Documentation Verification Report

Basic

πŸ“ Source: Mathlib/CategoryTheory/WithTerminal/Basic.lean

Statistics

MetricCount
DefinitionsWithInitial, comp, down, equivComma, homTo, id, incl, inclLift, inclLiftToInitial, instCategory, instUniqueHomStar, liftStar, liftToInitial, liftToInitialUnique, liftUnique, map, mapComp, mapId, mapβ‚‚, mkCommaMorphism, mkCommaObject, ofCommaMorphism, ofCommaObject, opEquiv, prelaxfunctor, pseudofunctor, starInitial, starIsoInitial, WithTerminal, comp, down, equivComma, homFrom, id, incl, inclLift, inclLiftToTerminal, instCategory, instUniqueHomStar, liftStar, liftToTerminal, liftToTerminalUnique, liftUnique, map, mapComp, mapId, mapβ‚‚, mkCommaMorphism, mkCommaObject, ofCommaMorphism, ofCommaObject, opEquiv, prelaxfunctor, pseudofunctor, starIsoTerminal, starTerminal, widePullbackShapeEquiv, instInhabitedWithInitial, default, instInhabitedWithTerminal, default
61
Theoremsdown_comp, down_id, equivComma_counitIso_hom_app_left, equivComma_counitIso_hom_app_right_app, equivComma_counitIso_inv_app_left, equivComma_counitIso_inv_app_right_app, equivComma_functor_map_left, equivComma_functor_map_right_app, equivComma_functor_obj_hom_app, equivComma_functor_obj_left, equivComma_functor_obj_right_map, equivComma_functor_obj_right_obj, equivComma_inverse_map_app, equivComma_inverse_obj_map, equivComma_inverse_obj_obj, equivComma_unitIso_hom_app_app, equivComma_unitIso_inv_app_app, false_of_to_star, false_of_to_star', inclLiftToInitial_hom_app, inclLiftToInitial_inv_app, inclLift_hom_app, inclLift_inv_app, instFaithfulIncl, instFullIncl, instHasInitial, isIso_of_to_star, liftStar_hom, liftStar_inv, liftStar_lift_map, liftToInitialUnique_hom_app, liftToInitialUnique_inv_app, liftToInitial_map, liftToInitial_obj, lift_map, lift_obj, mapComp_hom_app, mapComp_inv_app, mapId_hom_app, mapId_inv_app, map_map, map_obj, mapβ‚‚_app, mkCommaMorphism_left, mkCommaMorphism_right_app, mkCommaObject_hom_app, mkCommaObject_left, mkCommaObject_right_map, mkCommaObject_right_obj, ofCommaMorphism_app, ofCommaObject_map, ofCommaObject_obj, opEquiv_counitIso_hom_app, opEquiv_counitIso_inv_app, opEquiv_functor_map, opEquiv_functor_obj, opEquiv_inverse_map, opEquiv_inverse_obj, opEquiv_unitIso_hom_app, opEquiv_unitIso_inv_app, prelaxfunctor_toPrelaxFunctorStruct_mapβ‚‚, prelaxfunctor_toPrelaxFunctorStruct_toPrefunctor_map, prelaxfunctor_toPrelaxFunctorStruct_toPrefunctor_obj, pseudofunctor_mapComp, pseudofunctor_mapId, pseudofunctor_toPrelaxFunctor, starIsoInitial_hom, starIsoInitial_inv, down_comp, down_id, equivComma_counitIso_hom_app_left_app, equivComma_counitIso_hom_app_right, equivComma_counitIso_inv_app_left_app, equivComma_counitIso_inv_app_right, equivComma_functor_map_left_app, equivComma_functor_map_right, equivComma_functor_obj_hom_app, equivComma_functor_obj_left_map, equivComma_functor_obj_left_obj, equivComma_functor_obj_right, equivComma_inverse_map_app, equivComma_inverse_obj_map, equivComma_inverse_obj_obj, equivComma_unitIso_hom_app_app, equivComma_unitIso_inv_app_app, false_of_from_star, false_of_from_star', inclLiftToTerminal_hom_app, inclLiftToTerminal_inv_app, inclLift_hom_app, inclLift_inv_app, instFaithfulIncl, instFullIncl, instHasTerminal, isIso_of_from_star, liftStar_hom, liftStar_inv, liftToTerminalUnique_hom_app, liftToTerminalUnique_inv_app, liftToTerminal_map, liftToTerminal_obj, lift_map, lift_map_liftStar, lift_obj, mapComp_hom_app, mapComp_inv_app, mapId_hom_app, mapId_inv_app, map_map, map_obj, mapβ‚‚_app, mkCommaMorphism_left_app, mkCommaMorphism_right, mkCommaObject_hom_app, mkCommaObject_left_map, mkCommaObject_left_obj, mkCommaObject_right, ofCommaMorphism_app, ofCommaObject_map, ofCommaObject_obj, opEquiv_counitIso_hom_app, opEquiv_counitIso_inv_app, opEquiv_functor_map, opEquiv_functor_obj, opEquiv_inverse_map, opEquiv_inverse_obj, opEquiv_unitIso_hom_app, opEquiv_unitIso_inv_app, prelaxfunctor_toPrelaxFunctorStruct_mapβ‚‚, prelaxfunctor_toPrelaxFunctorStruct_toPrefunctor_map, prelaxfunctor_toPrelaxFunctorStruct_toPrefunctor_obj, pseudofunctor_mapComp, pseudofunctor_mapId, pseudofunctor_toPrelaxFunctor, starIsoTerminal_hom, starIsoTerminal_inv, subsingleton_hom, widePullbackShapeEquiv_functor_obj, widePullbackShapeEquiv_inverse_obj
139
Total200

CategoryTheory

Definitions

NameCategoryTheorems
WithInitial πŸ“–CompData
142 mathmath: AugmentedSimplexCategory.equivAugmentedCosimplicialObject_counitIso_hom_app_left, WithInitial.equivComma_functor_obj_right_obj, WithInitial.opEquiv_unitIso_inv_app, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_inverse_map_app, WithInitial.isColimitEquiv_apply_desc_right, WithInitial.liftToInitialUnique_hom_app, WithInitial.coconeEquiv_functor_obj_pt, WithTerminal.opEquiv_inverse_obj, WithInitial.liftToInitial_obj, WithInitial.down_id, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_functor_obj_left, WithInitial.coconeEquiv_inverse_obj_pt_right, WithInitial.opEquiv_functor_map, AugmentedSimplexCategory.eqToHom_toOrderHom, WithInitial.ofCommaObject_obj, WithInitial.opEquiv_counitIso_hom_app, WithInitial.isColimitEquiv_symm_apply_desc, AugmentedSimplexCategory.equivAugmentedSimplicialObject_inverse_map_app, AugmentedSimplexCategory.equivAugmentedCosimplicialObjectFunctorCompPointIso_hom_app, WithInitial.liftFromUnderComp_inv_app, WithTerminal.opEquiv_counitIso_inv_app, WithInitial.equivComma_functor_obj_right_map, WithInitial.equivComma_counitIso_hom_app_right_app, WithInitial.instFaithfulIncl, WithInitial.coconeEquiv_inverse_obj_pt_hom, WithInitial.inclLift_hom_app, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_inverse_obj_map, WithInitial.mkCommaMorphism_right_app, AugmentedSimplexCategory.equivAugmentedSimplicialObjectFunctorCompToArrowIso_inv_app_left, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_inverse_obj_obj, WithTerminal.opEquiv_unitIso_hom_app, WithTerminal.opEquiv_counitIso_hom_app, AugmentedSimplexCategory.equivAugmentedSimplicialObjectFunctorCompPointIso_inv_app, AugmentedSimplexCategory.equivAugmentedSimplicialObjectFunctorCompPointIso_hom_app, WithInitial.mkCommaObject_right_obj, WithInitial.mapId_inv_app, WithInitial.equivComma_counitIso_inv_app_right_app, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_functor_map_left, WithInitial.coconeEquiv_counitIso_inv_app_hom, WithInitial.mkCommaMorphism_left, WithInitial.opEquiv_inverse_obj, WithInitial.liftStar_lift_map, AugmentedSimplexCategory.equivAugmentedSimplicialObject_inverse_obj_obj, WithInitial.coconeEquiv_functor_obj_ΞΉ_app_star, WithInitial.instFullIncl, WithInitial.inclLiftToInitial_inv_app, WithInitial.coconeEquiv_unitIso_hom_app_hom_right, WithInitial.mkCommaObject_hom_app, WithInitial.prelaxfunctor_toPrelaxFunctorStruct_toPrefunctor_obj, WithInitial.prelaxfunctor_toPrelaxFunctorStruct_mapβ‚‚, WithInitial.starIsoInitial_inv, AugmentedSimplexCategory.equivAugmentedSimplicialObjectFunctorCompToArrowIso_hom_app_right, WithInitial.liftFromUnder_obj_obj, AugmentedSimplexCategory.equivAugmentedSimplicialObject_counitIso_inv_app_left_app, WithInitial.coconeEquiv_functor_map_hom, AugmentedSimplexCategory.equivAugmentedSimplicialObjectFunctorCompDropIso_hom_app_app, WithInitial.equivComma_functor_map_left, WithInitial.coconeEquiv_inverse_obj_pt_left_as, WithTerminal.opEquiv_functor_obj, AugmentedSimplexCategory.equivAugmentedCosimplicialObjectFunctorCompToArrowIso_inv_app_right, AugmentedSimplexCategory.equivAugmentedCosimplicialObjectFunctorCompPointIso_inv_app, WithInitial.equivComma_inverse_map_app, WithInitial.equivComma_counitIso_hom_app_left, AugmentedSimplexCategory.id_star_whiskerRight, WithInitial.equivComma_functor_map_right_app, WithInitial.coconeEquiv_inverse_obj_ΞΉ_app_right, AugmentedSimplexCategory.equivAugmentedSimplicialObject_functor_map_right, WithInitial.instHasInitial, WithInitial.coconeEquiv_functor_obj_ΞΉ_app_of, AugmentedSimplexCategory.equivAugmentedSimplicialObject_functor_map_left_app, WithInitial.mkCommaObject_right_map, WithInitial.equivComma_functor_obj_hom_app, AugmentedSimplexCategory.equivAugmentedSimplicialObject_counitIso_hom_app_right, WithInitial.equivComma_inverse_obj_map, AugmentedSimplexCategory.equivAugmentedSimplicialObjectFunctorCompToArrowIso_hom_app_left, WithInitial.pseudofunctor_mapId, AugmentedSimplexCategory.equivAugmentedSimplicialObject_counitIso_hom_app_left_app, AugmentedSimplexCategory.equivAugmentedCosimplicialObjectFunctorCompDropIso_hom_app_app, AugmentedSimplexCategory.equivAugmentedSimplicialObject_functor_obj_hom_app, WithInitial.opEquiv_counitIso_inv_app, WithInitial.map_map, WithInitial.equivComma_unitIso_inv_app_app, WithInitial.equivComma_functor_obj_left, WithInitial.inclLift_inv_app, WithInitial.inclLiftToInitial_hom_app, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_unitIso_inv_app_app, WithInitial.equivComma_unitIso_hom_app_app, AugmentedSimplexCategory.equivAugmentedSimplicialObjectFunctorCompToArrowIso_inv_app_right, WithInitial.mapβ‚‚_app, WithInitial.equivComma_inverse_obj_obj, AugmentedSimplexCategory.equivAugmentedSimplicialObject_unitIso_hom_app_app, AugmentedSimplexCategory.equivAugmentedSimplicialObject_counitIso_inv_app_right, AugmentedSimplexCategory.equivAugmentedSimplicialObject_unitIso_inv_app_app, WithInitial.coconeEquiv_inverse_map_hom_right, AugmentedSimplexCategory.equivAugmentedCosimplicialObjectFunctorCompToArrowIso_inv_app_left, WithInitial.equivComma_counitIso_inv_app_left, WithInitial.prelaxfunctor_toPrelaxFunctorStruct_toPrefunctor_map, WithInitial.map_obj, AugmentedSimplexCategory.equivAugmentedCosimplicialObjectFunctorCompToArrowIso_hom_app_left, WithInitial.liftFromUnderComp_hom_app, AugmentedSimplexCategory.equivAugmentedSimplicialObject_functor_obj_right, AugmentedSimplexCategory.equivAugmentedSimplicialObjectFunctorCompDropIso_inv_app_app, WithInitial.coconeEquiv_counitIso_hom_app_hom, WithInitial.liftFromUnder_map_app, WithInitial.opEquiv_functor_obj, WithInitial.mkCommaObject_left, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_counitIso_hom_app_right_app, WithInitial.lift_map, WithInitial.starIsoInitial_hom, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_functor_obj_right_map, AugmentedSimplexCategory.equivAugmentedCosimplicialObjectFunctorCompToArrowIso_hom_app_right, WithInitial.liftToInitial_map, AugmentedSimplexCategory.equivAugmentedSimplicialObject_functor_obj_left_map, WithInitial.ofCommaObject_map, WithInitial.liftFromUnder_obj_map, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_functor_map_right_app, WithInitial.pseudofunctor_mapComp, WithInitial.opEquiv_inverse_map, WithInitial.liftStar_hom, WithInitial.isIso_of_to_star, WithInitial.liftToInitialUnique_inv_app, WithInitial.mapComp_inv_app, AugmentedSimplexCategory.equivAugmentedCosimplicialObjectFunctorCompDropIso_inv_app_app, WithInitial.opEquiv_unitIso_hom_app, WithInitial.ofCommaMorphism_app, WithInitial.lift_obj, WithTerminal.opEquiv_unitIso_inv_app, AugmentedSimplexCategory.equivAugmentedSimplicialObject_inverse_obj_map, WithInitial.down_comp, WithInitial.coconeEquiv_unitIso_inv_app_hom_right, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_functor_obj_hom_app, WithTerminal.opEquiv_functor_map, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_functor_obj_right_obj, WithInitial.mapId_hom_app, AugmentedSimplexCategory.equivAugmentedSimplicialObject_functor_obj_left_obj, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_counitIso_inv_app_right_app, WithInitial.mapComp_hom_app, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_counitIso_inv_app_left, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_unitIso_hom_app_app, WithInitial.instIsFilteredOfIsFilteredOrEmpty, WithTerminal.opEquiv_inverse_map, WithInitial.liftStar_inv
WithTerminal πŸ“–CompData
116 mathmath: WithTerminal.coneEquiv_unitIso_hom_app_hom_left, WithTerminal.mkCommaObject_right, WithTerminal.equivComma_functor_obj_left_obj, WithTerminal.equivComma_counitIso_hom_app_left_app, WithInitial.opEquiv_unitIso_inv_app, WithTerminal.equivComma_counitIso_inv_app_left_app, WithTerminal.liftStar_inv, WithTerminal.instFaithfulIncl, WithTerminal.opEquiv_inverse_obj, Limits.PreservesLimitsOfShape.ofWidePullbacks, WithTerminal.mapβ‚‚_app, WithTerminal.coneEquiv_inverse_obj_Ο€_app_left, WithTerminal.mapComp_hom_app, WithInitial.opEquiv_functor_map, WithTerminal.equivComma_inverse_obj_obj, WithTerminal.equivComma_counitIso_hom_app_right, WithInitial.opEquiv_counitIso_hom_app, AugmentedSimplexCategory.equivAugmentedSimplicialObject_inverse_map_app, WithTerminal.equivComma_functor_obj_left_map, WithTerminal.mkCommaMorphism_left_app, WithTerminal.equivComma_functor_obj_right, WithTerminal.ofCommaObject_obj, WithTerminal.opEquiv_counitIso_inv_app, WithTerminal.liftStar_hom, WithTerminal.coneEquiv_functor_obj_Ο€_app_star, WithTerminal.coneEquiv_counitIso_inv_app_hom, AugmentedSimplexCategory.equivAugmentedSimplicialObjectFunctorCompToArrowIso_inv_app_left, WithTerminal.down_id, WithTerminal.opEquiv_unitIso_hom_app, WithTerminal.opEquiv_counitIso_hom_app, WithTerminal.lift_map, WithTerminal.inclLift_hom_app, WithTerminal.equivComma_functor_map_right, WithTerminal.liftToTerminal_map, WithInitial.opEquiv_inverse_obj, AugmentedSimplexCategory.equivAugmentedSimplicialObject_inverse_obj_obj, WithTerminal.coneEquiv_functor_obj_Ο€_app_of, WithTerminal.map_map, WithTerminal.lift_obj, WithTerminal.liftToTerminal_obj, WithTerminal.coneEquiv_inverse_obj_pt_left, WithTerminal.mkCommaObject_left_map, AugmentedSimplexCategory.equivAugmentedSimplicialObject_counitIso_inv_app_left_app, WithTerminal.ofCommaMorphism_app, WithTerminal.liftToTerminalUnique_inv_app, WithTerminal.mapComp_inv_app, WithTerminal.mkCommaMorphism_right, AugmentedSimplexCategory.equivAugmentedSimplicialObjectFunctorCompDropIso_hom_app_app, WithTerminal.opEquiv_functor_obj, WithTerminal.lift_map_liftStar, WithTerminal.inclLiftToTerminal_inv_app, WithTerminal.equivComma_functor_obj_hom_app, WithTerminal.isLimitEquiv_symm_apply_lift, WithTerminal.liftFromOver_obj_obj, WithTerminal.coneEquiv_inverse_obj_pt_hom, AugmentedSimplexCategory.equivAugmentedSimplicialObject_functor_map_right, WithTerminal.starIsoTerminal_inv, WithTerminal.liftFromOverComp_hom_app, AugmentedSimplexCategory.equivAugmentedSimplicialObject_functor_map_left_app, AugmentedSimplexCategory.equivAugmentedSimplicialObject_counitIso_hom_app_right, WithTerminal.inclLift_inv_app, WithTerminal.ofCommaObject_map, AugmentedSimplexCategory.equivAugmentedSimplicialObjectFunctorCompToArrowIso_hom_app_left, AugmentedSimplexCategory.equivAugmentedSimplicialObject_counitIso_hom_app_left_app, AugmentedSimplexCategory.equivAugmentedSimplicialObject_functor_obj_hom_app, WithTerminal.starIsoTerminal_hom, WithInitial.opEquiv_counitIso_inv_app, WithTerminal.prelaxfunctor_toPrelaxFunctorStruct_mapβ‚‚, WithTerminal.widePullbackShapeEquiv_inverse_obj, WithTerminal.subsingleton_hom, WithTerminal.instHasTerminal, WithTerminal.instIsCofilteredOfIsCofilteredOrEmpty, WithTerminal.map_obj, WithTerminal.mkCommaObject_hom_app, WithTerminal.mkCommaObject_left_obj, AugmentedSimplexCategory.equivAugmentedSimplicialObject_unitIso_hom_app_app, AugmentedSimplexCategory.equivAugmentedSimplicialObject_counitIso_inv_app_right, AugmentedSimplexCategory.equivAugmentedSimplicialObject_unitIso_inv_app_app, WithTerminal.mapId_hom_app, WithTerminal.inclLiftToTerminal_hom_app, WithTerminal.liftFromOver_obj_map, WithTerminal.isLimitEquiv_apply_lift_left, WithTerminal.pseudofunctor_mapId, WithTerminal.pseudofunctor_mapComp, WithTerminal.instFullIncl, WithTerminal.prelaxfunctor_toPrelaxFunctorStruct_toPrefunctor_obj, WithTerminal.coneEquiv_unitIso_inv_app_hom_left, WithTerminal.equivComma_functor_map_left_app, AugmentedSimplexCategory.equivAugmentedSimplicialObjectFunctorCompDropIso_inv_app_app, WithTerminal.prelaxfunctor_toPrelaxFunctorStruct_toPrefunctor_map, WithInitial.opEquiv_functor_obj, WithTerminal.down_comp, WithTerminal.mapId_inv_app, WithTerminal.liftFromOverComp_inv_app, AugmentedSimplexCategory.equivAugmentedSimplicialObject_functor_obj_left_map, WithTerminal.equivComma_inverse_map_app, WithTerminal.equivComma_inverse_obj_map, WithTerminal.liftFromOver_map_app, WithTerminal.coneEquiv_inverse_map_hom_left, WithInitial.opEquiv_inverse_map, WithTerminal.coneEquiv_functor_obj_pt, WithTerminal.equivComma_counitIso_inv_app_right, WithInitial.opEquiv_unitIso_hom_app, WithTerminal.equivComma_unitIso_hom_app_app, WithTerminal.opEquiv_unitIso_inv_app, AugmentedSimplexCategory.equivAugmentedSimplicialObject_inverse_obj_map, WithTerminal.liftToTerminalUnique_hom_app, WithTerminal.opEquiv_functor_map, WithTerminal.equivComma_unitIso_inv_app_app, WithTerminal.coneEquiv_counitIso_hom_app_hom, AugmentedSimplexCategory.equivAugmentedSimplicialObject_functor_obj_left_obj, WithTerminal.widePullbackShapeEquiv_functor_obj, WithTerminal.coneEquiv_inverse_obj_pt_right_as, WithTerminal.opEquiv_inverse_map, WithTerminal.coneEquiv_functor_map_hom, WithTerminal.isIso_of_from_star
instInhabitedWithInitial πŸ“–CompOpβ€”
instInhabitedWithTerminal πŸ“–CompOpβ€”

CategoryTheory.WithInitial

Definitions

NameCategoryTheorems
comp πŸ“–CompOpβ€”
down πŸ“–CompOp
22 mathmath: opEquiv_unitIso_inv_app, down_id, AugmentedSimplexCategory.eqToHom_toOrderHom, opEquiv_counitIso_hom_app, CategoryTheory.WithTerminal.opEquiv_counitIso_inv_app, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_inverse_obj_map, CategoryTheory.WithTerminal.opEquiv_unitIso_hom_app, CategoryTheory.WithTerminal.opEquiv_counitIso_hom_app, equivComma_inverse_obj_map, AugmentedSimplexCategory.equivAugmentedSimplicialObject_functor_obj_hom_app, opEquiv_counitIso_inv_app, map_map, lift_map, liftToInitial_map, AugmentedSimplexCategory.equivAugmentedSimplicialObject_functor_obj_left_map, ofCommaObject_map, liftFromUnder_obj_map, opEquiv_inverse_map, opEquiv_unitIso_hom_app, CategoryTheory.WithTerminal.opEquiv_unitIso_inv_app, down_comp, CategoryTheory.WithTerminal.opEquiv_inverse_map
equivComma πŸ“–CompOp
16 mathmath: equivComma_functor_obj_right_obj, equivComma_functor_obj_right_map, equivComma_counitIso_hom_app_right_app, equivComma_counitIso_inv_app_right_app, equivComma_functor_map_left, equivComma_inverse_map_app, equivComma_counitIso_hom_app_left, equivComma_functor_map_right_app, equivComma_functor_obj_hom_app, equivComma_inverse_obj_map, equivComma_unitIso_inv_app_app, equivComma_functor_obj_left, equivComma_unitIso_hom_app_app, equivComma_inverse_obj_obj, equivComma_counitIso_inv_app_left, liftFromUnder_map_app
homTo πŸ“–CompOp
8 mathmath: AugmentedSimplexCategory.equivAugmentedSimplicialObjectFunctorCompToArrowIso_inv_app_left, AugmentedSimplexCategory.equivAugmentedSimplicialObjectFunctorCompToArrowIso_hom_app_right, AugmentedSimplexCategory.equivAugmentedCosimplicialObjectFunctorCompToArrowIso_inv_app_right, AugmentedSimplexCategory.equivAugmentedSimplicialObjectFunctorCompToArrowIso_hom_app_left, AugmentedSimplexCategory.equivAugmentedSimplicialObjectFunctorCompToArrowIso_inv_app_right, AugmentedSimplexCategory.equivAugmentedCosimplicialObjectFunctorCompToArrowIso_inv_app_left, AugmentedSimplexCategory.equivAugmentedCosimplicialObjectFunctorCompToArrowIso_hom_app_left, AugmentedSimplexCategory.equivAugmentedCosimplicialObjectFunctorCompToArrowIso_hom_app_right
id πŸ“–CompOpβ€”
incl πŸ“–CompOp
39 mathmath: equivComma_functor_obj_right_obj, liftToInitialUnique_hom_app, equivComma_functor_obj_right_map, equivComma_counitIso_hom_app_right_app, instFaithfulIncl, inclLift_hom_app, mkCommaMorphism_right_app, AugmentedSimplexCategory.equivAugmentedSimplicialObjectFunctorCompToArrowIso_inv_app_left, mkCommaObject_right_obj, equivComma_counitIso_inv_app_right_app, liftStar_lift_map, instFullIncl, inclLiftToInitial_inv_app, mkCommaObject_hom_app, AugmentedSimplexCategory.equivAugmentedSimplicialObjectFunctorCompToArrowIso_hom_app_right, AugmentedSimplexCategory.equivAugmentedCosimplicialObjectFunctorCompToArrowIso_inv_app_right, equivComma_functor_map_right_app, mkCommaObject_right_map, equivComma_functor_obj_hom_app, AugmentedSimplexCategory.equivAugmentedSimplicialObjectFunctorCompToArrowIso_hom_app_left, AugmentedSimplexCategory.equivAugmentedCosimplicialObjectFunctorCompDropIso_hom_app_app, equivComma_unitIso_inv_app_app, inclLift_inv_app, inclLiftToInitial_hom_app, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_unitIso_inv_app_app, equivComma_unitIso_hom_app_app, AugmentedSimplexCategory.equivAugmentedSimplicialObjectFunctorCompToArrowIso_inv_app_right, AugmentedSimplexCategory.equivAugmentedCosimplicialObjectFunctorCompToArrowIso_inv_app_left, AugmentedSimplexCategory.equivAugmentedCosimplicialObjectFunctorCompToArrowIso_hom_app_left, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_counitIso_hom_app_right_app, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_functor_obj_right_map, AugmentedSimplexCategory.equivAugmentedCosimplicialObjectFunctorCompToArrowIso_hom_app_right, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_functor_map_right_app, liftToInitialUnique_inv_app, AugmentedSimplexCategory.equivAugmentedCosimplicialObjectFunctorCompDropIso_inv_app_app, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_functor_obj_hom_app, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_functor_obj_right_obj, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_counitIso_inv_app_right_app, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_unitIso_hom_app_app
inclLift πŸ“–CompOp
3 mathmath: inclLift_hom_app, liftStar_lift_map, inclLift_inv_app
inclLiftToInitial πŸ“–CompOp
2 mathmath: inclLiftToInitial_inv_app, inclLiftToInitial_hom_app
instCategory πŸ“–CompOp
163 mathmath: AugmentedSimplexCategory.equivAugmentedCosimplicialObject_counitIso_hom_app_left, equivComma_functor_obj_right_obj, AugmentedSimplexCategory.inr_comp_associator, opEquiv_unitIso_inv_app, AugmentedSimplexCategory.inclusion_obj, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_inverse_map_app, isColimitEquiv_apply_desc_right, liftToInitialUnique_hom_app, coconeEquiv_functor_obj_pt, AugmentedSimplexCategory.whiskerLeft_id_star, CategoryTheory.WithTerminal.opEquiv_inverse_obj, liftToInitial_obj, down_id, AugmentedSimplexCategory.inr_comp_inl_comp_associator, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_functor_obj_left, AugmentedSimplexCategory.inr_comp_inl_comp_associator_assoc, coconeEquiv_inverse_obj_pt_right, opEquiv_functor_map, AugmentedSimplexCategory.eqToHom_toOrderHom, ofCommaObject_obj, opEquiv_counitIso_hom_app, isColimitEquiv_symm_apply_desc, AugmentedSimplexCategory.equivAugmentedSimplicialObject_inverse_map_app, AugmentedSimplexCategory.equivAugmentedCosimplicialObjectFunctorCompPointIso_hom_app, liftFromUnderComp_inv_app, CategoryTheory.WithTerminal.opEquiv_counitIso_inv_app, equivComma_functor_obj_right_map, equivComma_counitIso_hom_app_right_app, instFaithfulIncl, coconeEquiv_inverse_obj_pt_hom, inclLift_hom_app, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_inverse_obj_map, mkCommaMorphism_right_app, AugmentedSimplexCategory.equivAugmentedSimplicialObjectFunctorCompToArrowIso_inv_app_left, AugmentedSimplexCategory.instHasInitial, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_inverse_obj_obj, CategoryTheory.WithTerminal.opEquiv_unitIso_hom_app, CategoryTheory.WithTerminal.opEquiv_counitIso_hom_app, AugmentedSimplexCategory.equivAugmentedSimplicialObjectFunctorCompPointIso_inv_app, AugmentedSimplexCategory.equivAugmentedSimplicialObjectFunctorCompPointIso_hom_app, mkCommaObject_right_obj, mapId_inv_app, equivComma_counitIso_inv_app_right_app, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_functor_map_left, AugmentedSimplexCategory.inl_comp_inl_comp_associator_assoc, coconeEquiv_counitIso_inv_app_hom, mkCommaMorphism_left, opEquiv_inverse_obj, liftStar_lift_map, AugmentedSimplexCategory.equivAugmentedSimplicialObject_inverse_obj_obj, coconeEquiv_functor_obj_ΞΉ_app_star, instFullIncl, AugmentedSimplexCategory.tensorObj_hom_ext_iff, inclLiftToInitial_inv_app, AugmentedSimplexCategory.inr_comp_associator_assoc, coconeEquiv_unitIso_hom_app_hom_right, AugmentedSimplexCategory.instFullSimplexCategoryInclusion, mkCommaObject_hom_app, prelaxfunctor_toPrelaxFunctorStruct_toPrefunctor_obj, prelaxfunctor_toPrelaxFunctorStruct_mapβ‚‚, starIsoInitial_inv, AugmentedSimplexCategory.equivAugmentedSimplicialObjectFunctorCompToArrowIso_hom_app_right, liftFromUnder_obj_obj, AugmentedSimplexCategory.equivAugmentedSimplicialObject_counitIso_inv_app_left_app, coconeEquiv_functor_map_hom, AugmentedSimplexCategory.equivAugmentedSimplicialObjectFunctorCompDropIso_hom_app_app, equivComma_functor_map_left, coconeEquiv_inverse_obj_pt_left_as, CategoryTheory.WithTerminal.opEquiv_functor_obj, AugmentedSimplexCategory.equivAugmentedCosimplicialObjectFunctorCompToArrowIso_inv_app_right, AugmentedSimplexCategory.inl_comp_tensorHom, AugmentedSimplexCategory.equivAugmentedCosimplicialObjectFunctorCompPointIso_inv_app, equivComma_inverse_map_app, equivComma_counitIso_hom_app_left, AugmentedSimplexCategory.id_star_whiskerRight, equivComma_functor_map_right_app, coconeEquiv_inverse_obj_ΞΉ_app_right, AugmentedSimplexCategory.equivAugmentedSimplicialObject_functor_map_right, instHasInitial, coconeEquiv_functor_obj_ΞΉ_app_of, AugmentedSimplexCategory.equivAugmentedSimplicialObject_functor_map_left_app, mkCommaObject_right_map, equivComma_functor_obj_hom_app, AugmentedSimplexCategory.equivAugmentedSimplicialObject_counitIso_hom_app_right, equivComma_inverse_obj_map, AugmentedSimplexCategory.equivAugmentedSimplicialObjectFunctorCompToArrowIso_hom_app_left, AugmentedSimplexCategory.inl_comp_inl_comp_associator, pseudofunctor_mapId, AugmentedSimplexCategory.equivAugmentedSimplicialObject_counitIso_hom_app_left_app, AugmentedSimplexCategory.equivAugmentedCosimplicialObjectFunctorCompDropIso_hom_app_app, AugmentedSimplexCategory.equivAugmentedSimplicialObject_functor_obj_hom_app, AugmentedSimplexCategory.instFaithfulSimplexCategoryInclusion, opEquiv_counitIso_inv_app, map_map, equivComma_unitIso_inv_app_app, equivComma_functor_obj_left, inclLift_inv_app, AugmentedSimplexCategory.tensor_id, inclLiftToInitial_hom_app, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_unitIso_inv_app_app, AugmentedSimplexCategory.inclusion_map, equivComma_unitIso_hom_app_app, AugmentedSimplexCategory.equivAugmentedSimplicialObjectFunctorCompToArrowIso_inv_app_right, mapβ‚‚_app, equivComma_inverse_obj_obj, AugmentedSimplexCategory.tensorHom_id, AugmentedSimplexCategory.equivAugmentedSimplicialObject_unitIso_hom_app_app, AugmentedSimplexCategory.equivAugmentedSimplicialObject_counitIso_inv_app_right, AugmentedSimplexCategory.equivAugmentedSimplicialObject_unitIso_inv_app_app, coconeEquiv_inverse_map_hom_right, AugmentedSimplexCategory.equivAugmentedCosimplicialObjectFunctorCompToArrowIso_inv_app_left, equivComma_counitIso_inv_app_left, prelaxfunctor_toPrelaxFunctorStruct_toPrefunctor_map, AugmentedSimplexCategory.id_tensorHom, map_obj, AugmentedSimplexCategory.equivAugmentedCosimplicialObjectFunctorCompToArrowIso_hom_app_left, liftFromUnderComp_hom_app, AugmentedSimplexCategory.equivAugmentedSimplicialObject_functor_obj_right, AugmentedSimplexCategory.equivAugmentedSimplicialObjectFunctorCompDropIso_inv_app_app, coconeEquiv_counitIso_hom_app_hom, liftFromUnder_map_app, opEquiv_functor_obj, mkCommaObject_left, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_counitIso_hom_app_right_app, lift_map, starIsoInitial_hom, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_functor_obj_right_map, AugmentedSimplexCategory.equivAugmentedCosimplicialObjectFunctorCompToArrowIso_hom_app_right, liftToInitial_map, AugmentedSimplexCategory.equivAugmentedSimplicialObject_functor_obj_left_map, ofCommaObject_map, AugmentedSimplexCategory.inr_comp_tensorHom, liftFromUnder_obj_map, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_functor_map_right_app, AugmentedSimplexCategory.inl_comp_tensorHom_assoc, AugmentedSimplexCategory.inr_comp_tensorHom_assoc, pseudofunctor_mapComp, opEquiv_inverse_map, liftStar_hom, isIso_of_to_star, liftToInitialUnique_inv_app, mapComp_inv_app, AugmentedSimplexCategory.equivAugmentedCosimplicialObjectFunctorCompDropIso_inv_app_app, opEquiv_unitIso_hom_app, ofCommaMorphism_app, lift_obj, CategoryTheory.WithTerminal.opEquiv_unitIso_inv_app, AugmentedSimplexCategory.equivAugmentedSimplicialObject_inverse_obj_map, down_comp, coconeEquiv_unitIso_inv_app_hom_right, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_functor_obj_hom_app, CategoryTheory.WithTerminal.opEquiv_functor_map, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_functor_obj_right_obj, mapId_hom_app, AugmentedSimplexCategory.tensorHom_comp_tensorHom, AugmentedSimplexCategory.equivAugmentedSimplicialObject_functor_obj_left_obj, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_counitIso_inv_app_right_app, mapComp_hom_app, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_counitIso_inv_app_left, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_unitIso_hom_app_app, instIsFilteredOfIsFilteredOrEmpty, CategoryTheory.WithTerminal.opEquiv_inverse_map, liftStar_inv
instUniqueHomStar πŸ“–CompOpβ€”
liftStar πŸ“–CompOp
3 mathmath: liftStar_lift_map, liftStar_hom, liftStar_inv
liftToInitial πŸ“–CompOp
6 mathmath: liftToInitialUnique_hom_app, liftToInitial_obj, inclLiftToInitial_inv_app, inclLiftToInitial_hom_app, liftToInitial_map, liftToInitialUnique_inv_app
liftToInitialUnique πŸ“–CompOp
2 mathmath: liftToInitialUnique_hom_app, liftToInitialUnique_inv_app
liftUnique πŸ“–CompOpβ€”
map πŸ“–CompOp
11 mathmath: mapId_inv_app, prelaxfunctor_toPrelaxFunctorStruct_mapβ‚‚, pseudofunctor_mapId, map_map, mapβ‚‚_app, prelaxfunctor_toPrelaxFunctorStruct_toPrefunctor_map, map_obj, pseudofunctor_mapComp, mapComp_inv_app, mapId_hom_app, mapComp_hom_app
mapComp πŸ“–CompOp
3 mathmath: pseudofunctor_mapComp, mapComp_inv_app, mapComp_hom_app
mapId πŸ“–CompOp
3 mathmath: mapId_inv_app, pseudofunctor_mapId, mapId_hom_app
mapβ‚‚ πŸ“–CompOp
2 mathmath: prelaxfunctor_toPrelaxFunctorStruct_mapβ‚‚, mapβ‚‚_app
mkCommaMorphism πŸ“–CompOp
14 mathmath: AugmentedSimplexCategory.equivAugmentedCosimplicialObject_counitIso_hom_app_left, equivComma_counitIso_hom_app_right_app, mkCommaMorphism_right_app, equivComma_counitIso_inv_app_right_app, mkCommaMorphism_left, equivComma_counitIso_hom_app_left, equivComma_unitIso_inv_app_app, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_unitIso_inv_app_app, equivComma_unitIso_hom_app_app, equivComma_counitIso_inv_app_left, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_counitIso_hom_app_right_app, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_counitIso_inv_app_right_app, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_counitIso_inv_app_left, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_unitIso_hom_app_app
mkCommaObject πŸ“–CompOp
22 mathmath: AugmentedSimplexCategory.equivAugmentedCosimplicialObject_counitIso_hom_app_left, equivComma_counitIso_hom_app_right_app, mkCommaMorphism_right_app, mkCommaObject_right_obj, equivComma_counitIso_inv_app_right_app, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_functor_map_left, mkCommaMorphism_left, mkCommaObject_hom_app, equivComma_functor_map_left, equivComma_counitIso_hom_app_left, equivComma_functor_map_right_app, mkCommaObject_right_map, equivComma_unitIso_inv_app_app, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_unitIso_inv_app_app, equivComma_unitIso_hom_app_app, equivComma_counitIso_inv_app_left, mkCommaObject_left, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_counitIso_hom_app_right_app, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_functor_map_right_app, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_counitIso_inv_app_right_app, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_counitIso_inv_app_left, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_unitIso_hom_app_app
ofCommaMorphism πŸ“–CompOp
13 mathmath: AugmentedSimplexCategory.equivAugmentedCosimplicialObject_counitIso_hom_app_left, equivComma_counitIso_hom_app_right_app, equivComma_counitIso_inv_app_right_app, equivComma_counitIso_hom_app_left, equivComma_unitIso_inv_app_app, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_unitIso_inv_app_app, equivComma_unitIso_hom_app_app, equivComma_counitIso_inv_app_left, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_counitIso_hom_app_right_app, ofCommaMorphism_app, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_counitIso_inv_app_right_app, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_counitIso_inv_app_left, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_unitIso_hom_app_app
ofCommaObject πŸ“–CompOp
17 mathmath: AugmentedSimplexCategory.equivAugmentedCosimplicialObject_counitIso_hom_app_left, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_inverse_map_app, ofCommaObject_obj, equivComma_counitIso_hom_app_right_app, equivComma_counitIso_inv_app_right_app, equivComma_inverse_map_app, equivComma_counitIso_hom_app_left, equivComma_unitIso_inv_app_app, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_unitIso_inv_app_app, equivComma_unitIso_hom_app_app, equivComma_counitIso_inv_app_left, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_counitIso_hom_app_right_app, ofCommaObject_map, ofCommaMorphism_app, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_counitIso_inv_app_right_app, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_counitIso_inv_app_left, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_unitIso_hom_app_app
opEquiv πŸ“–CompOp
18 mathmath: opEquiv_unitIso_inv_app, opEquiv_functor_map, opEquiv_counitIso_hom_app, AugmentedSimplexCategory.equivAugmentedSimplicialObject_inverse_map_app, opEquiv_inverse_obj, AugmentedSimplexCategory.equivAugmentedSimplicialObject_counitIso_inv_app_left_app, AugmentedSimplexCategory.equivAugmentedSimplicialObject_functor_map_right, AugmentedSimplexCategory.equivAugmentedSimplicialObject_functor_map_left_app, AugmentedSimplexCategory.equivAugmentedSimplicialObject_counitIso_hom_app_right, AugmentedSimplexCategory.equivAugmentedSimplicialObject_counitIso_hom_app_left_app, AugmentedSimplexCategory.equivAugmentedSimplicialObject_functor_obj_hom_app, opEquiv_counitIso_inv_app, AugmentedSimplexCategory.equivAugmentedSimplicialObject_unitIso_hom_app_app, AugmentedSimplexCategory.equivAugmentedSimplicialObject_counitIso_inv_app_right, AugmentedSimplexCategory.equivAugmentedSimplicialObject_unitIso_inv_app_app, opEquiv_functor_obj, opEquiv_inverse_map, opEquiv_unitIso_hom_app
prelaxfunctor πŸ“–CompOp
6 mathmath: prelaxfunctor_toPrelaxFunctorStruct_toPrefunctor_obj, prelaxfunctor_toPrelaxFunctorStruct_mapβ‚‚, pseudofunctor_mapId, pseudofunctor_toPrelaxFunctor, prelaxfunctor_toPrelaxFunctorStruct_toPrefunctor_map, pseudofunctor_mapComp
pseudofunctor πŸ“–CompOp
3 mathmath: pseudofunctor_mapId, pseudofunctor_toPrelaxFunctor, pseudofunctor_mapComp
starInitial πŸ“–CompOp
17 mathmath: opEquiv_unitIso_inv_app, opEquiv_counitIso_hom_app, CategoryTheory.WithTerminal.opEquiv_counitIso_inv_app, CategoryTheory.WithTerminal.opEquiv_unitIso_hom_app, CategoryTheory.WithTerminal.opEquiv_counitIso_hom_app, liftStar_lift_map, mkCommaObject_hom_app, equivComma_functor_obj_hom_app, AugmentedSimplexCategory.equivAugmentedSimplicialObject_functor_obj_hom_app, opEquiv_counitIso_inv_app, starIsoInitial_hom, AugmentedSimplexCategory.equivAugmentedSimplicialObject_functor_obj_left_map, opEquiv_inverse_map, opEquiv_unitIso_hom_app, CategoryTheory.WithTerminal.opEquiv_unitIso_inv_app, AugmentedSimplexCategory.equivAugmentedCosimplicialObject_functor_obj_hom_app, CategoryTheory.WithTerminal.opEquiv_functor_map
starIsoInitial πŸ“–CompOp
2 mathmath: starIsoInitial_inv, starIsoInitial_hom

Theorems

NameKindAssumesProvesValidatesDepends On
down_comp πŸ“–mathematicalβ€”down
CategoryTheory.CategoryStruct.comp
CategoryTheory.WithInitial
CategoryTheory.Category.toCategoryStruct
instCategory
of
β€”β€”
down_id πŸ“–mathematicalβ€”down
CategoryTheory.CategoryStruct.id
CategoryTheory.WithInitial
CategoryTheory.Category.toCategoryStruct
instCategory
of
β€”β€”
equivComma_counitIso_hom_app_left πŸ“–mathematicalβ€”CategoryTheory.CommaMorphism.left
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Functor.id
CategoryTheory.Functor.obj
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Functor.comp
CategoryTheory.WithInitial
instCategory
ofCommaObject
ofCommaMorphism
mkCommaObject
mkCommaMorphism
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Equivalence.counitIso
equivComma
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.left
β€”β€”
equivComma_counitIso_hom_app_right_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
CategoryTheory.Comma.right
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Functor.id
CategoryTheory.Functor.obj
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Functor.comp
CategoryTheory.WithInitial
instCategory
ofCommaObject
ofCommaMorphism
mkCommaObject
mkCommaMorphism
CategoryTheory.CommaMorphism.right
CategoryTheory.Iso.hom
CategoryTheory.Equivalence.counitIso
equivComma
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
incl
CategoryTheory.Comma.left
β€”β€”
equivComma_counitIso_inv_app_left πŸ“–mathematicalβ€”CategoryTheory.CommaMorphism.left
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Functor.id
CategoryTheory.Functor.obj
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Functor.comp
CategoryTheory.WithInitial
instCategory
ofCommaObject
ofCommaMorphism
mkCommaObject
mkCommaMorphism
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
CategoryTheory.Equivalence.counitIso
equivComma
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.left
β€”β€”
equivComma_counitIso_inv_app_right_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
CategoryTheory.Comma.right
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Functor.id
CategoryTheory.Functor.obj
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Functor.comp
CategoryTheory.WithInitial
instCategory
ofCommaObject
ofCommaMorphism
mkCommaObject
mkCommaMorphism
CategoryTheory.CommaMorphism.right
CategoryTheory.Iso.inv
CategoryTheory.Equivalence.counitIso
equivComma
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
incl
CategoryTheory.Comma.left
β€”β€”
equivComma_functor_map_left πŸ“–mathematicalβ€”CategoryTheory.CommaMorphism.left
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Functor.id
mkCommaObject
CategoryTheory.Functor.map
CategoryTheory.WithInitial
instCategory
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Equivalence.functor
equivComma
CategoryTheory.NatTrans.app
star
β€”β€”
equivComma_functor_map_right_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.WithInitial
instCategory
incl
CategoryTheory.CommaMorphism.right
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Functor.id
mkCommaObject
CategoryTheory.Functor.map
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Equivalence.functor
equivComma
CategoryTheory.Functor.obj
β€”β€”
equivComma_functor_obj_hom_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.WithInitial
instCategory
star
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
incl
CategoryTheory.Comma.hom
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Equivalence.functor
equivComma
CategoryTheory.Functor.map
CategoryTheory.Limits.IsInitial.to
starInitial
of
β€”β€”
equivComma_functor_obj_left πŸ“–mathematicalβ€”CategoryTheory.Comma.left
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Functor.id
CategoryTheory.Functor.obj
CategoryTheory.WithInitial
instCategory
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Equivalence.functor
equivComma
star
β€”β€”
equivComma_functor_obj_right_map πŸ“–mathematicalβ€”CategoryTheory.Functor.map
CategoryTheory.Comma.right
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Functor.id
CategoryTheory.Functor.obj
CategoryTheory.WithInitial
instCategory
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Equivalence.functor
equivComma
incl
β€”β€”
equivComma_functor_obj_right_obj πŸ“–mathematicalβ€”CategoryTheory.Functor.obj
CategoryTheory.Comma.right
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Functor.id
CategoryTheory.WithInitial
instCategory
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Equivalence.functor
equivComma
incl
β€”β€”
equivComma_inverse_map_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
CategoryTheory.WithInitial
instCategory
ofCommaObject
CategoryTheory.Functor.map
CategoryTheory.Comma
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Functor.id
CategoryTheory.commaCategory
CategoryTheory.Equivalence.inverse
equivComma
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Comma.right
CategoryTheory.Comma.left
CategoryTheory.CommaMorphism.right
CategoryTheory.CommaMorphism.left
β€”β€”
equivComma_inverse_obj_map πŸ“–mathematicalβ€”CategoryTheory.Functor.map
CategoryTheory.WithInitial
instCategory
CategoryTheory.Functor.obj
CategoryTheory.Comma
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Functor.id
CategoryTheory.commaCategory
CategoryTheory.Equivalence.inverse
equivComma
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.right
CategoryTheory.Comma.left
down
CategoryTheory.NatTrans.app
CategoryTheory.Comma.hom
CategoryTheory.CategoryStruct.id
β€”β€”
equivComma_inverse_obj_obj πŸ“–mathematicalβ€”CategoryTheory.Functor.obj
CategoryTheory.WithInitial
instCategory
CategoryTheory.Comma
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Functor.id
CategoryTheory.commaCategory
CategoryTheory.Equivalence.inverse
equivComma
CategoryTheory.Comma.right
CategoryTheory.Comma.left
β€”β€”
equivComma_unitIso_hom_app_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
CategoryTheory.WithInitial
instCategory
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
CategoryTheory.Comma
CategoryTheory.Functor.const
CategoryTheory.commaCategory
mkCommaObject
mkCommaMorphism
ofCommaObject
ofCommaMorphism
CategoryTheory.Iso.hom
CategoryTheory.Equivalence.unitIso
equivComma
incl
star
CategoryTheory.Iso
CategoryTheory.Iso.app
CategoryTheory.Iso.refl
β€”β€”
equivComma_unitIso_inv_app_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
CategoryTheory.WithInitial
instCategory
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
CategoryTheory.Comma
CategoryTheory.Functor.const
CategoryTheory.Functor.id
CategoryTheory.commaCategory
mkCommaObject
mkCommaMorphism
ofCommaObject
ofCommaMorphism
CategoryTheory.Iso.inv
CategoryTheory.Equivalence.unitIso
equivComma
incl
star
CategoryTheory.Iso
CategoryTheory.Iso.app
CategoryTheory.Iso.refl
β€”β€”
false_of_to_star πŸ“–β€”β€”β€”β€”β€”
false_of_to_star' πŸ“–β€”β€”β€”β€”β€”
inclLiftToInitial_hom_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.WithInitial
instCategory
incl
lift
CategoryTheory.Limits.IsInitial.to
CategoryTheory.Functor.obj
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
liftToInitial
inclLiftToInitial
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
β€”β€”
inclLiftToInitial_inv_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.WithInitial
instCategory
incl
lift
CategoryTheory.Limits.IsInitial.to
CategoryTheory.Functor.obj
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
liftToInitial
inclLiftToInitial
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
β€”β€”
inclLift_hom_app πŸ“–mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.WithInitial
instCategory
incl
lift
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
inclLift
CategoryTheory.CategoryStruct.id
β€”β€”
inclLift_inv_app πŸ“–mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.WithInitial
instCategory
incl
lift
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
inclLift
CategoryTheory.CategoryStruct.id
β€”β€”
instFaithfulIncl πŸ“–mathematicalβ€”CategoryTheory.Functor.Faithful
CategoryTheory.WithInitial
instCategory
incl
β€”β€”
instFullIncl πŸ“–mathematicalβ€”CategoryTheory.Functor.Full
CategoryTheory.WithInitial
instCategory
incl
β€”β€”
instHasInitial πŸ“–mathematicalβ€”CategoryTheory.Limits.HasInitial
CategoryTheory.WithInitial
instCategory
β€”CategoryTheory.Limits.hasInitial_of_unique
Unique.instSubsingleton
isIso_of_to_star πŸ“–mathematicalβ€”CategoryTheory.IsIso
CategoryTheory.WithInitial
instCategory
star
β€”β€”
liftStar_hom πŸ“–mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
CategoryTheory.Iso.hom
CategoryTheory.WithInitial
instCategory
lift
star
liftStar
CategoryTheory.CategoryStruct.id
β€”β€”
liftStar_inv πŸ“–mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
CategoryTheory.Iso.inv
CategoryTheory.WithInitial
instCategory
lift
star
liftStar
CategoryTheory.CategoryStruct.id
β€”β€”
liftStar_lift_map πŸ“–mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
CategoryTheory.WithInitial
instCategory
lift
star
incl
CategoryTheory.Iso.hom
liftStar
CategoryTheory.Limits.IsInitial.to
starInitial
CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.Functor
CategoryTheory.Functor.category
inclLift
β€”CategoryTheory.Category.id_comp
CategoryTheory.Category.comp_id
liftToInitialUnique_hom_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
CategoryTheory.WithInitial
instCategory
lift
CategoryTheory.Limits.IsInitial.to
CategoryTheory.Functor.obj
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
liftToInitial
liftToInitialUnique
CategoryTheory.Iso
CategoryTheory.Iso.app
CategoryTheory.Functor.comp
incl
β€”β€”
liftToInitialUnique_inv_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
CategoryTheory.WithInitial
instCategory
lift
CategoryTheory.Limits.IsInitial.to
CategoryTheory.Functor.obj
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
liftToInitial
liftToInitialUnique
CategoryTheory.Iso
CategoryTheory.Iso.app
CategoryTheory.Functor.comp
incl
β€”β€”
liftToInitial_map πŸ“–mathematicalβ€”CategoryTheory.Functor.map
CategoryTheory.WithInitial
instCategory
liftToInitial
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
down
CategoryTheory.Limits.IsInitial.to
CategoryTheory.CategoryStruct.id
β€”β€”
liftToInitial_obj πŸ“–mathematicalβ€”CategoryTheory.Functor.obj
CategoryTheory.WithInitial
instCategory
liftToInitial
β€”β€”
lift_map πŸ“–mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
CategoryTheory.WithInitial
instCategory
lift
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
down
CategoryTheory.CategoryStruct.id
star
β€”β€”
lift_obj πŸ“–mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
CategoryTheory.WithInitial
instCategory
lift
β€”β€”
mapComp_hom_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
CategoryTheory.WithInitial
instCategory
map
CategoryTheory.Functor.comp
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
mapComp
of
CategoryTheory.Functor.obj
star
CategoryTheory.Iso
CategoryTheory.Iso.refl
β€”β€”
mapComp_inv_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
CategoryTheory.WithInitial
instCategory
CategoryTheory.Functor.comp
map
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
mapComp
of
CategoryTheory.Functor.obj
star
CategoryTheory.Iso
CategoryTheory.Iso.refl
β€”β€”
mapId_hom_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
CategoryTheory.WithInitial
instCategory
map
CategoryTheory.Functor.id
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
mapId
of
star
CategoryTheory.Iso
CategoryTheory.Iso.refl
β€”β€”
mapId_inv_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
CategoryTheory.WithInitial
instCategory
CategoryTheory.Functor.id
map
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
mapId
of
star
CategoryTheory.Iso
CategoryTheory.Iso.refl
β€”β€”
map_map πŸ“–mathematicalβ€”CategoryTheory.Functor.map
CategoryTheory.WithInitial
instCategory
map
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
of
CategoryTheory.Functor.obj
star
down
β€”β€”
map_obj πŸ“–mathematicalβ€”CategoryTheory.Functor.obj
CategoryTheory.WithInitial
instCategory
map
of
star
β€”β€”
mapβ‚‚_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
CategoryTheory.WithInitial
instCategory
map
mapβ‚‚
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.CategoryStruct.id
star
β€”β€”
mkCommaMorphism_left πŸ“–mathematicalβ€”CategoryTheory.CommaMorphism.left
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Functor.id
mkCommaObject
mkCommaMorphism
CategoryTheory.NatTrans.app
CategoryTheory.WithInitial
instCategory
star
β€”β€”
mkCommaMorphism_right_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.WithInitial
instCategory
incl
CategoryTheory.CommaMorphism.right
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Functor.id
mkCommaObject
mkCommaMorphism
CategoryTheory.Functor.obj
β€”β€”
mkCommaObject_hom_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.WithInitial
instCategory
star
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
incl
CategoryTheory.Comma.hom
mkCommaObject
CategoryTheory.Functor.map
CategoryTheory.Limits.IsInitial.to
starInitial
of
β€”β€”
mkCommaObject_left πŸ“–mathematicalβ€”CategoryTheory.Comma.left
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Functor.id
mkCommaObject
CategoryTheory.Functor.obj
CategoryTheory.WithInitial
instCategory
star
β€”β€”
mkCommaObject_right_map πŸ“–mathematicalβ€”CategoryTheory.Functor.map
CategoryTheory.Comma.right
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Functor.id
mkCommaObject
CategoryTheory.WithInitial
instCategory
CategoryTheory.Functor.obj
incl
β€”β€”
mkCommaObject_right_obj πŸ“–mathematicalβ€”CategoryTheory.Functor.obj
CategoryTheory.Comma.right
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Functor.id
mkCommaObject
CategoryTheory.WithInitial
instCategory
incl
β€”β€”
ofCommaMorphism_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
CategoryTheory.WithInitial
instCategory
ofCommaObject
ofCommaMorphism
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Comma.right
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Functor.id
CategoryTheory.Comma.left
CategoryTheory.CommaMorphism.right
CategoryTheory.CommaMorphism.left
β€”β€”
ofCommaObject_map πŸ“–mathematicalβ€”CategoryTheory.Functor.map
CategoryTheory.WithInitial
instCategory
ofCommaObject
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Comma.right
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Functor.id
CategoryTheory.Comma.left
down
CategoryTheory.NatTrans.app
CategoryTheory.Comma.hom
CategoryTheory.CategoryStruct.id
β€”β€”
ofCommaObject_obj πŸ“–mathematicalβ€”CategoryTheory.Functor.obj
CategoryTheory.WithInitial
instCategory
ofCommaObject
CategoryTheory.Comma.right
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Functor.id
CategoryTheory.Comma.left
β€”β€”
opEquiv_counitIso_hom_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
CategoryTheory.WithTerminal
Opposite
CategoryTheory.WithTerminal.instCategory
CategoryTheory.Category.opposite
CategoryTheory.Functor.comp
CategoryTheory.WithInitial
instCategory
Opposite.op
of
Opposite.unop
star
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
down
CategoryTheory.WithTerminal.of
CategoryTheory.WithTerminal.star
CategoryTheory.Limits.IsInitial.to
starInitial
CategoryTheory.CategoryStruct.id
CategoryTheory.CategoryStruct.opposite
Quiver.Hom.op
CategoryTheory.WithTerminal.down
CategoryTheory.Limits.IsTerminal.from
CategoryTheory.WithTerminal.starTerminal
CategoryTheory.Functor.id
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Equivalence.counitIso
opEquiv
CategoryTheory.Iso
CategoryTheory.Iso.refl
β€”β€”
opEquiv_counitIso_inv_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
CategoryTheory.WithTerminal
Opposite
CategoryTheory.WithTerminal.instCategory
CategoryTheory.Category.opposite
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
CategoryTheory.WithInitial
instCategory
Opposite.op
of
Opposite.unop
star
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
down
CategoryTheory.WithTerminal.of
CategoryTheory.WithTerminal.star
CategoryTheory.Limits.IsInitial.to
starInitial
CategoryTheory.CategoryStruct.id
CategoryTheory.CategoryStruct.opposite
Quiver.Hom.op
CategoryTheory.WithTerminal.down
CategoryTheory.Limits.IsTerminal.from
CategoryTheory.WithTerminal.starTerminal
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Equivalence.counitIso
opEquiv
CategoryTheory.Iso
CategoryTheory.Iso.refl
β€”β€”
opEquiv_functor_map πŸ“–mathematicalβ€”CategoryTheory.Functor.map
Opposite
CategoryTheory.WithInitial
CategoryTheory.Category.opposite
instCategory
CategoryTheory.WithTerminal
CategoryTheory.WithTerminal.instCategory
CategoryTheory.Equivalence.functor
opEquiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Opposite.unop
CategoryTheory.WithTerminal.of
Opposite.op
CategoryTheory.WithTerminal.star
Quiver.Hom.op
CategoryTheory.WithTerminal.down
CategoryTheory.Limits.IsTerminal.from
CategoryTheory.WithTerminal.starTerminal
CategoryTheory.CategoryStruct.id
β€”β€”
opEquiv_functor_obj πŸ“–mathematicalβ€”CategoryTheory.Functor.obj
Opposite
CategoryTheory.WithInitial
CategoryTheory.Category.opposite
instCategory
CategoryTheory.WithTerminal
CategoryTheory.WithTerminal.instCategory
CategoryTheory.Equivalence.functor
opEquiv
Opposite.unop
CategoryTheory.WithTerminal.of
Opposite.op
CategoryTheory.WithTerminal.star
β€”β€”
opEquiv_inverse_map πŸ“–mathematicalβ€”CategoryTheory.Functor.map
CategoryTheory.WithTerminal
Opposite
CategoryTheory.WithTerminal.instCategory
CategoryTheory.Category.opposite
CategoryTheory.WithInitial
instCategory
CategoryTheory.Equivalence.inverse
opEquiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Opposite.op
of
Opposite.unop
star
down
CategoryTheory.Limits.IsInitial.to
starInitial
CategoryTheory.CategoryStruct.id
CategoryTheory.CategoryStruct.opposite
β€”β€”
opEquiv_inverse_obj πŸ“–mathematicalβ€”CategoryTheory.Functor.obj
CategoryTheory.WithTerminal
Opposite
CategoryTheory.WithTerminal.instCategory
CategoryTheory.Category.opposite
CategoryTheory.WithInitial
instCategory
CategoryTheory.Equivalence.inverse
opEquiv
Opposite.op
of
Opposite.unop
star
β€”β€”
opEquiv_unitIso_hom_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
Opposite
CategoryTheory.WithInitial
CategoryTheory.Category.opposite
instCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
CategoryTheory.WithTerminal
CategoryTheory.WithTerminal.instCategory
CategoryTheory.WithTerminal.of
Opposite.op
CategoryTheory.WithTerminal.star
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Quiver.Hom.op
CategoryTheory.WithTerminal.down
CategoryTheory.Limits.IsTerminal.from
CategoryTheory.WithTerminal.starTerminal
of
CategoryTheory.CategoryStruct.id
star
Opposite.unop
down
CategoryTheory.Limits.IsInitial.to
starInitial
CategoryTheory.CategoryStruct.opposite
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Equivalence.unitIso
opEquiv
CategoryTheory.Iso
CategoryTheory.Iso.refl
β€”β€”
opEquiv_unitIso_inv_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
Opposite
CategoryTheory.WithInitial
CategoryTheory.Category.opposite
instCategory
CategoryTheory.Functor.comp
CategoryTheory.WithTerminal
CategoryTheory.WithTerminal.instCategory
CategoryTheory.WithTerminal.of
Opposite.op
CategoryTheory.WithTerminal.star
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Quiver.Hom.op
CategoryTheory.WithTerminal.down
CategoryTheory.Limits.IsTerminal.from
CategoryTheory.WithTerminal.starTerminal
of
CategoryTheory.CategoryStruct.id
star
Opposite.unop
down
CategoryTheory.Limits.IsInitial.to
starInitial
CategoryTheory.CategoryStruct.opposite
CategoryTheory.Functor.id
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Equivalence.unitIso
opEquiv
CategoryTheory.Iso
CategoryTheory.Iso.refl
β€”β€”
prelaxfunctor_toPrelaxFunctorStruct_mapβ‚‚ πŸ“–mathematicalβ€”CategoryTheory.PrelaxFunctorStruct.mapβ‚‚
CategoryTheory.Cat
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.Cat.bicategory
Quiver.Hom
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Bicategory.homCategory
CategoryTheory.PrelaxFunctor.toPrelaxFunctorStruct
prelaxfunctor
CategoryTheory.NatTrans.toCatHomβ‚‚
CategoryTheory.WithInitial
CategoryTheory.Bundled.Ξ±
CategoryTheory.Category
instCategory
CategoryTheory.Cat.str
map
CategoryTheory.Cat.Hom.toFunctor
mapβ‚‚
CategoryTheory.Cat.Homβ‚‚.toNatTrans
β€”β€”
prelaxfunctor_toPrelaxFunctorStruct_toPrefunctor_map πŸ“–mathematicalβ€”Prefunctor.map
CategoryTheory.Cat
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.Cat.bicategory
CategoryTheory.PrelaxFunctorStruct.toPrefunctor
Quiver.Hom
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Bicategory.homCategory
CategoryTheory.PrelaxFunctor.toPrelaxFunctorStruct
prelaxfunctor
CategoryTheory.Functor.toCatHom
CategoryTheory.WithInitial
CategoryTheory.Bundled.Ξ±
CategoryTheory.Category
instCategory
CategoryTheory.Cat.str
map
CategoryTheory.Cat.Hom.toFunctor
β€”β€”
prelaxfunctor_toPrelaxFunctorStruct_toPrefunctor_obj πŸ“–mathematicalβ€”Prefunctor.obj
CategoryTheory.Cat
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.Cat.bicategory
CategoryTheory.PrelaxFunctorStruct.toPrefunctor
Quiver.Hom
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Bicategory.homCategory
CategoryTheory.PrelaxFunctor.toPrelaxFunctorStruct
prelaxfunctor
CategoryTheory.Cat.of
CategoryTheory.WithInitial
CategoryTheory.Bundled.Ξ±
CategoryTheory.Category
instCategory
CategoryTheory.Cat.str
β€”β€”
pseudofunctor_mapComp πŸ“–mathematicalβ€”CategoryTheory.Pseudofunctor.mapComp
CategoryTheory.Cat
CategoryTheory.Cat.bicategory
pseudofunctor
CategoryTheory.Cat.Hom.isoMk
CategoryTheory.WithInitial
CategoryTheory.Bundled.Ξ±
CategoryTheory.Category
instCategory
CategoryTheory.Cat.str
map
CategoryTheory.Cat.Hom.toFunctor
CategoryTheory.CategoryStruct.comp
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.Functor.comp
Prefunctor.obj
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.PrelaxFunctorStruct.toPrefunctor
Quiver.Hom
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Bicategory.homCategory
CategoryTheory.PrelaxFunctor.toPrelaxFunctorStruct
prelaxfunctor
Prefunctor.map
mapComp
β€”β€”
pseudofunctor_mapId πŸ“–mathematicalβ€”CategoryTheory.Pseudofunctor.mapId
CategoryTheory.Cat
CategoryTheory.Cat.bicategory
pseudofunctor
CategoryTheory.Cat.Hom.isoMk
CategoryTheory.WithInitial
CategoryTheory.Bundled.Ξ±
CategoryTheory.Category
instCategory
CategoryTheory.Cat.str
map
CategoryTheory.Cat.Hom.toFunctor
CategoryTheory.CategoryStruct.id
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.Functor.id
Prefunctor.obj
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.PrelaxFunctorStruct.toPrefunctor
Quiver.Hom
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Bicategory.homCategory
CategoryTheory.PrelaxFunctor.toPrelaxFunctorStruct
prelaxfunctor
mapId
β€”β€”
pseudofunctor_toPrelaxFunctor πŸ“–mathematicalβ€”CategoryTheory.Pseudofunctor.toPrelaxFunctor
CategoryTheory.Cat
CategoryTheory.Cat.bicategory
pseudofunctor
prelaxfunctor
β€”β€”
starIsoInitial_hom πŸ“–mathematicalβ€”CategoryTheory.Iso.hom
CategoryTheory.WithInitial
instCategory
star
CategoryTheory.Limits.initial
instHasInitial
starIsoInitial
CategoryTheory.Limits.IsInitial.to
starInitial
β€”instHasInitial
starIsoInitial_inv πŸ“–mathematicalβ€”CategoryTheory.Iso.inv
CategoryTheory.WithInitial
instCategory
star
CategoryTheory.Limits.initial
instHasInitial
starIsoInitial
CategoryTheory.Limits.IsInitial.to
CategoryTheory.Limits.initialIsInitial
β€”instHasInitial

CategoryTheory.WithTerminal

Definitions

NameCategoryTheorems
comp πŸ“–CompOpβ€”
down πŸ“–CompOp
21 mathmath: CategoryTheory.WithInitial.opEquiv_unitIso_inv_app, CategoryTheory.WithInitial.opEquiv_functor_map, CategoryTheory.WithInitial.opEquiv_counitIso_hom_app, opEquiv_counitIso_inv_app, down_id, opEquiv_unitIso_hom_app, opEquiv_counitIso_hom_app, lift_map, liftToTerminal_map, map_map, AugmentedSimplexCategory.equivAugmentedSimplicialObject_counitIso_inv_app_left_app, ofCommaObject_map, AugmentedSimplexCategory.equivAugmentedSimplicialObject_counitIso_hom_app_left_app, CategoryTheory.WithInitial.opEquiv_counitIso_inv_app, liftFromOver_obj_map, down_comp, equivComma_inverse_obj_map, CategoryTheory.WithInitial.opEquiv_unitIso_hom_app, opEquiv_unitIso_inv_app, AugmentedSimplexCategory.equivAugmentedSimplicialObject_inverse_obj_map, opEquiv_functor_map
equivComma πŸ“–CompOp
25 mathmath: equivComma_functor_obj_left_obj, equivComma_counitIso_hom_app_left_app, equivComma_counitIso_inv_app_left_app, equivComma_inverse_obj_obj, equivComma_counitIso_hom_app_right, AugmentedSimplexCategory.equivAugmentedSimplicialObject_inverse_map_app, equivComma_functor_obj_left_map, equivComma_functor_obj_right, equivComma_functor_map_right, AugmentedSimplexCategory.equivAugmentedSimplicialObject_counitIso_inv_app_left_app, equivComma_functor_obj_hom_app, AugmentedSimplexCategory.equivAugmentedSimplicialObject_functor_map_right, AugmentedSimplexCategory.equivAugmentedSimplicialObject_functor_map_left_app, AugmentedSimplexCategory.equivAugmentedSimplicialObject_counitIso_hom_app_right, AugmentedSimplexCategory.equivAugmentedSimplicialObject_counitIso_hom_app_left_app, AugmentedSimplexCategory.equivAugmentedSimplicialObject_unitIso_hom_app_app, AugmentedSimplexCategory.equivAugmentedSimplicialObject_counitIso_inv_app_right, AugmentedSimplexCategory.equivAugmentedSimplicialObject_unitIso_inv_app_app, equivComma_functor_map_left_app, equivComma_inverse_map_app, equivComma_inverse_obj_map, liftFromOver_map_app, equivComma_counitIso_inv_app_right, equivComma_unitIso_hom_app_app, equivComma_unitIso_inv_app_app
homFrom πŸ“–CompOpβ€”
id πŸ“–CompOpβ€”
incl πŸ“–CompOp
33 mathmath: equivComma_functor_obj_left_obj, equivComma_counitIso_hom_app_left_app, equivComma_counitIso_inv_app_left_app, instFaithfulIncl, equivComma_functor_obj_left_map, mkCommaMorphism_left_app, AugmentedSimplexCategory.equivAugmentedSimplicialObjectFunctorCompToArrowIso_inv_app_left, inclLift_hom_app, mkCommaObject_left_map, AugmentedSimplexCategory.equivAugmentedSimplicialObject_counitIso_inv_app_left_app, liftToTerminalUnique_inv_app, AugmentedSimplexCategory.equivAugmentedSimplicialObjectFunctorCompDropIso_hom_app_app, lift_map_liftStar, inclLiftToTerminal_inv_app, equivComma_functor_obj_hom_app, AugmentedSimplexCategory.equivAugmentedSimplicialObject_functor_map_left_app, inclLift_inv_app, AugmentedSimplexCategory.equivAugmentedSimplicialObjectFunctorCompToArrowIso_hom_app_left, AugmentedSimplexCategory.equivAugmentedSimplicialObject_counitIso_hom_app_left_app, AugmentedSimplexCategory.equivAugmentedSimplicialObject_functor_obj_hom_app, mkCommaObject_hom_app, mkCommaObject_left_obj, AugmentedSimplexCategory.equivAugmentedSimplicialObject_unitIso_hom_app_app, AugmentedSimplexCategory.equivAugmentedSimplicialObject_unitIso_inv_app_app, inclLiftToTerminal_hom_app, instFullIncl, equivComma_functor_map_left_app, AugmentedSimplexCategory.equivAugmentedSimplicialObjectFunctorCompDropIso_inv_app_app, AugmentedSimplexCategory.equivAugmentedSimplicialObject_functor_obj_left_map, equivComma_unitIso_hom_app_app, liftToTerminalUnique_hom_app, equivComma_unitIso_inv_app_app, AugmentedSimplexCategory.equivAugmentedSimplicialObject_functor_obj_left_obj
inclLift πŸ“–CompOp
3 mathmath: inclLift_hom_app, lift_map_liftStar, inclLift_inv_app
inclLiftToTerminal πŸ“–CompOp
2 mathmath: inclLiftToTerminal_inv_app, inclLiftToTerminal_hom_app
instCategory πŸ“–CompOp
115 mathmath: coneEquiv_unitIso_hom_app_hom_left, mkCommaObject_right, equivComma_functor_obj_left_obj, equivComma_counitIso_hom_app_left_app, CategoryTheory.WithInitial.opEquiv_unitIso_inv_app, equivComma_counitIso_inv_app_left_app, liftStar_inv, instFaithfulIncl, opEquiv_inverse_obj, CategoryTheory.Limits.PreservesLimitsOfShape.ofWidePullbacks, mapβ‚‚_app, coneEquiv_inverse_obj_Ο€_app_left, mapComp_hom_app, CategoryTheory.WithInitial.opEquiv_functor_map, equivComma_inverse_obj_obj, equivComma_counitIso_hom_app_right, CategoryTheory.WithInitial.opEquiv_counitIso_hom_app, AugmentedSimplexCategory.equivAugmentedSimplicialObject_inverse_map_app, equivComma_functor_obj_left_map, mkCommaMorphism_left_app, equivComma_functor_obj_right, ofCommaObject_obj, opEquiv_counitIso_inv_app, liftStar_hom, coneEquiv_functor_obj_Ο€_app_star, coneEquiv_counitIso_inv_app_hom, AugmentedSimplexCategory.equivAugmentedSimplicialObjectFunctorCompToArrowIso_inv_app_left, down_id, opEquiv_unitIso_hom_app, opEquiv_counitIso_hom_app, lift_map, inclLift_hom_app, equivComma_functor_map_right, liftToTerminal_map, CategoryTheory.WithInitial.opEquiv_inverse_obj, coneEquiv_functor_obj_Ο€_app_of, map_map, lift_obj, liftToTerminal_obj, coneEquiv_inverse_obj_pt_left, mkCommaObject_left_map, AugmentedSimplexCategory.equivAugmentedSimplicialObject_counitIso_inv_app_left_app, ofCommaMorphism_app, liftToTerminalUnique_inv_app, mapComp_inv_app, mkCommaMorphism_right, AugmentedSimplexCategory.equivAugmentedSimplicialObjectFunctorCompDropIso_hom_app_app, opEquiv_functor_obj, lift_map_liftStar, inclLiftToTerminal_inv_app, equivComma_functor_obj_hom_app, isLimitEquiv_symm_apply_lift, liftFromOver_obj_obj, coneEquiv_inverse_obj_pt_hom, AugmentedSimplexCategory.equivAugmentedSimplicialObject_functor_map_right, starIsoTerminal_inv, liftFromOverComp_hom_app, AugmentedSimplexCategory.equivAugmentedSimplicialObject_functor_map_left_app, AugmentedSimplexCategory.equivAugmentedSimplicialObject_counitIso_hom_app_right, inclLift_inv_app, ofCommaObject_map, AugmentedSimplexCategory.equivAugmentedSimplicialObjectFunctorCompToArrowIso_hom_app_left, AugmentedSimplexCategory.equivAugmentedSimplicialObject_counitIso_hom_app_left_app, AugmentedSimplexCategory.equivAugmentedSimplicialObject_functor_obj_hom_app, starIsoTerminal_hom, CategoryTheory.WithInitial.opEquiv_counitIso_inv_app, prelaxfunctor_toPrelaxFunctorStruct_mapβ‚‚, widePullbackShapeEquiv_inverse_obj, subsingleton_hom, instHasTerminal, instIsCofilteredOfIsCofilteredOrEmpty, map_obj, mkCommaObject_hom_app, mkCommaObject_left_obj, AugmentedSimplexCategory.equivAugmentedSimplicialObject_unitIso_hom_app_app, AugmentedSimplexCategory.equivAugmentedSimplicialObject_counitIso_inv_app_right, AugmentedSimplexCategory.equivAugmentedSimplicialObject_unitIso_inv_app_app, mapId_hom_app, inclLiftToTerminal_hom_app, liftFromOver_obj_map, isLimitEquiv_apply_lift_left, pseudofunctor_mapId, pseudofunctor_mapComp, instFullIncl, prelaxfunctor_toPrelaxFunctorStruct_toPrefunctor_obj, coneEquiv_unitIso_inv_app_hom_left, equivComma_functor_map_left_app, AugmentedSimplexCategory.equivAugmentedSimplicialObjectFunctorCompDropIso_inv_app_app, prelaxfunctor_toPrelaxFunctorStruct_toPrefunctor_map, CategoryTheory.WithInitial.opEquiv_functor_obj, down_comp, mapId_inv_app, liftFromOverComp_inv_app, AugmentedSimplexCategory.equivAugmentedSimplicialObject_functor_obj_left_map, equivComma_inverse_map_app, equivComma_inverse_obj_map, liftFromOver_map_app, coneEquiv_inverse_map_hom_left, CategoryTheory.WithInitial.opEquiv_inverse_map, coneEquiv_functor_obj_pt, equivComma_counitIso_inv_app_right, CategoryTheory.WithInitial.opEquiv_unitIso_hom_app, equivComma_unitIso_hom_app_app, opEquiv_unitIso_inv_app, AugmentedSimplexCategory.equivAugmentedSimplicialObject_inverse_obj_map, liftToTerminalUnique_hom_app, opEquiv_functor_map, equivComma_unitIso_inv_app_app, coneEquiv_counitIso_hom_app_hom, AugmentedSimplexCategory.equivAugmentedSimplicialObject_functor_obj_left_obj, widePullbackShapeEquiv_functor_obj, coneEquiv_inverse_obj_pt_right_as, opEquiv_inverse_map, coneEquiv_functor_map_hom, isIso_of_from_star
instUniqueHomStar πŸ“–CompOpβ€”
liftStar πŸ“–CompOp
3 mathmath: liftStar_inv, liftStar_hom, lift_map_liftStar
liftToTerminal πŸ“–CompOp
6 mathmath: liftToTerminal_map, liftToTerminal_obj, liftToTerminalUnique_inv_app, inclLiftToTerminal_inv_app, inclLiftToTerminal_hom_app, liftToTerminalUnique_hom_app
liftToTerminalUnique πŸ“–CompOp
2 mathmath: liftToTerminalUnique_inv_app, liftToTerminalUnique_hom_app
liftUnique πŸ“–CompOpβ€”
map πŸ“–CompOp
11 mathmath: mapβ‚‚_app, mapComp_hom_app, map_map, mapComp_inv_app, prelaxfunctor_toPrelaxFunctorStruct_mapβ‚‚, map_obj, mapId_hom_app, pseudofunctor_mapId, pseudofunctor_mapComp, prelaxfunctor_toPrelaxFunctorStruct_toPrefunctor_map, mapId_inv_app
mapComp πŸ“–CompOp
3 mathmath: mapComp_hom_app, mapComp_inv_app, pseudofunctor_mapComp
mapId πŸ“–CompOp
3 mathmath: mapId_hom_app, pseudofunctor_mapId, mapId_inv_app
mapβ‚‚ πŸ“–CompOp
2 mathmath: mapβ‚‚_app, prelaxfunctor_toPrelaxFunctorStruct_mapβ‚‚
mkCommaMorphism πŸ“–CompOp
8 mathmath: equivComma_counitIso_hom_app_left_app, equivComma_counitIso_inv_app_left_app, equivComma_counitIso_hom_app_right, mkCommaMorphism_left_app, mkCommaMorphism_right, equivComma_counitIso_inv_app_right, equivComma_unitIso_hom_app_app, equivComma_unitIso_inv_app_app
mkCommaObject πŸ“–CompOp
14 mathmath: mkCommaObject_right, equivComma_counitIso_hom_app_left_app, equivComma_counitIso_inv_app_left_app, equivComma_counitIso_hom_app_right, mkCommaMorphism_left_app, equivComma_functor_map_right, mkCommaObject_left_map, mkCommaMorphism_right, mkCommaObject_hom_app, mkCommaObject_left_obj, equivComma_functor_map_left_app, equivComma_counitIso_inv_app_right, equivComma_unitIso_hom_app_app, equivComma_unitIso_inv_app_app
ofCommaMorphism πŸ“–CompOp
7 mathmath: equivComma_counitIso_hom_app_left_app, equivComma_counitIso_inv_app_left_app, equivComma_counitIso_hom_app_right, ofCommaMorphism_app, equivComma_counitIso_inv_app_right, equivComma_unitIso_hom_app_app, equivComma_unitIso_inv_app_app
ofCommaObject πŸ“–CompOp
10 mathmath: equivComma_counitIso_hom_app_left_app, equivComma_counitIso_inv_app_left_app, equivComma_counitIso_hom_app_right, ofCommaObject_obj, ofCommaMorphism_app, ofCommaObject_map, equivComma_inverse_map_app, equivComma_counitIso_inv_app_right, equivComma_unitIso_hom_app_app, equivComma_unitIso_inv_app_app
opEquiv πŸ“–CompOp
8 mathmath: opEquiv_inverse_obj, opEquiv_counitIso_inv_app, opEquiv_unitIso_hom_app, opEquiv_counitIso_hom_app, opEquiv_functor_obj, opEquiv_unitIso_inv_app, opEquiv_functor_map, opEquiv_inverse_map
prelaxfunctor πŸ“–CompOp
6 mathmath: prelaxfunctor_toPrelaxFunctorStruct_mapβ‚‚, pseudofunctor_toPrelaxFunctor, pseudofunctor_mapId, pseudofunctor_mapComp, prelaxfunctor_toPrelaxFunctorStruct_toPrefunctor_obj, prelaxfunctor_toPrelaxFunctorStruct_toPrefunctor_map
pseudofunctor πŸ“–CompOp
3 mathmath: pseudofunctor_toPrelaxFunctor, pseudofunctor_mapId, pseudofunctor_mapComp
starIsoTerminal πŸ“–CompOp
2 mathmath: starIsoTerminal_inv, starIsoTerminal_hom
starTerminal πŸ“–CompOp
16 mathmath: CategoryTheory.WithInitial.opEquiv_unitIso_inv_app, CategoryTheory.WithInitial.opEquiv_functor_map, CategoryTheory.WithInitial.opEquiv_counitIso_hom_app, opEquiv_counitIso_inv_app, opEquiv_unitIso_hom_app, opEquiv_counitIso_hom_app, lift_map_liftStar, equivComma_functor_obj_hom_app, starIsoTerminal_inv, AugmentedSimplexCategory.equivAugmentedSimplicialObject_functor_obj_hom_app, CategoryTheory.WithInitial.opEquiv_counitIso_inv_app, mkCommaObject_hom_app, CategoryTheory.WithInitial.opEquiv_unitIso_hom_app, opEquiv_unitIso_inv_app, AugmentedSimplexCategory.equivAugmentedSimplicialObject_inverse_obj_map, opEquiv_inverse_map
widePullbackShapeEquiv πŸ“–CompOp
2 mathmath: widePullbackShapeEquiv_inverse_obj, widePullbackShapeEquiv_functor_obj

Theorems

NameKindAssumesProvesValidatesDepends On
down_comp πŸ“–mathematicalβ€”down
CategoryTheory.CategoryStruct.comp
CategoryTheory.WithTerminal
CategoryTheory.Category.toCategoryStruct
instCategory
of
β€”β€”
down_id πŸ“–mathematicalβ€”down
CategoryTheory.CategoryStruct.id
CategoryTheory.WithTerminal
CategoryTheory.Category.toCategoryStruct
instCategory
of
β€”β€”
equivComma_counitIso_hom_app_left_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
CategoryTheory.Comma.left
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.id
CategoryTheory.Functor.const
CategoryTheory.Functor.obj
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Functor.comp
CategoryTheory.WithTerminal
instCategory
ofCommaObject
ofCommaMorphism
mkCommaObject
mkCommaMorphism
CategoryTheory.CommaMorphism.left
CategoryTheory.Iso.hom
CategoryTheory.Equivalence.counitIso
equivComma
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
incl
CategoryTheory.Comma.right
β€”β€”
equivComma_counitIso_hom_app_right πŸ“–mathematicalβ€”CategoryTheory.CommaMorphism.right
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.id
CategoryTheory.Functor.const
CategoryTheory.Functor.obj
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Functor.comp
CategoryTheory.WithTerminal
instCategory
ofCommaObject
ofCommaMorphism
mkCommaObject
mkCommaMorphism
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Equivalence.counitIso
equivComma
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.right
β€”β€”
equivComma_counitIso_inv_app_left_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
CategoryTheory.Comma.left
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.id
CategoryTheory.Functor.const
CategoryTheory.Functor.obj
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Functor.comp
CategoryTheory.WithTerminal
instCategory
ofCommaObject
ofCommaMorphism
mkCommaObject
mkCommaMorphism
CategoryTheory.CommaMorphism.left
CategoryTheory.Iso.inv
CategoryTheory.Equivalence.counitIso
equivComma
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
incl
CategoryTheory.Comma.right
β€”β€”
equivComma_counitIso_inv_app_right πŸ“–mathematicalβ€”CategoryTheory.CommaMorphism.right
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.id
CategoryTheory.Functor.const
CategoryTheory.Functor.obj
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Functor.comp
CategoryTheory.WithTerminal
instCategory
ofCommaObject
ofCommaMorphism
mkCommaObject
mkCommaMorphism
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
CategoryTheory.Equivalence.counitIso
equivComma
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.right
β€”β€”
equivComma_functor_map_left_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.WithTerminal
instCategory
incl
CategoryTheory.CommaMorphism.left
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.id
CategoryTheory.Functor.const
mkCommaObject
CategoryTheory.Functor.map
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Equivalence.functor
equivComma
CategoryTheory.Functor.obj
β€”β€”
equivComma_functor_map_right πŸ“–mathematicalβ€”CategoryTheory.CommaMorphism.right
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.id
CategoryTheory.Functor.const
mkCommaObject
CategoryTheory.Functor.map
CategoryTheory.WithTerminal
instCategory
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Equivalence.functor
equivComma
CategoryTheory.NatTrans.app
star
β€”β€”
equivComma_functor_obj_hom_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
CategoryTheory.WithTerminal
instCategory
incl
CategoryTheory.Functor.const
star
CategoryTheory.Comma.hom
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Equivalence.functor
equivComma
CategoryTheory.Functor.map
CategoryTheory.Limits.IsTerminal.from
starTerminal
of
β€”β€”
equivComma_functor_obj_left_map πŸ“–mathematicalβ€”CategoryTheory.Functor.map
CategoryTheory.Comma.left
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.id
CategoryTheory.Functor.const
CategoryTheory.Functor.obj
CategoryTheory.WithTerminal
instCategory
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Equivalence.functor
equivComma
incl
β€”β€”
equivComma_functor_obj_left_obj πŸ“–mathematicalβ€”CategoryTheory.Functor.obj
CategoryTheory.Comma.left
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.id
CategoryTheory.Functor.const
CategoryTheory.WithTerminal
instCategory
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Equivalence.functor
equivComma
incl
β€”β€”
equivComma_functor_obj_right πŸ“–mathematicalβ€”CategoryTheory.Comma.right
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.id
CategoryTheory.Functor.const
CategoryTheory.Functor.obj
CategoryTheory.WithTerminal
instCategory
CategoryTheory.Comma
CategoryTheory.commaCategory
CategoryTheory.Equivalence.functor
equivComma
star
β€”β€”
equivComma_inverse_map_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
CategoryTheory.WithTerminal
instCategory
ofCommaObject
CategoryTheory.Functor.map
CategoryTheory.Comma
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.id
CategoryTheory.Functor.const
CategoryTheory.commaCategory
CategoryTheory.Equivalence.inverse
equivComma
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Comma.left
CategoryTheory.Comma.right
CategoryTheory.CommaMorphism.left
CategoryTheory.CommaMorphism.right
β€”β€”
equivComma_inverse_obj_map πŸ“–mathematicalβ€”CategoryTheory.Functor.map
CategoryTheory.WithTerminal
instCategory
CategoryTheory.Functor.obj
CategoryTheory.Comma
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.id
CategoryTheory.Functor.const
CategoryTheory.commaCategory
CategoryTheory.Equivalence.inverse
equivComma
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.left
CategoryTheory.Comma.right
down
CategoryTheory.NatTrans.app
CategoryTheory.Comma.hom
CategoryTheory.CategoryStruct.id
β€”β€”
equivComma_inverse_obj_obj πŸ“–mathematicalβ€”CategoryTheory.Functor.obj
CategoryTheory.WithTerminal
instCategory
CategoryTheory.Comma
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.id
CategoryTheory.Functor.const
CategoryTheory.commaCategory
CategoryTheory.Equivalence.inverse
equivComma
CategoryTheory.Comma.left
CategoryTheory.Comma.right
β€”β€”
equivComma_unitIso_hom_app_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
CategoryTheory.WithTerminal
instCategory
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
CategoryTheory.Comma
CategoryTheory.Functor.const
CategoryTheory.commaCategory
mkCommaObject
mkCommaMorphism
ofCommaObject
ofCommaMorphism
CategoryTheory.Iso.hom
CategoryTheory.Equivalence.unitIso
equivComma
incl
star
CategoryTheory.Iso
CategoryTheory.Iso.app
CategoryTheory.Iso.refl
β€”β€”
equivComma_unitIso_inv_app_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
CategoryTheory.WithTerminal
instCategory
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
CategoryTheory.Comma
CategoryTheory.Functor.id
CategoryTheory.Functor.const
CategoryTheory.commaCategory
mkCommaObject
mkCommaMorphism
ofCommaObject
ofCommaMorphism
CategoryTheory.Iso.inv
CategoryTheory.Equivalence.unitIso
equivComma
incl
star
CategoryTheory.Iso
CategoryTheory.Iso.app
CategoryTheory.Iso.refl
β€”β€”
false_of_from_star πŸ“–β€”β€”β€”β€”β€”
false_of_from_star' πŸ“–β€”β€”β€”β€”β€”
inclLiftToTerminal_hom_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.WithTerminal
instCategory
incl
lift
CategoryTheory.Limits.IsTerminal.from
CategoryTheory.Functor.obj
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
liftToTerminal
inclLiftToTerminal
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
β€”β€”
inclLiftToTerminal_inv_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.WithTerminal
instCategory
incl
lift
CategoryTheory.Limits.IsTerminal.from
CategoryTheory.Functor.obj
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
liftToTerminal
inclLiftToTerminal
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
β€”β€”
inclLift_hom_app πŸ“–mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.WithTerminal
instCategory
incl
lift
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
inclLift
CategoryTheory.CategoryStruct.id
β€”β€”
inclLift_inv_app πŸ“–mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.WithTerminal
instCategory
incl
lift
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
inclLift
CategoryTheory.CategoryStruct.id
β€”β€”
instFaithfulIncl πŸ“–mathematicalβ€”CategoryTheory.Functor.Faithful
CategoryTheory.WithTerminal
instCategory
incl
β€”β€”
instFullIncl πŸ“–mathematicalβ€”CategoryTheory.Functor.Full
CategoryTheory.WithTerminal
instCategory
incl
β€”β€”
instHasTerminal πŸ“–mathematicalβ€”CategoryTheory.Limits.HasTerminal
CategoryTheory.WithTerminal
instCategory
β€”CategoryTheory.Limits.hasTerminal_of_unique
Unique.instSubsingleton
isIso_of_from_star πŸ“–mathematicalβ€”CategoryTheory.IsIso
CategoryTheory.WithTerminal
instCategory
star
β€”β€”
liftStar_hom πŸ“–mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
CategoryTheory.Iso.hom
CategoryTheory.WithTerminal
instCategory
lift
star
liftStar
CategoryTheory.CategoryStruct.id
β€”β€”
liftStar_inv πŸ“–mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
CategoryTheory.Iso.inv
CategoryTheory.WithTerminal
instCategory
lift
star
liftStar
CategoryTheory.CategoryStruct.id
β€”β€”
liftToTerminalUnique_hom_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
CategoryTheory.WithTerminal
instCategory
lift
CategoryTheory.Limits.IsTerminal.from
CategoryTheory.Functor.obj
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
liftToTerminal
liftToTerminalUnique
CategoryTheory.Iso
CategoryTheory.Iso.app
CategoryTheory.Functor.comp
incl
β€”β€”
liftToTerminalUnique_inv_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
CategoryTheory.WithTerminal
instCategory
lift
CategoryTheory.Limits.IsTerminal.from
CategoryTheory.Functor.obj
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
liftToTerminal
liftToTerminalUnique
CategoryTheory.Iso
CategoryTheory.Iso.app
CategoryTheory.Functor.comp
incl
β€”β€”
liftToTerminal_map πŸ“–mathematicalβ€”CategoryTheory.Functor.map
CategoryTheory.WithTerminal
instCategory
liftToTerminal
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
down
CategoryTheory.Limits.IsTerminal.from
CategoryTheory.CategoryStruct.id
β€”β€”
liftToTerminal_obj πŸ“–mathematicalβ€”CategoryTheory.Functor.obj
CategoryTheory.WithTerminal
instCategory
liftToTerminal
β€”β€”
lift_map πŸ“–mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
CategoryTheory.WithTerminal
instCategory
lift
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
down
CategoryTheory.CategoryStruct.id
β€”β€”
lift_map_liftStar πŸ“–mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
CategoryTheory.WithTerminal
instCategory
lift
incl
star
CategoryTheory.Limits.IsTerminal.from
starTerminal
CategoryTheory.Iso.hom
liftStar
CategoryTheory.Functor.comp
CategoryTheory.NatTrans.app
CategoryTheory.Functor
CategoryTheory.Functor.category
inclLift
β€”CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
lift_obj πŸ“–mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
CategoryTheory.WithTerminal
instCategory
lift
β€”β€”
mapComp_hom_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
CategoryTheory.WithTerminal
instCategory
map
CategoryTheory.Functor.comp
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
mapComp
of
CategoryTheory.Functor.obj
star
CategoryTheory.Iso
CategoryTheory.Iso.refl
β€”β€”
mapComp_inv_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
CategoryTheory.WithTerminal
instCategory
CategoryTheory.Functor.comp
map
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
mapComp
of
CategoryTheory.Functor.obj
star
CategoryTheory.Iso
CategoryTheory.Iso.refl
β€”β€”
mapId_hom_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
CategoryTheory.WithTerminal
instCategory
map
CategoryTheory.Functor.id
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
mapId
of
star
CategoryTheory.Iso
CategoryTheory.Iso.refl
β€”β€”
mapId_inv_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
CategoryTheory.WithTerminal
instCategory
CategoryTheory.Functor.id
map
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
mapId
of
star
CategoryTheory.Iso
CategoryTheory.Iso.refl
β€”β€”
map_map πŸ“–mathematicalβ€”CategoryTheory.Functor.map
CategoryTheory.WithTerminal
instCategory
map
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
of
CategoryTheory.Functor.obj
star
down
β€”β€”
map_obj πŸ“–mathematicalβ€”CategoryTheory.Functor.obj
CategoryTheory.WithTerminal
instCategory
map
of
star
β€”β€”
mapβ‚‚_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
CategoryTheory.WithTerminal
instCategory
map
mapβ‚‚
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.CategoryStruct.id
star
β€”β€”
mkCommaMorphism_left_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.WithTerminal
instCategory
incl
CategoryTheory.CommaMorphism.left
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.id
CategoryTheory.Functor.const
mkCommaObject
mkCommaMorphism
CategoryTheory.Functor.obj
β€”β€”
mkCommaMorphism_right πŸ“–mathematicalβ€”CategoryTheory.CommaMorphism.right
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.id
CategoryTheory.Functor.const
mkCommaObject
mkCommaMorphism
CategoryTheory.NatTrans.app
CategoryTheory.WithTerminal
instCategory
star
β€”β€”
mkCommaObject_hom_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
CategoryTheory.WithTerminal
instCategory
incl
CategoryTheory.Functor.const
star
CategoryTheory.Comma.hom
mkCommaObject
CategoryTheory.Functor.map
CategoryTheory.Limits.IsTerminal.from
starTerminal
of
β€”β€”
mkCommaObject_left_map πŸ“–mathematicalβ€”CategoryTheory.Functor.map
CategoryTheory.Comma.left
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.id
CategoryTheory.Functor.const
mkCommaObject
CategoryTheory.WithTerminal
instCategory
CategoryTheory.Functor.obj
incl
β€”β€”
mkCommaObject_left_obj πŸ“–mathematicalβ€”CategoryTheory.Functor.obj
CategoryTheory.Comma.left
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.id
CategoryTheory.Functor.const
mkCommaObject
CategoryTheory.WithTerminal
instCategory
incl
β€”β€”
mkCommaObject_right πŸ“–mathematicalβ€”CategoryTheory.Comma.right
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.id
CategoryTheory.Functor.const
mkCommaObject
CategoryTheory.Functor.obj
CategoryTheory.WithTerminal
instCategory
star
β€”β€”
ofCommaMorphism_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
CategoryTheory.WithTerminal
instCategory
ofCommaObject
ofCommaMorphism
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Comma.left
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.id
CategoryTheory.Functor.const
CategoryTheory.Comma.right
CategoryTheory.CommaMorphism.left
CategoryTheory.CommaMorphism.right
β€”β€”
ofCommaObject_map πŸ“–mathematicalβ€”CategoryTheory.Functor.map
CategoryTheory.WithTerminal
instCategory
ofCommaObject
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Comma.left
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.id
CategoryTheory.Functor.const
CategoryTheory.Comma.right
down
CategoryTheory.NatTrans.app
CategoryTheory.Comma.hom
CategoryTheory.CategoryStruct.id
β€”β€”
ofCommaObject_obj πŸ“–mathematicalβ€”CategoryTheory.Functor.obj
CategoryTheory.WithTerminal
instCategory
ofCommaObject
CategoryTheory.Comma.left
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.id
CategoryTheory.Functor.const
CategoryTheory.Comma.right
β€”β€”
opEquiv_counitIso_hom_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
CategoryTheory.WithInitial
Opposite
CategoryTheory.WithInitial.instCategory
CategoryTheory.Category.opposite
CategoryTheory.Functor.comp
CategoryTheory.WithTerminal
instCategory
Opposite.op
of
Opposite.unop
star
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.WithInitial.down
CategoryTheory.WithInitial.of
CategoryTheory.WithInitial.star
CategoryTheory.Limits.IsTerminal.from
starTerminal
CategoryTheory.CategoryStruct.id
CategoryTheory.CategoryStruct.opposite
Quiver.Hom.op
down
CategoryTheory.Limits.IsInitial.to
CategoryTheory.WithInitial.starInitial
CategoryTheory.Functor.id
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Equivalence.counitIso
opEquiv
CategoryTheory.Iso
CategoryTheory.Iso.refl
β€”β€”
opEquiv_counitIso_inv_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
CategoryTheory.WithInitial
Opposite
CategoryTheory.WithInitial.instCategory
CategoryTheory.Category.opposite
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
CategoryTheory.WithTerminal
instCategory
Opposite.op
of
Opposite.unop
star
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.WithInitial.down
CategoryTheory.WithInitial.of
CategoryTheory.WithInitial.star
CategoryTheory.Limits.IsTerminal.from
starTerminal
CategoryTheory.CategoryStruct.id
CategoryTheory.CategoryStruct.opposite
Quiver.Hom.op
down
CategoryTheory.Limits.IsInitial.to
CategoryTheory.WithInitial.starInitial
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Equivalence.counitIso
opEquiv
CategoryTheory.Iso
CategoryTheory.Iso.refl
β€”β€”
opEquiv_functor_map πŸ“–mathematicalβ€”CategoryTheory.Functor.map
Opposite
CategoryTheory.WithTerminal
CategoryTheory.Category.opposite
instCategory
CategoryTheory.WithInitial
CategoryTheory.WithInitial.instCategory
CategoryTheory.Equivalence.functor
opEquiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Opposite.unop
CategoryTheory.WithInitial.of
Opposite.op
CategoryTheory.WithInitial.star
Quiver.Hom.op
down
CategoryTheory.Limits.IsInitial.to
CategoryTheory.WithInitial.starInitial
CategoryTheory.CategoryStruct.id
β€”β€”
opEquiv_functor_obj πŸ“–mathematicalβ€”CategoryTheory.Functor.obj
Opposite
CategoryTheory.WithTerminal
CategoryTheory.Category.opposite
instCategory
CategoryTheory.WithInitial
CategoryTheory.WithInitial.instCategory
CategoryTheory.Equivalence.functor
opEquiv
Opposite.unop
CategoryTheory.WithInitial.of
Opposite.op
CategoryTheory.WithInitial.star
β€”β€”
opEquiv_inverse_map πŸ“–mathematicalβ€”CategoryTheory.Functor.map
CategoryTheory.WithInitial
Opposite
CategoryTheory.WithInitial.instCategory
CategoryTheory.Category.opposite
CategoryTheory.WithTerminal
instCategory
CategoryTheory.Equivalence.inverse
opEquiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Opposite.op
of
Opposite.unop
star
CategoryTheory.WithInitial.down
CategoryTheory.Limits.IsTerminal.from
starTerminal
CategoryTheory.CategoryStruct.id
CategoryTheory.CategoryStruct.opposite
β€”β€”
opEquiv_inverse_obj πŸ“–mathematicalβ€”CategoryTheory.Functor.obj
CategoryTheory.WithInitial
Opposite
CategoryTheory.WithInitial.instCategory
CategoryTheory.Category.opposite
CategoryTheory.WithTerminal
instCategory
CategoryTheory.Equivalence.inverse
opEquiv
Opposite.op
of
Opposite.unop
star
β€”β€”
opEquiv_unitIso_hom_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
Opposite
CategoryTheory.WithTerminal
CategoryTheory.Category.opposite
instCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
CategoryTheory.WithInitial
CategoryTheory.WithInitial.instCategory
CategoryTheory.WithInitial.of
Opposite.op
CategoryTheory.WithInitial.star
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Quiver.Hom.op
down
CategoryTheory.Limits.IsInitial.to
CategoryTheory.WithInitial.starInitial
of
CategoryTheory.CategoryStruct.id
star
Opposite.unop
CategoryTheory.WithInitial.down
CategoryTheory.Limits.IsTerminal.from
starTerminal
CategoryTheory.CategoryStruct.opposite
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Equivalence.unitIso
opEquiv
CategoryTheory.Iso
CategoryTheory.Iso.refl
β€”β€”
opEquiv_unitIso_inv_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
Opposite
CategoryTheory.WithTerminal
CategoryTheory.Category.opposite
instCategory
CategoryTheory.Functor.comp
CategoryTheory.WithInitial
CategoryTheory.WithInitial.instCategory
CategoryTheory.WithInitial.of
Opposite.op
CategoryTheory.WithInitial.star
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Quiver.Hom.op
down
CategoryTheory.Limits.IsInitial.to
CategoryTheory.WithInitial.starInitial
of
CategoryTheory.CategoryStruct.id
star
Opposite.unop
CategoryTheory.WithInitial.down
CategoryTheory.Limits.IsTerminal.from
starTerminal
CategoryTheory.CategoryStruct.opposite
CategoryTheory.Functor.id
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Equivalence.unitIso
opEquiv
CategoryTheory.Iso
CategoryTheory.Iso.refl
β€”β€”
prelaxfunctor_toPrelaxFunctorStruct_mapβ‚‚ πŸ“–mathematicalβ€”CategoryTheory.PrelaxFunctorStruct.mapβ‚‚
CategoryTheory.Cat
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.Cat.bicategory
Quiver.Hom
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Bicategory.homCategory
CategoryTheory.PrelaxFunctor.toPrelaxFunctorStruct
prelaxfunctor
CategoryTheory.NatTrans.toCatHomβ‚‚
CategoryTheory.WithTerminal
CategoryTheory.Bundled.Ξ±
CategoryTheory.Category
instCategory
CategoryTheory.Cat.str
map
CategoryTheory.Cat.Hom.toFunctor
mapβ‚‚
CategoryTheory.Cat.Homβ‚‚.toNatTrans
β€”β€”
prelaxfunctor_toPrelaxFunctorStruct_toPrefunctor_map πŸ“–mathematicalβ€”Prefunctor.map
CategoryTheory.Cat
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.Cat.bicategory
CategoryTheory.PrelaxFunctorStruct.toPrefunctor
Quiver.Hom
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Bicategory.homCategory
CategoryTheory.PrelaxFunctor.toPrelaxFunctorStruct
prelaxfunctor
CategoryTheory.Functor.toCatHom
CategoryTheory.WithTerminal
CategoryTheory.Bundled.Ξ±
CategoryTheory.Category
instCategory
CategoryTheory.Cat.str
map
CategoryTheory.Cat.Hom.toFunctor
β€”β€”
prelaxfunctor_toPrelaxFunctorStruct_toPrefunctor_obj πŸ“–mathematicalβ€”Prefunctor.obj
CategoryTheory.Cat
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.Cat.bicategory
CategoryTheory.PrelaxFunctorStruct.toPrefunctor
Quiver.Hom
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Bicategory.homCategory
CategoryTheory.PrelaxFunctor.toPrelaxFunctorStruct
prelaxfunctor
CategoryTheory.Cat.of
CategoryTheory.WithTerminal
CategoryTheory.Bundled.Ξ±
CategoryTheory.Category
instCategory
CategoryTheory.Cat.str
β€”β€”
pseudofunctor_mapComp πŸ“–mathematicalβ€”CategoryTheory.Pseudofunctor.mapComp
CategoryTheory.Cat
CategoryTheory.Cat.bicategory
pseudofunctor
CategoryTheory.Cat.Hom.isoMk
CategoryTheory.WithTerminal
CategoryTheory.Bundled.Ξ±
CategoryTheory.Category
instCategory
CategoryTheory.Cat.str
map
CategoryTheory.Cat.Hom.toFunctor
CategoryTheory.CategoryStruct.comp
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.Functor.comp
Prefunctor.obj
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.PrelaxFunctorStruct.toPrefunctor
Quiver.Hom
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Bicategory.homCategory
CategoryTheory.PrelaxFunctor.toPrelaxFunctorStruct
prelaxfunctor
Prefunctor.map
mapComp
β€”β€”
pseudofunctor_mapId πŸ“–mathematicalβ€”CategoryTheory.Pseudofunctor.mapId
CategoryTheory.Cat
CategoryTheory.Cat.bicategory
pseudofunctor
CategoryTheory.Cat.Hom.isoMk
CategoryTheory.WithTerminal
CategoryTheory.Bundled.Ξ±
CategoryTheory.Category
instCategory
CategoryTheory.Cat.str
map
CategoryTheory.Cat.Hom.toFunctor
CategoryTheory.CategoryStruct.id
CategoryTheory.Bicategory.toCategoryStruct
CategoryTheory.Functor.id
Prefunctor.obj
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.PrelaxFunctorStruct.toPrefunctor
Quiver.Hom
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Bicategory.homCategory
CategoryTheory.PrelaxFunctor.toPrelaxFunctorStruct
prelaxfunctor
mapId
β€”β€”
pseudofunctor_toPrelaxFunctor πŸ“–mathematicalβ€”CategoryTheory.Pseudofunctor.toPrelaxFunctor
CategoryTheory.Cat
CategoryTheory.Cat.bicategory
pseudofunctor
prelaxfunctor
β€”β€”
starIsoTerminal_hom πŸ“–mathematicalβ€”CategoryTheory.Iso.hom
CategoryTheory.WithTerminal
instCategory
star
CategoryTheory.Limits.terminal
instHasTerminal
starIsoTerminal
CategoryTheory.Limits.IsTerminal.from
CategoryTheory.Limits.terminalIsTerminal
β€”instHasTerminal
starIsoTerminal_inv πŸ“–mathematicalβ€”CategoryTheory.Iso.inv
CategoryTheory.WithTerminal
instCategory
star
CategoryTheory.Limits.terminal
instHasTerminal
starIsoTerminal
CategoryTheory.Limits.IsTerminal.from
starTerminal
β€”instHasTerminal
subsingleton_hom πŸ“–mathematicalβ€”Quiver.IsThin
CategoryTheory.WithTerminal
CategoryTheory.Discrete
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
instCategory
CategoryTheory.discreteCategory
β€”β€”
widePullbackShapeEquiv_functor_obj πŸ“–mathematicalβ€”CategoryTheory.Functor.obj
CategoryTheory.Limits.WidePullbackShape
CategoryTheory.Limits.WidePullbackShape.category
CategoryTheory.WithTerminal
CategoryTheory.Discrete
instCategory
CategoryTheory.discreteCategory
CategoryTheory.Equivalence.functor
widePullbackShapeEquiv
of
star
β€”β€”
widePullbackShapeEquiv_inverse_obj πŸ“–mathematicalβ€”CategoryTheory.Functor.obj
CategoryTheory.WithTerminal
CategoryTheory.Discrete
instCategory
CategoryTheory.discreteCategory
CategoryTheory.Limits.WidePullbackShape
CategoryTheory.Limits.WidePullbackShape.category
CategoryTheory.Equivalence.inverse
widePullbackShapeEquiv
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
β€”β€”

CategoryTheory.instInhabitedWithInitial

Definitions

NameCategoryTheorems
default πŸ“–CompOpβ€”

CategoryTheory.instInhabitedWithTerminal

Definitions

NameCategoryTheorems
default πŸ“–CompOpβ€”

---

← Back to Index