| Metric | Count |
DefinitionsWithInitial, comp, down, equivComma, homTo, id, incl, inclLift, inclLiftToInitial, instCategory, instUniqueHomStar, liftStar, liftToInitial, liftToInitialUnique, liftUnique, map, mapComp, mapId, mapβ, mkCommaMorphism, mkCommaObject, ofCommaMorphism, ofCommaObject, opEquiv, prelaxfunctor, pseudofunctor, starInitial, starIsoInitial, WithTerminal, comp, down, equivComma, homFrom, id, incl, inclLift, inclLiftToTerminal, instCategory, instUniqueHomStar, liftStar, liftToTerminal, liftToTerminalUnique, liftUnique, map, mapComp, mapId, mapβ, mkCommaMorphism, mkCommaObject, ofCommaMorphism, ofCommaObject, opEquiv, prelaxfunctor, pseudofunctor, starIsoTerminal, starTerminal, widePullbackShapeEquiv, instInhabitedWithInitial, default, instInhabitedWithTerminal, default | 61 |
Theoremsdown_comp, down_id, equivComma_counitIso_hom_app_left, equivComma_counitIso_hom_app_right_app, equivComma_counitIso_inv_app_left, equivComma_counitIso_inv_app_right_app, equivComma_functor_map_left, equivComma_functor_map_right_app, equivComma_functor_obj_hom_app, equivComma_functor_obj_left, equivComma_functor_obj_right_map, equivComma_functor_obj_right_obj, equivComma_inverse_map_app, equivComma_inverse_obj_map, equivComma_inverse_obj_obj, equivComma_unitIso_hom_app_app, equivComma_unitIso_inv_app_app, false_of_to_star, false_of_to_star', inclLiftToInitial_hom_app, inclLiftToInitial_inv_app, inclLift_hom_app, inclLift_inv_app, instFaithfulIncl, instFullIncl, instHasInitial, isIso_of_to_star, liftStar_hom, liftStar_inv, liftStar_lift_map, liftToInitialUnique_hom_app, liftToInitialUnique_inv_app, liftToInitial_map, liftToInitial_obj, lift_map, lift_obj, mapComp_hom_app, mapComp_inv_app, mapId_hom_app, mapId_inv_app, map_map, map_obj, mapβ_app, mkCommaMorphism_left, mkCommaMorphism_right_app, mkCommaObject_hom_app, mkCommaObject_left, mkCommaObject_right_map, mkCommaObject_right_obj, ofCommaMorphism_app, ofCommaObject_map, ofCommaObject_obj, opEquiv_counitIso_hom_app, opEquiv_counitIso_inv_app, opEquiv_functor_map, opEquiv_functor_obj, opEquiv_inverse_map, opEquiv_inverse_obj, opEquiv_unitIso_hom_app, opEquiv_unitIso_inv_app, prelaxfunctor_toPrelaxFunctorStruct_mapβ, prelaxfunctor_toPrelaxFunctorStruct_toPrefunctor_map, prelaxfunctor_toPrelaxFunctorStruct_toPrefunctor_obj, pseudofunctor_mapComp, pseudofunctor_mapId, pseudofunctor_toPrelaxFunctor, starIsoInitial_hom, starIsoInitial_inv, down_comp, down_id, equivComma_counitIso_hom_app_left_app, equivComma_counitIso_hom_app_right, equivComma_counitIso_inv_app_left_app, equivComma_counitIso_inv_app_right, equivComma_functor_map_left_app, equivComma_functor_map_right, equivComma_functor_obj_hom_app, equivComma_functor_obj_left_map, equivComma_functor_obj_left_obj, equivComma_functor_obj_right, equivComma_inverse_map_app, equivComma_inverse_obj_map, equivComma_inverse_obj_obj, equivComma_unitIso_hom_app_app, equivComma_unitIso_inv_app_app, false_of_from_star, false_of_from_star', inclLiftToTerminal_hom_app, inclLiftToTerminal_inv_app, inclLift_hom_app, inclLift_inv_app, instFaithfulIncl, instFullIncl, instHasTerminal, isIso_of_from_star, liftStar_hom, liftStar_inv, liftToTerminalUnique_hom_app, liftToTerminalUnique_inv_app, liftToTerminal_map, liftToTerminal_obj, lift_map, lift_map_liftStar, lift_obj, mapComp_hom_app, mapComp_inv_app, mapId_hom_app, mapId_inv_app, map_map, map_obj, mapβ_app, mkCommaMorphism_left_app, mkCommaMorphism_right, mkCommaObject_hom_app, mkCommaObject_left_map, mkCommaObject_left_obj, mkCommaObject_right, ofCommaMorphism_app, ofCommaObject_map, ofCommaObject_obj, opEquiv_counitIso_hom_app, opEquiv_counitIso_inv_app, opEquiv_functor_map, opEquiv_functor_obj, opEquiv_inverse_map, opEquiv_inverse_obj, opEquiv_unitIso_hom_app, opEquiv_unitIso_inv_app, prelaxfunctor_toPrelaxFunctorStruct_mapβ, prelaxfunctor_toPrelaxFunctorStruct_toPrefunctor_map, prelaxfunctor_toPrelaxFunctorStruct_toPrefunctor_obj, pseudofunctor_mapComp, pseudofunctor_mapId, pseudofunctor_toPrelaxFunctor, starIsoTerminal_hom, starIsoTerminal_inv, subsingleton_hom, widePullbackShapeEquiv_functor_obj, widePullbackShapeEquiv_inverse_obj | 139 |
| Total | 200 |
| Name | Category | Theorems |
comp π | CompOp | β |
down π | CompOp | 22 mathmath: opEquiv_unitIso_inv_app, down_id, AugmentedSimplexCategory.eqToHom_toOrderHom, opEquiv_counitIso_hom_app, CategoryTheory.WithTerminal.opEquiv_counitIso_inv_app, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_inverse_obj_map, CategoryTheory.WithTerminal.opEquiv_unitIso_hom_app, CategoryTheory.WithTerminal.opEquiv_counitIso_hom_app, equivComma_inverse_obj_map, AugmentedSimplexCategory.equivAugmentedSimplicialObject_functor_obj_hom_app, opEquiv_counitIso_inv_app, map_map, lift_map, liftToInitial_map, AugmentedSimplexCategory.equivAugmentedSimplicialObject_functor_obj_left_map, ofCommaObject_map, liftFromUnder_obj_map, opEquiv_inverse_map, opEquiv_unitIso_hom_app, CategoryTheory.WithTerminal.opEquiv_unitIso_inv_app, down_comp, CategoryTheory.WithTerminal.opEquiv_inverse_map
|
equivComma π | CompOp | 16 mathmath: equivComma_functor_obj_right_obj, equivComma_functor_obj_right_map, equivComma_counitIso_hom_app_right_app, equivComma_counitIso_inv_app_right_app, equivComma_functor_map_left, equivComma_inverse_map_app, equivComma_counitIso_hom_app_left, equivComma_functor_map_right_app, equivComma_functor_obj_hom_app, equivComma_inverse_obj_map, equivComma_unitIso_inv_app_app, equivComma_functor_obj_left, equivComma_unitIso_hom_app_app, equivComma_inverse_obj_obj, equivComma_counitIso_inv_app_left, liftFromUnder_map_app
|
homTo π | CompOp | 8 mathmath: AugmentedSimplexCategory.equivAugmentedSimplicialObjectFunctorCompToArrowIso_inv_app_left, AugmentedSimplexCategory.equivAugmentedSimplicialObjectFunctorCompToArrowIso_hom_app_right, AugmentedSimplexCategory.equivAugmentedCosimplicialObjectFunctorCompToArrowIso_inv_app_right, AugmentedSimplexCategory.equivAugmentedSimplicialObjectFunctorCompToArrowIso_hom_app_left, AugmentedSimplexCategory.equivAugmentedSimplicialObjectFunctorCompToArrowIso_inv_app_right, AugmentedSimplexCategory.equivAugmentedCosimplicialObjectFunctorCompToArrowIso_inv_app_left, AugmentedSimplexCategory.equivAugmentedCosimplicialObjectFunctorCompToArrowIso_hom_app_left, AugmentedSimplexCategory.equivAugmentedCosimplicialObjectFunctorCompToArrowIso_hom_app_right
|
id π | CompOp | β |
incl π | CompOp | 39 mathmath: equivComma_functor_obj_right_obj, liftToInitialUnique_hom_app, equivComma_functor_obj_right_map, equivComma_counitIso_hom_app_right_app, instFaithfulIncl, inclLift_hom_app, mkCommaMorphism_right_app, AugmentedSimplexCategory.equivAugmentedSimplicialObjectFunctorCompToArrowIso_inv_app_left, mkCommaObject_right_obj, equivComma_counitIso_inv_app_right_app, liftStar_lift_map, instFullIncl, inclLiftToInitial_inv_app, mkCommaObject_hom_app, AugmentedSimplexCategory.equivAugmentedSimplicialObjectFunctorCompToArrowIso_hom_app_right, AugmentedSimplexCategory.equivAugmentedCosimplicialObjectFunctorCompToArrowIso_inv_app_right, equivComma_functor_map_right_app, mkCommaObject_right_map, equivComma_functor_obj_hom_app, AugmentedSimplexCategory.equivAugmentedSimplicialObjectFunctorCompToArrowIso_hom_app_left, AugmentedSimplexCategory.equivAugmentedCosimplicialObjectFunctorCompDropIso_hom_app_app, equivComma_unitIso_inv_app_app, inclLift_inv_app, inclLiftToInitial_hom_app, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_unitIso_inv_app_app, equivComma_unitIso_hom_app_app, AugmentedSimplexCategory.equivAugmentedSimplicialObjectFunctorCompToArrowIso_inv_app_right, AugmentedSimplexCategory.equivAugmentedCosimplicialObjectFunctorCompToArrowIso_inv_app_left, AugmentedSimplexCategory.equivAugmentedCosimplicialObjectFunctorCompToArrowIso_hom_app_left, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_counitIso_hom_app_right_app, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_functor_obj_right_map, AugmentedSimplexCategory.equivAugmentedCosimplicialObjectFunctorCompToArrowIso_hom_app_right, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_functor_map_right_app, liftToInitialUnique_inv_app, AugmentedSimplexCategory.equivAugmentedCosimplicialObjectFunctorCompDropIso_inv_app_app, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_functor_obj_hom_app, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_functor_obj_right_obj, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_counitIso_inv_app_right_app, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_unitIso_hom_app_app
|
inclLift π | CompOp | 3 mathmath: inclLift_hom_app, liftStar_lift_map, inclLift_inv_app
|
inclLiftToInitial π | CompOp | 2 mathmath: inclLiftToInitial_inv_app, inclLiftToInitial_hom_app
|
instCategory π | CompOp | 163 mathmath: AugmentedSimplexCategory.equivAugmentedCosimplicialObject_counitIso_hom_app_left, equivComma_functor_obj_right_obj, AugmentedSimplexCategory.inr_comp_associator, opEquiv_unitIso_inv_app, AugmentedSimplexCategory.inclusion_obj, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_inverse_map_app, isColimitEquiv_apply_desc_right, liftToInitialUnique_hom_app, coconeEquiv_functor_obj_pt, AugmentedSimplexCategory.whiskerLeft_id_star, CategoryTheory.WithTerminal.opEquiv_inverse_obj, liftToInitial_obj, down_id, AugmentedSimplexCategory.inr_comp_inl_comp_associator, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_functor_obj_left, AugmentedSimplexCategory.inr_comp_inl_comp_associator_assoc, coconeEquiv_inverse_obj_pt_right, opEquiv_functor_map, AugmentedSimplexCategory.eqToHom_toOrderHom, ofCommaObject_obj, opEquiv_counitIso_hom_app, isColimitEquiv_symm_apply_desc, AugmentedSimplexCategory.equivAugmentedSimplicialObject_inverse_map_app, AugmentedSimplexCategory.equivAugmentedCosimplicialObjectFunctorCompPointIso_hom_app, liftFromUnderComp_inv_app, CategoryTheory.WithTerminal.opEquiv_counitIso_inv_app, equivComma_functor_obj_right_map, equivComma_counitIso_hom_app_right_app, instFaithfulIncl, coconeEquiv_inverse_obj_pt_hom, inclLift_hom_app, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_inverse_obj_map, mkCommaMorphism_right_app, AugmentedSimplexCategory.equivAugmentedSimplicialObjectFunctorCompToArrowIso_inv_app_left, AugmentedSimplexCategory.instHasInitial, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_inverse_obj_obj, CategoryTheory.WithTerminal.opEquiv_unitIso_hom_app, CategoryTheory.WithTerminal.opEquiv_counitIso_hom_app, AugmentedSimplexCategory.equivAugmentedSimplicialObjectFunctorCompPointIso_inv_app, AugmentedSimplexCategory.equivAugmentedSimplicialObjectFunctorCompPointIso_hom_app, mkCommaObject_right_obj, mapId_inv_app, equivComma_counitIso_inv_app_right_app, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_functor_map_left, AugmentedSimplexCategory.inl_comp_inl_comp_associator_assoc, coconeEquiv_counitIso_inv_app_hom, mkCommaMorphism_left, opEquiv_inverse_obj, liftStar_lift_map, AugmentedSimplexCategory.equivAugmentedSimplicialObject_inverse_obj_obj, coconeEquiv_functor_obj_ΞΉ_app_star, instFullIncl, AugmentedSimplexCategory.tensorObj_hom_ext_iff, inclLiftToInitial_inv_app, AugmentedSimplexCategory.inr_comp_associator_assoc, coconeEquiv_unitIso_hom_app_hom_right, AugmentedSimplexCategory.instFullSimplexCategoryInclusion, mkCommaObject_hom_app, prelaxfunctor_toPrelaxFunctorStruct_toPrefunctor_obj, prelaxfunctor_toPrelaxFunctorStruct_mapβ, starIsoInitial_inv, AugmentedSimplexCategory.equivAugmentedSimplicialObjectFunctorCompToArrowIso_hom_app_right, liftFromUnder_obj_obj, AugmentedSimplexCategory.equivAugmentedSimplicialObject_counitIso_inv_app_left_app, coconeEquiv_functor_map_hom, AugmentedSimplexCategory.equivAugmentedSimplicialObjectFunctorCompDropIso_hom_app_app, equivComma_functor_map_left, coconeEquiv_inverse_obj_pt_left_as, CategoryTheory.WithTerminal.opEquiv_functor_obj, AugmentedSimplexCategory.equivAugmentedCosimplicialObjectFunctorCompToArrowIso_inv_app_right, AugmentedSimplexCategory.inl_comp_tensorHom, AugmentedSimplexCategory.equivAugmentedCosimplicialObjectFunctorCompPointIso_inv_app, equivComma_inverse_map_app, equivComma_counitIso_hom_app_left, AugmentedSimplexCategory.id_star_whiskerRight, equivComma_functor_map_right_app, coconeEquiv_inverse_obj_ΞΉ_app_right, AugmentedSimplexCategory.equivAugmentedSimplicialObject_functor_map_right, instHasInitial, coconeEquiv_functor_obj_ΞΉ_app_of, AugmentedSimplexCategory.equivAugmentedSimplicialObject_functor_map_left_app, mkCommaObject_right_map, equivComma_functor_obj_hom_app, AugmentedSimplexCategory.equivAugmentedSimplicialObject_counitIso_hom_app_right, equivComma_inverse_obj_map, AugmentedSimplexCategory.equivAugmentedSimplicialObjectFunctorCompToArrowIso_hom_app_left, AugmentedSimplexCategory.inl_comp_inl_comp_associator, pseudofunctor_mapId, AugmentedSimplexCategory.equivAugmentedSimplicialObject_counitIso_hom_app_left_app, AugmentedSimplexCategory.equivAugmentedCosimplicialObjectFunctorCompDropIso_hom_app_app, AugmentedSimplexCategory.equivAugmentedSimplicialObject_functor_obj_hom_app, AugmentedSimplexCategory.instFaithfulSimplexCategoryInclusion, opEquiv_counitIso_inv_app, map_map, equivComma_unitIso_inv_app_app, equivComma_functor_obj_left, inclLift_inv_app, AugmentedSimplexCategory.tensor_id, inclLiftToInitial_hom_app, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_unitIso_inv_app_app, AugmentedSimplexCategory.inclusion_map, equivComma_unitIso_hom_app_app, AugmentedSimplexCategory.equivAugmentedSimplicialObjectFunctorCompToArrowIso_inv_app_right, mapβ_app, equivComma_inverse_obj_obj, AugmentedSimplexCategory.tensorHom_id, AugmentedSimplexCategory.equivAugmentedSimplicialObject_unitIso_hom_app_app, AugmentedSimplexCategory.equivAugmentedSimplicialObject_counitIso_inv_app_right, AugmentedSimplexCategory.equivAugmentedSimplicialObject_unitIso_inv_app_app, coconeEquiv_inverse_map_hom_right, AugmentedSimplexCategory.equivAugmentedCosimplicialObjectFunctorCompToArrowIso_inv_app_left, equivComma_counitIso_inv_app_left, prelaxfunctor_toPrelaxFunctorStruct_toPrefunctor_map, AugmentedSimplexCategory.id_tensorHom, map_obj, AugmentedSimplexCategory.equivAugmentedCosimplicialObjectFunctorCompToArrowIso_hom_app_left, liftFromUnderComp_hom_app, AugmentedSimplexCategory.equivAugmentedSimplicialObject_functor_obj_right, AugmentedSimplexCategory.equivAugmentedSimplicialObjectFunctorCompDropIso_inv_app_app, coconeEquiv_counitIso_hom_app_hom, liftFromUnder_map_app, opEquiv_functor_obj, mkCommaObject_left, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_counitIso_hom_app_right_app, lift_map, starIsoInitial_hom, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_functor_obj_right_map, AugmentedSimplexCategory.equivAugmentedCosimplicialObjectFunctorCompToArrowIso_hom_app_right, liftToInitial_map, AugmentedSimplexCategory.equivAugmentedSimplicialObject_functor_obj_left_map, ofCommaObject_map, AugmentedSimplexCategory.inr_comp_tensorHom, liftFromUnder_obj_map, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_functor_map_right_app, AugmentedSimplexCategory.inl_comp_tensorHom_assoc, AugmentedSimplexCategory.inr_comp_tensorHom_assoc, pseudofunctor_mapComp, opEquiv_inverse_map, liftStar_hom, isIso_of_to_star, liftToInitialUnique_inv_app, mapComp_inv_app, AugmentedSimplexCategory.equivAugmentedCosimplicialObjectFunctorCompDropIso_inv_app_app, opEquiv_unitIso_hom_app, ofCommaMorphism_app, lift_obj, CategoryTheory.WithTerminal.opEquiv_unitIso_inv_app, AugmentedSimplexCategory.equivAugmentedSimplicialObject_inverse_obj_map, down_comp, coconeEquiv_unitIso_inv_app_hom_right, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_functor_obj_hom_app, CategoryTheory.WithTerminal.opEquiv_functor_map, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_functor_obj_right_obj, mapId_hom_app, AugmentedSimplexCategory.tensorHom_comp_tensorHom, AugmentedSimplexCategory.equivAugmentedSimplicialObject_functor_obj_left_obj, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_counitIso_inv_app_right_app, mapComp_hom_app, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_counitIso_inv_app_left, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_unitIso_hom_app_app, instIsFilteredOfIsFilteredOrEmpty, CategoryTheory.WithTerminal.opEquiv_inverse_map, liftStar_inv
|
instUniqueHomStar π | CompOp | β |
liftStar π | CompOp | 3 mathmath: liftStar_lift_map, liftStar_hom, liftStar_inv
|
liftToInitial π | CompOp | 6 mathmath: liftToInitialUnique_hom_app, liftToInitial_obj, inclLiftToInitial_inv_app, inclLiftToInitial_hom_app, liftToInitial_map, liftToInitialUnique_inv_app
|
liftToInitialUnique π | CompOp | 2 mathmath: liftToInitialUnique_hom_app, liftToInitialUnique_inv_app
|
liftUnique π | CompOp | β |
map π | CompOp | 11 mathmath: mapId_inv_app, prelaxfunctor_toPrelaxFunctorStruct_mapβ, pseudofunctor_mapId, map_map, mapβ_app, prelaxfunctor_toPrelaxFunctorStruct_toPrefunctor_map, map_obj, pseudofunctor_mapComp, mapComp_inv_app, mapId_hom_app, mapComp_hom_app
|
mapComp π | CompOp | 3 mathmath: pseudofunctor_mapComp, mapComp_inv_app, mapComp_hom_app
|
mapId π | CompOp | 3 mathmath: mapId_inv_app, pseudofunctor_mapId, mapId_hom_app
|
mapβ π | CompOp | 2 mathmath: prelaxfunctor_toPrelaxFunctorStruct_mapβ, mapβ_app
|
mkCommaMorphism π | CompOp | 14 mathmath: AugmentedSimplexCategory.equivAugmentedCosimplicialObject_counitIso_hom_app_left, equivComma_counitIso_hom_app_right_app, mkCommaMorphism_right_app, equivComma_counitIso_inv_app_right_app, mkCommaMorphism_left, equivComma_counitIso_hom_app_left, equivComma_unitIso_inv_app_app, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_unitIso_inv_app_app, equivComma_unitIso_hom_app_app, equivComma_counitIso_inv_app_left, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_counitIso_hom_app_right_app, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_counitIso_inv_app_right_app, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_counitIso_inv_app_left, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_unitIso_hom_app_app
|
mkCommaObject π | CompOp | 22 mathmath: AugmentedSimplexCategory.equivAugmentedCosimplicialObject_counitIso_hom_app_left, equivComma_counitIso_hom_app_right_app, mkCommaMorphism_right_app, mkCommaObject_right_obj, equivComma_counitIso_inv_app_right_app, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_functor_map_left, mkCommaMorphism_left, mkCommaObject_hom_app, equivComma_functor_map_left, equivComma_counitIso_hom_app_left, equivComma_functor_map_right_app, mkCommaObject_right_map, equivComma_unitIso_inv_app_app, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_unitIso_inv_app_app, equivComma_unitIso_hom_app_app, equivComma_counitIso_inv_app_left, mkCommaObject_left, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_counitIso_hom_app_right_app, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_functor_map_right_app, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_counitIso_inv_app_right_app, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_counitIso_inv_app_left, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_unitIso_hom_app_app
|
ofCommaMorphism π | CompOp | 13 mathmath: AugmentedSimplexCategory.equivAugmentedCosimplicialObject_counitIso_hom_app_left, equivComma_counitIso_hom_app_right_app, equivComma_counitIso_inv_app_right_app, equivComma_counitIso_hom_app_left, equivComma_unitIso_inv_app_app, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_unitIso_inv_app_app, equivComma_unitIso_hom_app_app, equivComma_counitIso_inv_app_left, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_counitIso_hom_app_right_app, ofCommaMorphism_app, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_counitIso_inv_app_right_app, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_counitIso_inv_app_left, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_unitIso_hom_app_app
|
ofCommaObject π | CompOp | 17 mathmath: AugmentedSimplexCategory.equivAugmentedCosimplicialObject_counitIso_hom_app_left, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_inverse_map_app, ofCommaObject_obj, equivComma_counitIso_hom_app_right_app, equivComma_counitIso_inv_app_right_app, equivComma_inverse_map_app, equivComma_counitIso_hom_app_left, equivComma_unitIso_inv_app_app, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_unitIso_inv_app_app, equivComma_unitIso_hom_app_app, equivComma_counitIso_inv_app_left, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_counitIso_hom_app_right_app, ofCommaObject_map, ofCommaMorphism_app, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_counitIso_inv_app_right_app, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_counitIso_inv_app_left, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_unitIso_hom_app_app
|
opEquiv π | CompOp | 18 mathmath: opEquiv_unitIso_inv_app, opEquiv_functor_map, opEquiv_counitIso_hom_app, AugmentedSimplexCategory.equivAugmentedSimplicialObject_inverse_map_app, opEquiv_inverse_obj, AugmentedSimplexCategory.equivAugmentedSimplicialObject_counitIso_inv_app_left_app, AugmentedSimplexCategory.equivAugmentedSimplicialObject_functor_map_right, AugmentedSimplexCategory.equivAugmentedSimplicialObject_functor_map_left_app, AugmentedSimplexCategory.equivAugmentedSimplicialObject_counitIso_hom_app_right, AugmentedSimplexCategory.equivAugmentedSimplicialObject_counitIso_hom_app_left_app, AugmentedSimplexCategory.equivAugmentedSimplicialObject_functor_obj_hom_app, opEquiv_counitIso_inv_app, AugmentedSimplexCategory.equivAugmentedSimplicialObject_unitIso_hom_app_app, AugmentedSimplexCategory.equivAugmentedSimplicialObject_counitIso_inv_app_right, AugmentedSimplexCategory.equivAugmentedSimplicialObject_unitIso_inv_app_app, opEquiv_functor_obj, opEquiv_inverse_map, opEquiv_unitIso_hom_app
|
prelaxfunctor π | CompOp | 6 mathmath: prelaxfunctor_toPrelaxFunctorStruct_toPrefunctor_obj, prelaxfunctor_toPrelaxFunctorStruct_mapβ, pseudofunctor_mapId, pseudofunctor_toPrelaxFunctor, prelaxfunctor_toPrelaxFunctorStruct_toPrefunctor_map, pseudofunctor_mapComp
|
pseudofunctor π | CompOp | 3 mathmath: pseudofunctor_mapId, pseudofunctor_toPrelaxFunctor, pseudofunctor_mapComp
|
starInitial π | CompOp | 17 mathmath: opEquiv_unitIso_inv_app, opEquiv_counitIso_hom_app, CategoryTheory.WithTerminal.opEquiv_counitIso_inv_app, CategoryTheory.WithTerminal.opEquiv_unitIso_hom_app, CategoryTheory.WithTerminal.opEquiv_counitIso_hom_app, liftStar_lift_map, mkCommaObject_hom_app, equivComma_functor_obj_hom_app, AugmentedSimplexCategory.equivAugmentedSimplicialObject_functor_obj_hom_app, opEquiv_counitIso_inv_app, starIsoInitial_hom, AugmentedSimplexCategory.equivAugmentedSimplicialObject_functor_obj_left_map, opEquiv_inverse_map, opEquiv_unitIso_hom_app, CategoryTheory.WithTerminal.opEquiv_unitIso_inv_app, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_functor_obj_hom_app, CategoryTheory.WithTerminal.opEquiv_functor_map
|
starIsoInitial π | CompOp | 2 mathmath: starIsoInitial_inv, starIsoInitial_hom
|
| Name | Category | Theorems |
comp π | CompOp | β |
down π | CompOp | 21 mathmath: CategoryTheory.WithInitial.opEquiv_unitIso_inv_app, CategoryTheory.WithInitial.opEquiv_functor_map, CategoryTheory.WithInitial.opEquiv_counitIso_hom_app, opEquiv_counitIso_inv_app, down_id, opEquiv_unitIso_hom_app, opEquiv_counitIso_hom_app, lift_map, liftToTerminal_map, map_map, AugmentedSimplexCategory.equivAugmentedSimplicialObject_counitIso_inv_app_left_app, ofCommaObject_map, AugmentedSimplexCategory.equivAugmentedSimplicialObject_counitIso_hom_app_left_app, CategoryTheory.WithInitial.opEquiv_counitIso_inv_app, liftFromOver_obj_map, down_comp, equivComma_inverse_obj_map, CategoryTheory.WithInitial.opEquiv_unitIso_hom_app, opEquiv_unitIso_inv_app, AugmentedSimplexCategory.equivAugmentedSimplicialObject_inverse_obj_map, opEquiv_functor_map
|
equivComma π | CompOp | 25 mathmath: equivComma_functor_obj_left_obj, equivComma_counitIso_hom_app_left_app, equivComma_counitIso_inv_app_left_app, equivComma_inverse_obj_obj, equivComma_counitIso_hom_app_right, AugmentedSimplexCategory.equivAugmentedSimplicialObject_inverse_map_app, equivComma_functor_obj_left_map, equivComma_functor_obj_right, equivComma_functor_map_right, AugmentedSimplexCategory.equivAugmentedSimplicialObject_counitIso_inv_app_left_app, equivComma_functor_obj_hom_app, AugmentedSimplexCategory.equivAugmentedSimplicialObject_functor_map_right, AugmentedSimplexCategory.equivAugmentedSimplicialObject_functor_map_left_app, AugmentedSimplexCategory.equivAugmentedSimplicialObject_counitIso_hom_app_right, AugmentedSimplexCategory.equivAugmentedSimplicialObject_counitIso_hom_app_left_app, AugmentedSimplexCategory.equivAugmentedSimplicialObject_unitIso_hom_app_app, AugmentedSimplexCategory.equivAugmentedSimplicialObject_counitIso_inv_app_right, AugmentedSimplexCategory.equivAugmentedSimplicialObject_unitIso_inv_app_app, equivComma_functor_map_left_app, equivComma_inverse_map_app, equivComma_inverse_obj_map, liftFromOver_map_app, equivComma_counitIso_inv_app_right, equivComma_unitIso_hom_app_app, equivComma_unitIso_inv_app_app
|
homFrom π | CompOp | β |
id π | CompOp | β |
incl π | CompOp | 33 mathmath: equivComma_functor_obj_left_obj, equivComma_counitIso_hom_app_left_app, equivComma_counitIso_inv_app_left_app, instFaithfulIncl, equivComma_functor_obj_left_map, mkCommaMorphism_left_app, AugmentedSimplexCategory.equivAugmentedSimplicialObjectFunctorCompToArrowIso_inv_app_left, inclLift_hom_app, mkCommaObject_left_map, AugmentedSimplexCategory.equivAugmentedSimplicialObject_counitIso_inv_app_left_app, liftToTerminalUnique_inv_app, AugmentedSimplexCategory.equivAugmentedSimplicialObjectFunctorCompDropIso_hom_app_app, lift_map_liftStar, inclLiftToTerminal_inv_app, equivComma_functor_obj_hom_app, AugmentedSimplexCategory.equivAugmentedSimplicialObject_functor_map_left_app, inclLift_inv_app, AugmentedSimplexCategory.equivAugmentedSimplicialObjectFunctorCompToArrowIso_hom_app_left, AugmentedSimplexCategory.equivAugmentedSimplicialObject_counitIso_hom_app_left_app, AugmentedSimplexCategory.equivAugmentedSimplicialObject_functor_obj_hom_app, mkCommaObject_hom_app, mkCommaObject_left_obj, AugmentedSimplexCategory.equivAugmentedSimplicialObject_unitIso_hom_app_app, AugmentedSimplexCategory.equivAugmentedSimplicialObject_unitIso_inv_app_app, inclLiftToTerminal_hom_app, instFullIncl, equivComma_functor_map_left_app, AugmentedSimplexCategory.equivAugmentedSimplicialObjectFunctorCompDropIso_inv_app_app, AugmentedSimplexCategory.equivAugmentedSimplicialObject_functor_obj_left_map, equivComma_unitIso_hom_app_app, liftToTerminalUnique_hom_app, equivComma_unitIso_inv_app_app, AugmentedSimplexCategory.equivAugmentedSimplicialObject_functor_obj_left_obj
|
inclLift π | CompOp | 3 mathmath: inclLift_hom_app, lift_map_liftStar, inclLift_inv_app
|
inclLiftToTerminal π | CompOp | 2 mathmath: inclLiftToTerminal_inv_app, inclLiftToTerminal_hom_app
|
instCategory π | CompOp | 115 mathmath: coneEquiv_unitIso_hom_app_hom_left, mkCommaObject_right, equivComma_functor_obj_left_obj, equivComma_counitIso_hom_app_left_app, CategoryTheory.WithInitial.opEquiv_unitIso_inv_app, equivComma_counitIso_inv_app_left_app, liftStar_inv, instFaithfulIncl, opEquiv_inverse_obj, CategoryTheory.Limits.PreservesLimitsOfShape.ofWidePullbacks, mapβ_app, coneEquiv_inverse_obj_Ο_app_left, mapComp_hom_app, CategoryTheory.WithInitial.opEquiv_functor_map, equivComma_inverse_obj_obj, equivComma_counitIso_hom_app_right, CategoryTheory.WithInitial.opEquiv_counitIso_hom_app, AugmentedSimplexCategory.equivAugmentedSimplicialObject_inverse_map_app, equivComma_functor_obj_left_map, mkCommaMorphism_left_app, equivComma_functor_obj_right, ofCommaObject_obj, opEquiv_counitIso_inv_app, liftStar_hom, coneEquiv_functor_obj_Ο_app_star, coneEquiv_counitIso_inv_app_hom, AugmentedSimplexCategory.equivAugmentedSimplicialObjectFunctorCompToArrowIso_inv_app_left, down_id, opEquiv_unitIso_hom_app, opEquiv_counitIso_hom_app, lift_map, inclLift_hom_app, equivComma_functor_map_right, liftToTerminal_map, CategoryTheory.WithInitial.opEquiv_inverse_obj, coneEquiv_functor_obj_Ο_app_of, map_map, lift_obj, liftToTerminal_obj, coneEquiv_inverse_obj_pt_left, mkCommaObject_left_map, AugmentedSimplexCategory.equivAugmentedSimplicialObject_counitIso_inv_app_left_app, ofCommaMorphism_app, liftToTerminalUnique_inv_app, mapComp_inv_app, mkCommaMorphism_right, AugmentedSimplexCategory.equivAugmentedSimplicialObjectFunctorCompDropIso_hom_app_app, opEquiv_functor_obj, lift_map_liftStar, inclLiftToTerminal_inv_app, equivComma_functor_obj_hom_app, isLimitEquiv_symm_apply_lift, liftFromOver_obj_obj, coneEquiv_inverse_obj_pt_hom, AugmentedSimplexCategory.equivAugmentedSimplicialObject_functor_map_right, starIsoTerminal_inv, liftFromOverComp_hom_app, AugmentedSimplexCategory.equivAugmentedSimplicialObject_functor_map_left_app, AugmentedSimplexCategory.equivAugmentedSimplicialObject_counitIso_hom_app_right, inclLift_inv_app, ofCommaObject_map, AugmentedSimplexCategory.equivAugmentedSimplicialObjectFunctorCompToArrowIso_hom_app_left, AugmentedSimplexCategory.equivAugmentedSimplicialObject_counitIso_hom_app_left_app, AugmentedSimplexCategory.equivAugmentedSimplicialObject_functor_obj_hom_app, starIsoTerminal_hom, CategoryTheory.WithInitial.opEquiv_counitIso_inv_app, prelaxfunctor_toPrelaxFunctorStruct_mapβ, widePullbackShapeEquiv_inverse_obj, subsingleton_hom, instHasTerminal, instIsCofilteredOfIsCofilteredOrEmpty, map_obj, mkCommaObject_hom_app, mkCommaObject_left_obj, AugmentedSimplexCategory.equivAugmentedSimplicialObject_unitIso_hom_app_app, AugmentedSimplexCategory.equivAugmentedSimplicialObject_counitIso_inv_app_right, AugmentedSimplexCategory.equivAugmentedSimplicialObject_unitIso_inv_app_app, mapId_hom_app, inclLiftToTerminal_hom_app, liftFromOver_obj_map, isLimitEquiv_apply_lift_left, pseudofunctor_mapId, pseudofunctor_mapComp, instFullIncl, prelaxfunctor_toPrelaxFunctorStruct_toPrefunctor_obj, coneEquiv_unitIso_inv_app_hom_left, equivComma_functor_map_left_app, AugmentedSimplexCategory.equivAugmentedSimplicialObjectFunctorCompDropIso_inv_app_app, prelaxfunctor_toPrelaxFunctorStruct_toPrefunctor_map, CategoryTheory.WithInitial.opEquiv_functor_obj, down_comp, mapId_inv_app, liftFromOverComp_inv_app, AugmentedSimplexCategory.equivAugmentedSimplicialObject_functor_obj_left_map, equivComma_inverse_map_app, equivComma_inverse_obj_map, liftFromOver_map_app, coneEquiv_inverse_map_hom_left, CategoryTheory.WithInitial.opEquiv_inverse_map, coneEquiv_functor_obj_pt, equivComma_counitIso_inv_app_right, CategoryTheory.WithInitial.opEquiv_unitIso_hom_app, equivComma_unitIso_hom_app_app, opEquiv_unitIso_inv_app, AugmentedSimplexCategory.equivAugmentedSimplicialObject_inverse_obj_map, liftToTerminalUnique_hom_app, opEquiv_functor_map, equivComma_unitIso_inv_app_app, coneEquiv_counitIso_hom_app_hom, AugmentedSimplexCategory.equivAugmentedSimplicialObject_functor_obj_left_obj, widePullbackShapeEquiv_functor_obj, coneEquiv_inverse_obj_pt_right_as, opEquiv_inverse_map, coneEquiv_functor_map_hom, isIso_of_from_star
|
instUniqueHomStar π | CompOp | β |
liftStar π | CompOp | 3 mathmath: liftStar_inv, liftStar_hom, lift_map_liftStar
|
liftToTerminal π | CompOp | 6 mathmath: liftToTerminal_map, liftToTerminal_obj, liftToTerminalUnique_inv_app, inclLiftToTerminal_inv_app, inclLiftToTerminal_hom_app, liftToTerminalUnique_hom_app
|
liftToTerminalUnique π | CompOp | 2 mathmath: liftToTerminalUnique_inv_app, liftToTerminalUnique_hom_app
|
liftUnique π | CompOp | β |
map π | CompOp | 11 mathmath: mapβ_app, mapComp_hom_app, map_map, mapComp_inv_app, prelaxfunctor_toPrelaxFunctorStruct_mapβ, map_obj, mapId_hom_app, pseudofunctor_mapId, pseudofunctor_mapComp, prelaxfunctor_toPrelaxFunctorStruct_toPrefunctor_map, mapId_inv_app
|
mapComp π | CompOp | 3 mathmath: mapComp_hom_app, mapComp_inv_app, pseudofunctor_mapComp
|
mapId π | CompOp | 3 mathmath: mapId_hom_app, pseudofunctor_mapId, mapId_inv_app
|
mapβ π | CompOp | 2 mathmath: mapβ_app, prelaxfunctor_toPrelaxFunctorStruct_mapβ
|
mkCommaMorphism π | CompOp | 8 mathmath: equivComma_counitIso_hom_app_left_app, equivComma_counitIso_inv_app_left_app, equivComma_counitIso_hom_app_right, mkCommaMorphism_left_app, mkCommaMorphism_right, equivComma_counitIso_inv_app_right, equivComma_unitIso_hom_app_app, equivComma_unitIso_inv_app_app
|
mkCommaObject π | CompOp | 14 mathmath: mkCommaObject_right, equivComma_counitIso_hom_app_left_app, equivComma_counitIso_inv_app_left_app, equivComma_counitIso_hom_app_right, mkCommaMorphism_left_app, equivComma_functor_map_right, mkCommaObject_left_map, mkCommaMorphism_right, mkCommaObject_hom_app, mkCommaObject_left_obj, equivComma_functor_map_left_app, equivComma_counitIso_inv_app_right, equivComma_unitIso_hom_app_app, equivComma_unitIso_inv_app_app
|
ofCommaMorphism π | CompOp | 7 mathmath: equivComma_counitIso_hom_app_left_app, equivComma_counitIso_inv_app_left_app, equivComma_counitIso_hom_app_right, ofCommaMorphism_app, equivComma_counitIso_inv_app_right, equivComma_unitIso_hom_app_app, equivComma_unitIso_inv_app_app
|
ofCommaObject π | CompOp | 10 mathmath: equivComma_counitIso_hom_app_left_app, equivComma_counitIso_inv_app_left_app, equivComma_counitIso_hom_app_right, ofCommaObject_obj, ofCommaMorphism_app, ofCommaObject_map, equivComma_inverse_map_app, equivComma_counitIso_inv_app_right, equivComma_unitIso_hom_app_app, equivComma_unitIso_inv_app_app
|
opEquiv π | CompOp | 8 mathmath: opEquiv_inverse_obj, opEquiv_counitIso_inv_app, opEquiv_unitIso_hom_app, opEquiv_counitIso_hom_app, opEquiv_functor_obj, opEquiv_unitIso_inv_app, opEquiv_functor_map, opEquiv_inverse_map
|
prelaxfunctor π | CompOp | 6 mathmath: prelaxfunctor_toPrelaxFunctorStruct_mapβ, pseudofunctor_toPrelaxFunctor, pseudofunctor_mapId, pseudofunctor_mapComp, prelaxfunctor_toPrelaxFunctorStruct_toPrefunctor_obj, prelaxfunctor_toPrelaxFunctorStruct_toPrefunctor_map
|
pseudofunctor π | CompOp | 3 mathmath: pseudofunctor_toPrelaxFunctor, pseudofunctor_mapId, pseudofunctor_mapComp
|
starIsoTerminal π | CompOp | 2 mathmath: starIsoTerminal_inv, starIsoTerminal_hom
|
starTerminal π | CompOp | 16 mathmath: CategoryTheory.WithInitial.opEquiv_unitIso_inv_app, CategoryTheory.WithInitial.opEquiv_functor_map, CategoryTheory.WithInitial.opEquiv_counitIso_hom_app, opEquiv_counitIso_inv_app, opEquiv_unitIso_hom_app, opEquiv_counitIso_hom_app, lift_map_liftStar, equivComma_functor_obj_hom_app, starIsoTerminal_inv, AugmentedSimplexCategory.equivAugmentedSimplicialObject_functor_obj_hom_app, CategoryTheory.WithInitial.opEquiv_counitIso_inv_app, mkCommaObject_hom_app, CategoryTheory.WithInitial.opEquiv_unitIso_hom_app, opEquiv_unitIso_inv_app, AugmentedSimplexCategory.equivAugmentedSimplicialObject_inverse_obj_map, opEquiv_inverse_map
|
widePullbackShapeEquiv π | CompOp | 2 mathmath: widePullbackShapeEquiv_inverse_obj, widePullbackShapeEquiv_functor_obj
|