory.Iso.trans
CategoryTheory.Functor
category
comp
isoWhiskerLeft
isoWhiskerRight
—CategoryTheory.Iso.ext
CategoryTheory.NatTrans.ext'
CategoryTheory.NatTrans.naturality
isoWhiskerLeft_trans_isoWhiskerRight_assoc 📖mathematical—CategoryTheory.Iso.trans
CategoryTheory.Functor
category
comp
isoWhiskerLeft
isoWhiskerRight
—CategoryTheory.Iso.trans_assoc
Mathlib.Tactic.Reassoc.Iso.eq_whisker
isoWhiskerLeft_trans_isoWhiskerRight
isoWhiskerLeft_twice 📖mathematical—isoWhiskerLeft
comp
CategoryTheory.Iso.trans
CategoryTheory.Functor
category
CategoryTheory.Iso.symm
associator
—CategoryTheory.Iso.ext
CategoryTheory.NatTrans.ext'
whiskerLeft_twice
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
isoWhiskerRight_hom 📖mathematical—CategoryTheory.Iso.hom
CategoryTheory.Functor
category
comp
isoWhiskerRight
whiskerRight
——
isoWhiskerRight_inv 📖mathematical—CategoryTheory.Iso.inv
CategoryTheory.Functor
category
comp
isoWhiskerRight
whiskerRight
——
isoWhiskerRight_left 📖mathematical—isoWhiskerRight
comp
isoWhiskerLeft
CategoryTheory.Iso.trans
CategoryTheory.Functor
category
associator
CategoryTheory.Iso.symm
—CategoryTheory.Iso.ext
CategoryTheory.NatTrans.ext'
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
isoWhiskerRight_left_assoc 📖mathematical—CategoryTheory.Iso.trans
CategoryTheory.Functor
category
comp
isoWhiskerRight
isoWhiskerLeft
associator
CategoryTheory.Iso.symm
—CategoryTheory.Iso.trans_assoc
Mathlib.Tactic.Reassoc.Iso.eq_whisker
isoWhiskerRight_left
isoWhiskerRight_refl 📖mathematical—isoWhiskerRight
CategoryTheory.Iso.refl
CategoryTheory.Functor
category
comp
—CategoryTheory.Iso.ext
CategoryTheory.NatTrans.ext'
whiskerRight_id'
isoWhiskerRight_symm 📖mathematical—CategoryTheory.Iso.symm
CategoryTheory.Functor
category
comp
isoWhiskerRight
——
isoWhiskerRight_trans 📖mathematical—isoWhiskerRight
CategoryTheory.Iso.trans
CategoryTheory.Functor
category
comp
—mapIso_trans
isoWhiskerRight_trans_assoc 📖mathematical—CategoryTheory.Iso.trans
CategoryTheory.Functor
category
comp
isoWhiskerRight
—CategoryTheory.Iso.trans_assoc
Mathlib.Tactic.Reassoc.Iso.eq_whisker
isoWhiskerRight_trans
isoWhiskerRight_twice 📖mathematical—isoWhiskerRight
comp
CategoryTheory.Iso.trans
CategoryTheory.Functor
category
associator
CategoryTheory.Iso.symm
—CategoryTheory.Iso.ext
CategoryTheory.NatTrans.ext'
whiskerRight_twice
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
isoWhiskerRight_twice_assoc 📖mathematical—CategoryTheory.Iso.trans
CategoryTheory.Functor
category
comp
isoWhiskerRight
associator
CategoryTheory.Iso.symm
—CategoryTheory.Iso.trans_assoc
Mathlib.Tactic.Reassoc.Iso.eq_whisker
isoWhiskerRight_twice
pentagon 📖mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
category
comp
whiskerRight
CategoryTheory.Iso.hom
associator
whiskerLeft
—CategoryTheory.NatTrans.ext'
map_id
CategoryTheory.Category.comp_id
pentagonIso 📖mathematical—CategoryTheory.Iso.trans
CategoryTheory.Functor
category
comp
isoWhiskerRight
associator
isoWhiskerLeft
—CategoryTheory.Iso.ext
CategoryTheory.NatTrans.ext'
map_id
CategoryTheory.Category.comp_id
pentagonIso_assoc 📖mathematical—CategoryTheory.Iso.trans
CategoryTheory.Functor
category
comp
isoWhiskerRight
associator
isoWhiskerLeft
—CategoryTheory.Iso.trans_assoc
Mathlib.Tactic.Reassoc.Iso.eq_whisker
pentagonIso
postcompose₂_map_app_app_app 📖mathematical—CategoryTheory.NatTrans.app
obj
CategoryTheory.Functor
category
whiskeringRight
comp
whiskerRight
map
postcompose₂
——
postcompose₂_obj_map_app_app 📖mathematical—CategoryTheory.NatTrans.app
obj
CategoryTheory.Functor
category
whiskeringRight
comp
map
postcompose₂
——
postcompose₂_obj_obj_map_app 📖mathematical—CategoryTheory.NatTrans.app
obj
CategoryTheory.Functor
category
whiskeringRight
map
postcompose₂
——
postcompose₂_obj_obj_obj_map 📖mathematical—map
obj
CategoryTheory.Functor
category
postcompose₂
——
postcompose₂_obj_obj_obj_obj 📖mathematical—obj
CategoryTheory.Functor
category
postcompose₂
——
postcompose₃_map_app_app_app_app 📖mathematical—CategoryTheory.NatTrans.app
obj
CategoryTheory.Functor
category
whiskeringRight
comp
whiskerRight
map
postcompose₃
——
postcompose₃_obj_map_app_app_app 📖mathematical—CategoryTheory.NatTrans.app
obj
CategoryTheory.Functor
category
whiskeringRight
comp
map
postcompose₃
——
postcompose₃_obj_obj_map_app_app 📖mathematical—CategoryTheory.NatTrans.app
obj
CategoryTheory.Functor
category
whiskeringRight
map
postcompose₃
——
postcompose₃_obj_obj_obj_map_app 📖mathematical—CategoryTheory.NatTrans.app
obj
CategoryTheory.Functor
category
whiskeringRight
map
postcompose₃
——
postcompose₃_obj_obj_obj_obj_map 📖mathematical—map
obj
CategoryTheory.Functor
category
postcompose₃
——
postcompose₃_obj_obj_obj_obj_obj 📖mathematical—obj
CategoryTheory.Functor
category
postcompose₃
——
triangle 📖mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
category
comp
id
CategoryTheory.Iso.hom
associator
whiskerLeft
leftUnitor
whiskerRight
rightUnitor
—CategoryTheory.NatTrans.ext'
CategoryTheory.Category.comp_id
map_id
triangleIso 📖mathematical—CategoryTheory.Iso.trans
CategoryTheory.Functor
category
comp
id
associator
isoWhiskerLeft
leftUnitor
isoWhiskerRight
rightUnitor
—CategoryTheory.Iso.ext
CategoryTheory.NatTrans.ext'
CategoryTheory.Category.comp_id
map_id
triangleIso_assoc 📖mathematical—CategoryTheory.Iso.trans
CategoryTheory.Functor
category
comp
id
associator
isoWhiskerLeft
leftUnitor
isoWhiskerRight
rightUnitor
—CategoryTheory.Iso.trans_assoc
Mathlib.Tactic.Reassoc.Iso.eq_whisker
triangleIso
whiskerLeft_app 📖mathematical—CategoryTheory.NatTrans.app
comp
whiskerLeft
obj
——
whiskerLeft_comp 📖mathematical—whiskerLeft
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
category
comp
——
whiskerLeft_comp_assoc 📖mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
category
comp
whiskerLeft
—CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
whiskerLeft_comp
whiskerLeft_comp_whiskerRight 📖mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
category
comp
whiskerLeft
whiskerRight
—CategoryTheory.NatTrans.ext'
CategoryTheory.NatTrans.naturality
whiskerLeft_comp_whiskerRight_assoc 📖mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
category
comp
whiskerLeft
whiskerRight
—CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
whiskerLeft_comp_whiskerRight
whiskerLeft_id 📖mathematical—whiskerLeft
CategoryTheory.NatTrans.id
comp
——
whiskerLeft_id' 📖mathematical—whiskerLeft
CategoryTheory.CategoryStruct.id
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
category
comp
——
whiskerLeft_twice 📖mathematical—whiskerLeft
comp
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
category
CategoryTheory.Iso.inv
associator
CategoryTheory.Iso.hom
—CategoryTheory.NatTrans.ext'
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
whiskerRight_app 📖mathematical—CategoryTheory.NatTrans.app
comp
whiskerRight
map
obj
——
whiskerRight_comp 📖mathematical—whiskerRight
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
category
comp
—map_comp
whiskerRight_comp_assoc 📖mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
category
comp
whiskerRight
—CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
whiskerRight_comp
whiskerRight_id 📖mathematical—whiskerRight
CategoryTheory.NatTrans.id
comp
—map_id
whiskerRight_id' 📖mathematical—whiskerRight
CategoryTheory.CategoryStruct.id
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
category
comp
—map_id
whiskerRight_left 📖mathematical—whiskerRight
comp
whiskerLeft
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
category
CategoryTheory.Iso.hom
associator
CategoryTheory.Iso.inv
—CategoryTheory.NatTrans.ext'
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
whiskerRight_twice 📖mathematical—whiskerRight
comp
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
category
CategoryTheory.Iso.hom
associator
CategoryTheory.Iso.inv
—CategoryTheory.NatTrans.ext'
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
whiskeringLeftObjCompIso_hom_app_app 📖mathematical—CategoryTheory.NatTrans.app
obj
CategoryTheory.Functor
category
whiskeringLeft
comp
CategoryTheory.Iso.hom
whiskeringLeftObjCompIso
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
——
whiskeringLeftObjCompIso_inv_app_app 📖mathematical—CategoryTheory.NatTrans.app
obj
CategoryTheory.Functor
category
whiskeringLeft
comp
CategoryTheory.Iso.inv
whiskeringLeftObjCompIso
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
——
whiskeringLeftObjIdIso_hom_app_app 📖mathematical—CategoryTheory.NatTrans.app
obj
CategoryTheory.Functor
category
whiskeringLeft
id
CategoryTheory.Iso.hom
whiskeringLeftObjIdIso
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
——
whiskeringLeftObjIdIso_inv_app_app 📖mathematical—CategoryTheory.NatTrans.app
obj
CategoryTheory.Functor
category
whiskeringLeft
id
CategoryTheory.Iso.inv
whiskeringLeftObjIdIso
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
——
whiskeringLeft_map_app_app 📖mathematical—CategoryTheory.NatTrans.app
obj
CategoryTheory.Functor
category
comp
whiskerLeft
map
whiskeringLeft
——
whiskeringLeft_obj_comp 📖mathematical—obj
CategoryTheory.Functor
category
whiskeringLeft
comp
——
whiskeringLeft_obj_id 📖mathematical—obj
CategoryTheory.Functor
category
whiskeringLeft
id
——
whiskeringLeft_obj_map 📖mathematical—map
CategoryTheory.Functor
category
obj
whiskeringLeft
whiskerLeft
——
whiskeringLeft_obj_obj 📖mathematical—obj
CategoryTheory.Functor
category
whiskeringLeft
comp
——
whiskeringLeft₂_map_app_app_app_app 📖mathematical—CategoryTheory.NatTrans.app
obj
CategoryTheory.Functor
category
whiskeringRight
whiskeringLeft
comp
whiskerRight
map
whiskeringLeft₂
——
whiskeringLeft₂_obj_map_app_app_app 📖mathematical—CategoryTheory.NatTrans.app
obj
CategoryTheory.Functor
category
whiskeringRight
whiskeringLeft
comp
map
whiskeringLeft₂
——
whiskeringLeft₂_obj_obj_map_app_app 📖mathematical—CategoryTheory.NatTrans.app
obj
CategoryTheory.Functor
category
whiskeringRight
whiskeringLeft
map
whiskeringLeft₂
——
whiskeringLeft₂_obj_obj_obj_map_app 📖mathematical—CategoryTheory.NatTrans.app
obj
CategoryTheory.Functor
category
whiskeringRight
whiskeringLeft
map
whiskeringLeft₂
——
whiskeringLeft₂_obj_obj_obj_obj_map 📖mathematical—map
obj
CategoryTheory.Functor
category
whiskeringLeft₂
——
whiskeringLeft₂_obj_obj_obj_obj_obj 📖mathematical—obj
CategoryTheory.Functor
category
whiskeringLeft₂
——
whiskeringLeft₃Map_app_app 📖mathematical—CategoryTheory.NatTrans.app
CategoryTheory.Functor
category
obj
whiskeringLeft₃Obj
whiskeringLeft₃Map
whiskerLeft
whiskeringRight
whiskeringLeft₂
whiskeringLeft
map
——
whiskeringLeft₃ObjMap_app 📖mathematical—CategoryTheory.NatTrans.app
CategoryTheory.Functor
category
whiskeringLeft₃ObjObj
whiskeringLeft₃ObjMap
whiskerRight
obj
whiskeringRight
whiskeringLeft₂
map
whiskeringLeft
——
whiskeringLeft₃ObjObjMap_app 📖mathematical—CategoryTheory.NatTrans.app
CategoryTheory.Functor
category
whiskeringLeft₃ObjObjObj
whiskeringLeft₃ObjObjMap
whiskerLeft
obj
whiskeringRight
whiskeringLeft₂
map
——
whiskeringLeft₃ObjObjObj_map_app_app_app 📖mathematical—CategoryTheory.NatTrans.app
obj
CategoryTheory.Functor
category
whiskeringRight
whiskeringLeft
whiskeringLeft₂
map
whiskeringLeft₃ObjObjObj
——
whiskeringLeft₃ObjObjObj_obj_map_app_app 📖mathematical—CategoryTheory.NatTrans.app
obj
CategoryTheory.Functor
category
whiskeringRight
whiskeringLeft
whiskeringLeft₂
map
whiskeringLeft₃ObjObjObj
——
whiskeringLeft₃ObjObjObj_obj_obj_map_app 📖mathematical—CategoryTheory.NatTrans.app
obj
CategoryTheory.Functor
category
whiskeringRight
whiskeringLeft
map
whiskeringLeft₃ObjObjObj
——
whiskeringLeft₃ObjObjObj_obj_obj_obj_map 📖mathematical—map
obj
CategoryTheory.Functor
category
whiskeringLeft₃ObjObjObj
——
whiskeringLeft₃ObjObjObj_obj_obj_obj_obj 📖mathematical—obj
CategoryTheory.Functor
category
whiskeringLeft₃ObjObjObj
——
whiskeringLeft₃ObjObj_map 📖mathematical—map
CategoryTheory.Functor
category
whiskeringLeft₃ObjObj
whiskeringLeft₃ObjObjMap
——
whiskeringLeft₃ObjObj_obj 📖mathematical—obj
CategoryTheory.Functor
category
whiskeringLeft₃ObjObj
whiskeringLeft₃ObjObjObj
——
whiskeringLeft₃Obj_map 📖mathematical—map
CategoryTheory.Functor
category
whiskeringLeft₃Obj
whiskeringLeft₃ObjMap
——
whiskeringLeft₃Obj_obj 📖mathematical—obj
CategoryTheory.Functor
category
whiskeringLeft₃Obj
whiskeringLeft₃ObjObj
——
whiskeringLeft₃_map_app_app_app_app_app_app 📖mathematical—CategoryTheory.NatTrans.app
obj
CategoryTheory.Functor
category
whiskeringRight
whiskeringLeft
whiskeringLeft₂
comp
whiskeringLeft₃Obj
map
whiskeringLeft₃
——
whiskeringLeft₃_obj_map_app_app_app_app_app 📖mathematical—CategoryTheory.NatTrans.app
obj
CategoryTheory.Functor
category
whiskeringRight
whiskeringLeft
whiskeringLeft₂
comp
whiskeringLeft₃ObjObj
map
whiskeringLeft₃
——
whiskeringLeft₃_obj_obj_map_app_app_app_app 📖mathematical—CategoryTheory.NatTrans.app
obj
CategoryTheory.Functor
category
whiskeringRight
whiskeringLeft
whiskeringLeft₂
comp
whiskeringLeft₃ObjObjObj
map
whiskeringLeft₃
——
whiskeringLeft₃_obj_obj_obj_map_app_app_app 📖mathematical—CategoryTheory.NatTrans.app
obj
CategoryTheory.Functor
category
whiskeringRight
whiskeringLeft
whiskeringLeft₂
map
whiskeringLeft₃
——
whiskeringLeft₃_obj_obj_obj_obj_map_app_app 📖mathematical—CategoryTheory.NatTrans.app
obj
CategoryTheory.Functor
category
whiskeringRight
whiskeringLeft
whiskeringLeft₂
map
whiskeringLeft₃
——
whiskeringLeft₃_obj_obj_obj_obj_obj_map_app 📖mathematical—CategoryTheory.NatTrans.app
obj
CategoryTheory.Functor
category
whiskeringRight
whiskeringLeft
map
whiskeringLeft₃
——
whiskeringLeft₃_obj_obj_obj_obj_obj_obj_map 📖mathematical—map
obj
CategoryTheory.Functor
category
whiskeringLeft₃
——
whiskeringLeft₃_obj_obj_obj_obj_obj_obj_obj 📖mathematical—obj
CategoryTheory.Functor
category
whiskeringLeft₃
——
whiskeringRightObjCompIso_hom_app_app 📖mathematical—CategoryTheory.NatTrans.app
obj
CategoryTheory.Functor
category
comp
whiskeringRight
CategoryTheory.Iso.hom
whiskeringRightObjCompIso
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
——
whiskeringRightObjCompIso_inv_app_app 📖mathematical—CategoryTheory.NatTrans.app
obj
CategoryTheory.Functor
category
comp
whiskeringRight
CategoryTheory.Iso.inv
whiskeringRightObjCompIso
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
——
whiskeringRightObjIdIso_hom_app_app 📖mathematical—CategoryTheory.NatTrans.app
obj
CategoryTheory.Functor
category
whiskeringRight
id
CategoryTheory.Iso.hom
whiskeringRightObjIdIso
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
——
whiskeringRightObjIdIso_inv_app_app 📖mathematical—CategoryTheory.NatTrans.app
obj
CategoryTheory.Functor
category
whiskeringRight
id
CategoryTheory.Iso.inv
whiskeringRightObjIdIso
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
——
whiskeringRight_map_app_app 📖mathematical—CategoryTheory.NatTrans.app
obj
CategoryTheory.Functor
category
comp
whiskerRight
map
whiskeringRight
——
whiskeringRight_obj_comp 📖mathematical—comp
CategoryTheory.Functor
category
obj
whiskeringRight
——
whiskeringRight_obj_id 📖mathematical—obj
CategoryTheory.Functor
category
whiskeringRight
id
——
whiskeringRight_obj_map 📖mathematical—map
CategoryTheory.Functor
category
obj
whiskeringRight
whiskerRight
——
whiskeringRight_obj_obj 📖mathematical—obj
CategoryTheory.Functor
category
whiskeringRight
comp
——

CategoryTheory.Functor.FullyFaithful

Definitions

NameCategoryTheorems
whiskeringRight 📖CompOp
3 mathmath: CategoryTheory.Equivalence.congrFullSubcategory_counitIso, CategoryTheory.Equivalence.congrFullSubcategory_unitIso, whiskeringRight_preimage_app

Theorems

NameKindAssumesProvesValidatesDepends On
whiskeringRight_preimage_app 📖mathematical—CategoryTheory.NatTrans.app
preimage
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.obj
CategoryTheory.Functor.whiskeringRight
whiskeringRight
——

CategoryTheory.Functor.NatTrans

Theorems

NameKindAssumesProvesValidatesDepends On
hcomp_eq_whiskerLeft_comp_whiskerRight 📖mathematical—CategoryTheory.NatTrans.hcomp
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
CategoryTheory.Functor.whiskerLeft
CategoryTheory.Functor.whiskerRight
—CategoryTheory.NatTrans.ext'

---

← Back to Index