Documentation Verification Report

Cone

📁 Source: Mathlib/CategoryTheory/WithTerminal/Cone.lean

Statistics

MetricCount
DefinitionsCone, coconeEquiv, commaFromUnder, isColimitEquiv, liftFromUnder, liftFromUnderComp, commaFromOver, coneEquiv, isLimitEquiv, liftFromOver, liftFromOverComp
11
TheoremshasLimit_of_hasLimit_liftFromOver, coconeEquiv_counitIso_hom_app_hom, coconeEquiv_counitIso_inv_app_hom, coconeEquiv_functor_map_hom, coconeEquiv_functor_obj_pt, coconeEquiv_functor_obj_ι_app_of, coconeEquiv_functor_obj_ι_app_star, coconeEquiv_inverse_map_hom_right, coconeEquiv_inverse_obj_pt_hom, coconeEquiv_inverse_obj_pt_left_as, coconeEquiv_inverse_obj_pt_right, coconeEquiv_inverse_obj_ι_app_right, coconeEquiv_unitIso_hom_app_hom_right, coconeEquiv_unitIso_inv_app_hom_right, commaFromUnder_map_left, commaFromUnder_map_right, commaFromUnder_obj_hom_app, commaFromUnder_obj_left, commaFromUnder_obj_right, isColimitEquiv_apply_desc_right, isColimitEquiv_symm_apply_desc, liftFromUnderComp_hom_app, liftFromUnderComp_inv_app, liftFromUnder_map_app, liftFromUnder_obj_map, liftFromUnder_obj_obj, commaFromOver_map_left, commaFromOver_map_right, commaFromOver_obj_hom_app, commaFromOver_obj_left, commaFromOver_obj_right, coneEquiv_counitIso_hom_app_hom, coneEquiv_counitIso_inv_app_hom, coneEquiv_functor_map_hom, coneEquiv_functor_obj_pt, coneEquiv_functor_obj_π_app_of, coneEquiv_functor_obj_π_app_star, coneEquiv_inverse_map_hom_left, coneEquiv_inverse_obj_pt_hom, coneEquiv_inverse_obj_pt_left, coneEquiv_inverse_obj_pt_right_as, coneEquiv_inverse_obj_π_app_left, coneEquiv_unitIso_hom_app_hom_left, coneEquiv_unitIso_inv_app_hom_left, isLimitEquiv_apply_lift_left, isLimitEquiv_symm_apply_lift, liftFromOverComp_hom_app, liftFromOverComp_inv_app, liftFromOver_map_app, liftFromOver_obj_map, liftFromOver_obj_obj, instHasLimitsOfShapeOverOfWithTerminal, instHasLimitsOfSizeOver, hasColimit_of_hasColimit_liftFromUnder, instHasColimitsOfShapeUnderOfWithInitial, instHasColimitsOfSizeUnder
56
Total67

CategoryTheory

Theorems

NameKindAssumesProvesValidatesDepends On
instHasLimitsOfShapeOverOfWithTerminal 📖mathematicalLimits.HasLimitsOfShape
Over
instCategoryOver
Over.hasLimit_of_hasLimit_liftFromOver
Limits.hasLimitOfHasLimitsOfShape
instHasLimitsOfSizeOver 📖mathematicalLimits.HasLimitsOfSize
Over
instCategoryOver
instHasLimitsOfShapeOverOfWithTerminal
Limits.hasLimitsOfShapeOfHasLimits

CategoryTheory.Limits

Definitions

NameCategoryTheorems
Cone 📖CompData
189 mathmath: Cones.postcomposeId_hom_app_hom, DiagramOfCones.id, CategoryTheory.Functor.Initial.extendCone_obj_pt, CategoryTheory.WithTerminal.coneEquiv_unitIso_hom_app_hom_left, IsLimit.ofConeEquiv_symm_apply_desc, ConeMorphism.hom_inv_id, hasLimit_iff_hasTerminal_cone, CategoryTheory.Functor.mapConeMapCone_hom_hom, coconeEquivalenceOpConeOp_unitIso, Cones.equivalenceOfReindexing_inverse, Cones.whiskeringEquivalence_functor, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivInverse_obj_π_app, IsLimit.liftConeMorphism_eq_isTerminal_from, ConeMorphism.inv_hom_id_assoc, HasLimit.lift_isoOfNatIso_hom, Cones.postcompose_obj_pt, Cone.equiv_inv_pt, Cones.ext_hom_hom, CategoryTheory.WithTerminal.coneEquiv_inverse_obj_π_app_left, Cones.functorialityEquivalence_functor, Cone.fromCostructuredArrow_map_hom, Cone.toCostructuredArrow_obj, CategoryTheory.Functor.mapConePostcompose_inv_hom, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivCounitIso_hom_app_hom, Cones.extendId_inv_hom, IsLimit.uniqueUpToIso_inv, CategoryTheory.Over.ConstructProducts.conesEquivCounitIso_inv_app_hom_left, CategoryTheory.Over.conePost_obj_π_app, CategoryTheory.Over.ConstructProducts.conesEquiv_unitIso, CategoryTheory.Functor.functorialityCompPostcompose_hom_app_hom, Cone.fromCostructuredArrow_obj_π, Cones.forget_map, CategoryTheory.Functor.Initial.conesEquiv_counitIso, Fork.ι_postcompose, CategoryTheory.WithTerminal.coneEquiv_functor_obj_π_app_star, CategoryTheory.WithTerminal.coneEquiv_counitIso_inv_app_hom, Cones.whiskering_map_hom, CategoryTheory.Functor.mapCoconeOp_inv_hom, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquiv_counitIso, Cone.equivCostructuredArrow_inverse, Cones.whiskeringEquivalence_inverse, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivCounitIso_inv_app_hom, IsLimit.ofIsoLimit_lift, CategoryTheory.Functor.Initial.extendCone_obj_π_app', CategoryTheory.WithTerminal.coneEquiv_functor_obj_π_app_of, CategoryTheory.Presheaf.isSeparated_iff_subsingleton, CategoryTheory.Over.conePostIso_hom_app_hom, Cones.functoriality_obj_π_app, CategoryTheory.Functor.RightExtension.coneAtFunctor_obj, Cones.equivalenceOfReindexing_counitIso, Cone.category_id_hom, IsLimit.equivIsoLimit_symm_apply, DiagramOfCones.mkOfHasLimits_map_hom, coconeEquivalenceOpConeOp_functor_obj, Cone.equiv_hom_fst, Cones.whiskeringEquivalence_unitIso, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivFunctor_obj_pt, IsLimit.ofConeEquiv_apply_desc, TopCat.Presheaf.whiskerIsoMapGenerateCocone_inv_hom, CategoryTheory.Over.ConstructProducts.conesEquivFunctor_map_hom, CategoryTheory.WithTerminal.coneEquiv_inverse_obj_pt_left, IsLimit.uniqueUpToIso_hom, CategoryTheory.Over.conePost_map_hom, CategoryTheory.Functor.RightExtension.coneAtWhiskerRightIso_inv_hom, Cones.postcomposeEquivalence_unitIso, Cones.postcomposeEquivalence_counitIso, CategoryTheory.Functor.postcomposeWhiskerLeftMapCone_inv_hom, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquiv_inverse, Cones.functorialityEquivalence_unitIso, CategoryTheory.Functor.Initial.conesEquiv_unitIso, Cones.functoriality_obj_pt, DiagramOfCones.conePoints_map, Cone.mapConeToUnder_inv_hom, CategoryTheory.WithTerminal.isLimitEquiv_symm_apply_lift, Cones.extendComp_inv_hom, CategoryTheory.Over.ConstructProducts.conesEquivUnitIso_inv_app_hom, Cones.postcomposeEquivalence_functor, Cones.extendIso_inv_hom, Cones.functoriality_faithful, CategoryTheory.WithTerminal.coneEquiv_inverse_obj_pt_hom, CategoryTheory.Over.ConstructProducts.conesEquivCounitIso_hom_app_hom_left, CategoryTheory.IsCofiltered.iff_cone_nonempty, CategoryTheory.Functor.Initial.extendCone_map_hom, Cone.toCostructuredArrow_map, Cones.eta_inv_hom, CategoryTheory.Functor.Initial.conesEquiv_inverse, CategoryTheory.Over.ConstructProducts.conesEquiv_counitIso, Cones.whiskeringEquivalence_counitIso, Cone.equiv_inv_π, Cones.extendIso_hom_hom, instIsIsoHomInvCone, CategoryTheory.IsCofiltered.cone_nonempty, Cone.equiv_hom_snd, PullbackCone.unop_ι_app, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivUnitIso_inv_app_hom, Cones.eta_hom_hom, PullbackCone.isoMk_inv_hom, Cones.functoriality_full, Cones.postcompose_obj_π, CategoryTheory.Adjunction.functorialityUnit'_app_hom, Cones.functoriality_map_hom, Cones.extendId_hom_hom, colimitLimitToLimitColimitCone_iso, Cones.functorialityEquivalence_inverse, CategoryTheory.liftedLimitMapsToOriginal_inv_map_π, Cones.postcomposeComp_inv_app_hom, CategoryTheory.Functor.mapConePostcomposeEquivalenceFunctor_inv_hom, CategoryTheory.Functor.mapConePostcomposeEquivalenceFunctor_hom_hom, Cone.equivCostructuredArrow_functor, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivFunctor_obj_π_app, CategoryTheory.Over.conePostIso_inv_app_hom, TopCat.Presheaf.whiskerIsoMapGenerateCocone_hom_hom, Cones.forget_obj, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivFunctor_map_hom, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivInverse_obj_pt, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivUnitIso_hom_app_hom, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivUnitIsoApp_hom_hom, CategoryTheory.Over.conePost_obj_pt, Cones.functorialityEquivalence_counitIso, CategoryTheory.Over.ConstructProducts.conesEquiv_functor, CategoryTheory.Functor.mapConeWhisker_hom_hom, Cone.equivCostructuredArrow_counitIso, Cones.ext_inv_hom, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivInverse_map_hom, Cone.category_comp_hom, CategoryTheory.Functor.postcomposeWhiskerLeftMapCone_hom_hom, ConeMorphism.hom_inv_id_assoc, Cone.fromCostructuredArrow_obj_pt, CategoryTheory.WithTerminal.isLimitEquiv_apply_lift_left, limit.lift_map, IsLimit.conePointsIsoOfEquivalence_hom, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivUnitIsoApp_inv_hom, CategoryTheory.Functor.RightExtension.coneAtFunctor_map_hom, CategoryTheory.Functor.mapConePostcompose_hom_hom, IsLimit.conePointsIsoOfEquivalence_inv, CategoryTheory.Over.ConstructProducts.conesEquivFunctor_obj_pt, CategoryTheory.Functor.RightExtension.coneAtWhiskerRightIso_hom_hom, Cones.instIsIsoConeExtend, CategoryTheory.WithTerminal.coneEquiv_unitIso_inv_app_hom_left, DiagramOfCones.comp, CategoryTheory.Functor.mapCoconeOp_hom_hom, Cones.equivalenceOfReindexing_unitIso, CategoryTheory.Over.ConstructProducts.conesEquivUnitIso_hom_app_hom, coconeEquivalenceOpConeOp_inverse_obj, coconeEquivalenceOpConeOp_counitIso, Cone.mapConeToUnder_hom_hom, CategoryTheory.Over.ConstructProducts.conesEquivInverse_obj, CategoryTheory.Functor.Initial.limitConeOfComp_cone, Cone.equivCostructuredArrow_unitIso, CategoryTheory.WithTerminal.coneEquiv_inverse_map_hom_left, CategoryTheory.Functor.mapConeMapCone_inv_hom, Cones.equivalenceOfReindexing_functor, coconeEquivalenceOpConeOp_inverse_map_hom, PullbackCone.isoMk_hom_hom, CategoryTheory.Functor.Initial.extendCone_obj_π_app, CategoryTheory.Functor.functorialityCompPostcompose_inv_app_hom, CategoryTheory.Functor.mapConeWhisker_inv_hom, CategoryTheory.WithTerminal.coneEquiv_functor_obj_pt, CategoryTheory.Over.ConstructProducts.conesEquiv_inverse, coconeEquivalenceOpConeOp_functor_map, CategoryTheory.liftedLimitMapsToOriginal_hom_π, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquiv_functor, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquiv_unitIso, HasLimit.lift_isoOfNatIso_inv, limit.lift_map_assoc, Cones.reflects_cone_isomorphism, Cones.extendComp_hom_hom, CategoryTheory.Functor.Initial.conesEquiv_functor, CategoryTheory.Presheaf.subsingleton_iff_isSeparatedFor, Cones.cone_iso_of_hom_iso, HasLimit.lift_isoOfNatIso_hom_assoc, Cones.whiskering_obj, IsTerminal.from_eq_liftConeMorphism, Cones.postcomposeComp_hom_app_hom, Cones.postcompose_map_hom, FundamentalGroupoidFunctor.coneDiscreteComp_obj_mapCone, Cones.postcomposeEquivalence_inverse, Cones.postcomposeId_inv_app_hom, CategoryTheory.WithTerminal.coneEquiv_counitIso_hom_app_hom, CategoryTheory.Over.ConstructProducts.conesEquivFunctor_obj_π_app, IsLimit.hom_isIso, CategoryTheory.Functor.Initial.limitConeOfComp_isLimit, instIsIsoHomHomCone, CategoryTheory.Over.ConstructProducts.conesEquivInverse_map_hom, CategoryTheory.Adjunction.functorialityCounit'_app_hom, CategoryTheory.WithTerminal.coneEquiv_inverse_obj_pt_right_as, HasLimit.lift_isoOfNatIso_inv_assoc, ConeMorphism.inv_hom_id, CategoryTheory.WithTerminal.coneEquiv_functor_map_hom

CategoryTheory.Over

Theorems

NameKindAssumesProvesValidatesDepends On
hasLimit_of_hasLimit_liftFromOver 📖mathematicalCategoryTheory.Limits.HasLimit
CategoryTheory.Over
CategoryTheory.instCategoryOver

CategoryTheory.WithInitial

Definitions

NameCategoryTheorems
coconeEquiv 📖CompOp
15 mathmath: isColimitEquiv_apply_desc_right, coconeEquiv_functor_obj_pt, coconeEquiv_inverse_obj_pt_right, isColimitEquiv_symm_apply_desc, coconeEquiv_inverse_obj_pt_hom, coconeEquiv_counitIso_inv_app_hom, coconeEquiv_functor_obj_ι_app_star, coconeEquiv_unitIso_hom_app_hom_right, coconeEquiv_functor_map_hom, coconeEquiv_inverse_obj_pt_left_as, coconeEquiv_inverse_obj_ι_app_right, coconeEquiv_functor_obj_ι_app_of, coconeEquiv_inverse_map_hom_right, coconeEquiv_counitIso_hom_app_hom, coconeEquiv_unitIso_inv_app_hom_right
commaFromUnder 📖CompOp
6 mathmath: commaFromUnder_map_left, commaFromUnder_obj_hom_app, commaFromUnder_obj_right, commaFromUnder_map_right, commaFromUnder_obj_left, liftFromUnder_map_app
isColimitEquiv 📖CompOp
2 mathmath: isColimitEquiv_apply_desc_right, isColimitEquiv_symm_apply_desc
liftFromUnder 📖CompOp
20 mathmath: isColimitEquiv_apply_desc_right, coconeEquiv_functor_obj_pt, coconeEquiv_inverse_obj_pt_right, isColimitEquiv_symm_apply_desc, liftFromUnderComp_inv_app, coconeEquiv_inverse_obj_pt_hom, coconeEquiv_counitIso_inv_app_hom, coconeEquiv_functor_obj_ι_app_star, coconeEquiv_unitIso_hom_app_hom_right, liftFromUnder_obj_obj, coconeEquiv_functor_map_hom, coconeEquiv_inverse_obj_pt_left_as, coconeEquiv_inverse_obj_ι_app_right, coconeEquiv_functor_obj_ι_app_of, coconeEquiv_inverse_map_hom_right, liftFromUnderComp_hom_app, coconeEquiv_counitIso_hom_app_hom, liftFromUnder_map_app, liftFromUnder_obj_map, coconeEquiv_unitIso_inv_app_hom_right
liftFromUnderComp 📖CompOp
2 mathmath: liftFromUnderComp_inv_app, liftFromUnderComp_hom_app

Theorems

NameKindAssumesProvesValidatesDepends On
coconeEquiv_counitIso_hom_app_hom 📖mathematicalCategoryTheory.Limits.CoconeMorphism.hom
CategoryTheory.WithInitial
instCategory
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Under
CategoryTheory.instCategoryUnder
CategoryTheory.Functor.category
liftFromUnder
CategoryTheory.Limits.Cocone
CategoryTheory.Limits.Cocone.category
CategoryTheory.Functor.comp
CategoryTheory.Functor.id
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Equivalence.counitIso
coconeEquiv
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cocone.pt
coconeEquiv_counitIso_inv_app_hom 📖mathematicalCategoryTheory.Limits.CoconeMorphism.hom
CategoryTheory.WithInitial
instCategory
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Under
CategoryTheory.instCategoryUnder
CategoryTheory.Functor.category
liftFromUnder
CategoryTheory.Limits.Cocone
CategoryTheory.Limits.Cocone.category
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
CategoryTheory.Equivalence.counitIso
coconeEquiv
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cocone.pt
coconeEquiv_functor_map_hom 📖mathematicalCategoryTheory.Limits.CoconeMorphism.hom
CategoryTheory.WithInitial
instCategory
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Under
CategoryTheory.instCategoryUnder
CategoryTheory.Functor.category
liftFromUnder
CategoryTheory.Comma.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.id
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Functor.const
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.CommaMorphism.right
CategoryTheory.NatTrans.app
CategoryTheory.Limits.Cocone.ι
CategoryTheory.Comma.hom
CategoryTheory.Functor.map
CategoryTheory.Limits.Cocone
CategoryTheory.Limits.Cocone.category
CategoryTheory.Equivalence.functor
coconeEquiv
coconeEquiv_functor_obj_pt 📖mathematicalCategoryTheory.Limits.Cocone.pt
CategoryTheory.WithInitial
instCategory
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Under
CategoryTheory.instCategoryUnder
CategoryTheory.Functor.category
liftFromUnder
CategoryTheory.Limits.Cocone
CategoryTheory.Limits.Cocone.category
CategoryTheory.Equivalence.functor
coconeEquiv
CategoryTheory.Comma.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.id
coconeEquiv_functor_obj_ι_app_of 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.WithInitial
instCategory
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Under
CategoryTheory.instCategoryUnder
CategoryTheory.Functor.category
liftFromUnder
CategoryTheory.Functor.const
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Limits.Cocone
CategoryTheory.Limits.Cocone.category
CategoryTheory.Equivalence.functor
coconeEquiv
CategoryTheory.Limits.Cocone.ι
of
CategoryTheory.CommaMorphism.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.id
coconeEquiv_functor_obj_ι_app_star 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.WithInitial
instCategory
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Under
CategoryTheory.instCategoryUnder
CategoryTheory.Functor.category
liftFromUnder
CategoryTheory.Functor.const
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Limits.Cocone
CategoryTheory.Limits.Cocone.category
CategoryTheory.Equivalence.functor
coconeEquiv
CategoryTheory.Limits.Cocone.ι
star
CategoryTheory.Comma.hom
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.id
coconeEquiv_inverse_map_hom_right 📖mathematicalCategoryTheory.CommaMorphism.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.id
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Under
CategoryTheory.instCategoryUnder
CategoryTheory.Functor.obj
CategoryTheory.WithInitial
instCategory
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
liftFromUnder
star
CategoryTheory.NatTrans.app
CategoryTheory.Limits.Cocone.ι
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.left
of
CategoryTheory.Limits.CoconeMorphism.hom
CategoryTheory.Functor.map
CategoryTheory.Limits.Cocone
CategoryTheory.Limits.Cocone.category
CategoryTheory.Equivalence.inverse
coconeEquiv
coconeEquiv_inverse_obj_pt_hom 📖mathematicalCategoryTheory.Comma.hom
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.id
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Under
CategoryTheory.instCategoryUnder
CategoryTheory.Functor.obj
CategoryTheory.Limits.Cocone
CategoryTheory.WithInitial
instCategory
CategoryTheory.Functor
CategoryTheory.Functor.category
liftFromUnder
CategoryTheory.Limits.Cocone.category
CategoryTheory.Equivalence.inverse
coconeEquiv
CategoryTheory.NatTrans.app
CategoryTheory.Functor.const
CategoryTheory.Limits.Cocone.ι
star
coconeEquiv_inverse_obj_pt_left_as 📖mathematicalCategoryTheory.Discrete.as
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.id
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Under
CategoryTheory.instCategoryUnder
CategoryTheory.Functor.obj
CategoryTheory.Limits.Cocone
CategoryTheory.WithInitial
instCategory
CategoryTheory.Functor
CategoryTheory.Functor.category
liftFromUnder
CategoryTheory.Limits.Cocone.category
CategoryTheory.Equivalence.inverse
coconeEquiv
coconeEquiv_inverse_obj_pt_right 📖mathematicalCategoryTheory.Comma.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.id
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Under
CategoryTheory.instCategoryUnder
CategoryTheory.Functor.obj
CategoryTheory.Limits.Cocone
CategoryTheory.WithInitial
instCategory
CategoryTheory.Functor
CategoryTheory.Functor.category
liftFromUnder
CategoryTheory.Limits.Cocone.category
CategoryTheory.Equivalence.inverse
coconeEquiv
coconeEquiv_inverse_obj_ι_app_right 📖mathematicalCategoryTheory.CommaMorphism.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.id
CategoryTheory.Functor.obj
CategoryTheory.Under
CategoryTheory.instCategoryUnder
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.WithInitial
instCategory
CategoryTheory.Limits.Cocone.pt
liftFromUnder
star
CategoryTheory.NatTrans.app
CategoryTheory.Limits.Cocone.ι
CategoryTheory.Limits.Cocone
CategoryTheory.Limits.Cocone.category
CategoryTheory.Equivalence.inverse
coconeEquiv
of
coconeEquiv_unitIso_hom_app_hom_right 📖mathematicalCategoryTheory.CommaMorphism.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.id
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Under
CategoryTheory.instCategoryUnder
CategoryTheory.Functor.obj
CategoryTheory.Limits.Cocone
CategoryTheory.Limits.Cocone.category
CategoryTheory.Limits.CoconeMorphism.hom
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Equivalence.unitIso
CategoryTheory.WithInitial
instCategory
liftFromUnder
coconeEquiv
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.right
coconeEquiv_unitIso_inv_app_hom_right 📖mathematicalCategoryTheory.CommaMorphism.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.id
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Under
CategoryTheory.instCategoryUnder
CategoryTheory.Functor.obj
CategoryTheory.Limits.Cocone
CategoryTheory.Limits.Cocone.category
CategoryTheory.Limits.CoconeMorphism.hom
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Equivalence.unitIso
CategoryTheory.WithInitial
instCategory
liftFromUnder
coconeEquiv
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.right
commaFromUnder_map_left 📖mathematicalCategoryTheory.CommaMorphism.left
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
CategoryTheory.Under
CategoryTheory.instCategoryUnder
CategoryTheory.Under.forget
CategoryTheory.Functor.obj
CategoryTheory.Comma.hom
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.map
CategoryTheory.Comma
CategoryTheory.commaCategory
commaFromUnder
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
commaFromUnder_map_right 📖mathematicalCategoryTheory.CommaMorphism.right
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
CategoryTheory.Under
CategoryTheory.instCategoryUnder
CategoryTheory.Under.forget
CategoryTheory.Functor.obj
CategoryTheory.Comma.hom
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.map
CategoryTheory.Comma
CategoryTheory.commaCategory
commaFromUnder
CategoryTheory.Functor.whiskerRight
commaFromUnder_obj_hom_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
CategoryTheory.Under
CategoryTheory.instCategoryUnder
CategoryTheory.Under.forget
CategoryTheory.Comma.hom
CategoryTheory.Comma
CategoryTheory.commaCategory
commaFromUnder
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
commaFromUnder_obj_left 📖mathematicalCategoryTheory.Comma.left
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Functor.id
CategoryTheory.Functor.obj
CategoryTheory.Under
CategoryTheory.instCategoryUnder
CategoryTheory.Comma
CategoryTheory.commaCategory
commaFromUnder
commaFromUnder_obj_right 📖mathematicalCategoryTheory.Comma.right
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Functor.id
CategoryTheory.Functor.obj
CategoryTheory.Under
CategoryTheory.instCategoryUnder
CategoryTheory.Comma
CategoryTheory.commaCategory
commaFromUnder
CategoryTheory.Functor.comp
CategoryTheory.Under.forget
isColimitEquiv_apply_desc_right 📖mathematicalCategoryTheory.CommaMorphism.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.id
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Under
CategoryTheory.instCategoryUnder
CategoryTheory.Limits.IsColimit.desc
DFunLike.coe
Equiv
CategoryTheory.Limits.IsColimit
CategoryTheory.WithInitial
instCategory
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
liftFromUnder
CategoryTheory.Limits.Cocone
CategoryTheory.Limits.Cocone.category
CategoryTheory.Equivalence.functor
coconeEquiv
EquivLike.toFunLike
Equiv.instEquivLike
isColimitEquiv
CategoryTheory.Equivalence.inverse
CategoryTheory.Limits.IsColimit.ofLeftAdjoint
CategoryTheory.Equivalence.toAdjunction
CategoryTheory.Equivalence.symm
CategoryTheory.Category.id_comp
isColimitEquiv_symm_apply_desc 📖mathematicalCategoryTheory.Limits.IsColimit.desc
CategoryTheory.WithInitial
instCategory
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Under
CategoryTheory.instCategoryUnder
CategoryTheory.Functor.category
liftFromUnder
CategoryTheory.Limits.Cocone
CategoryTheory.Limits.Cocone.category
CategoryTheory.Equivalence.functor
coconeEquiv
DFunLike.coe
Equiv
CategoryTheory.Limits.IsColimit
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
isColimitEquiv
CategoryTheory.Limits.CoconeMorphism.hom
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Equivalence.inverse
CategoryTheory.Adjunction.homEquiv
CategoryTheory.Equivalence.toAdjunction
CategoryTheory.Limits.IsColimit.descCoconeMorphism
liftFromUnderComp_hom_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.WithInitial
instCategory
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Under
CategoryTheory.instCategoryUnder
CategoryTheory.Functor.category
liftFromUnder
CategoryTheory.Functor.comp
CategoryTheory.Under.post
CategoryTheory.Iso.hom
liftFromUnderComp
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.CategoryStruct.id
star
of
liftFromUnderComp_inv_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.WithInitial
instCategory
CategoryTheory.Functor.comp
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Under
CategoryTheory.instCategoryUnder
CategoryTheory.Functor.category
liftFromUnder
CategoryTheory.Under.post
CategoryTheory.Iso.inv
liftFromUnderComp
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.CategoryStruct.id
star
of
liftFromUnder_map_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.WithInitial
instCategory
CategoryTheory.Functor.obj
CategoryTheory.Comma
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Functor.id
CategoryTheory.commaCategory
CategoryTheory.Equivalence.inverse
equivComma
CategoryTheory.Under
CategoryTheory.instCategoryUnder
commaFromUnder
CategoryTheory.Functor.map
liftFromUnder
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.CommaMorphism.right
CategoryTheory.CategoryStruct.id
liftFromUnder_obj_map 📖mathematicalCategoryTheory.Functor.map
CategoryTheory.WithInitial
instCategory
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Under
CategoryTheory.instCategoryUnder
CategoryTheory.Functor.category
liftFromUnder
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.id
CategoryTheory.CommaMorphism.right
down
CategoryTheory.Comma.hom
CategoryTheory.CategoryStruct.id
liftFromUnder_obj_obj 📖mathematicalCategoryTheory.Functor.obj
CategoryTheory.WithInitial
instCategory
CategoryTheory.Functor
CategoryTheory.Under
CategoryTheory.instCategoryUnder
CategoryTheory.Functor.category
liftFromUnder
CategoryTheory.Comma.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.id

CategoryTheory.WithTerminal

Definitions

NameCategoryTheorems
commaFromOver 📖CompOp
6 mathmath: commaFromOver_map_left, commaFromOver_obj_right, commaFromOver_obj_hom_app, commaFromOver_map_right, liftFromOver_map_app, commaFromOver_obj_left
coneEquiv 📖CompOp
15 mathmath: coneEquiv_unitIso_hom_app_hom_left, coneEquiv_inverse_obj_π_app_left, coneEquiv_functor_obj_π_app_star, coneEquiv_counitIso_inv_app_hom, coneEquiv_functor_obj_π_app_of, coneEquiv_inverse_obj_pt_left, isLimitEquiv_symm_apply_lift, coneEquiv_inverse_obj_pt_hom, isLimitEquiv_apply_lift_left, coneEquiv_unitIso_inv_app_hom_left, coneEquiv_inverse_map_hom_left, coneEquiv_functor_obj_pt, coneEquiv_counitIso_hom_app_hom, coneEquiv_inverse_obj_pt_right_as, coneEquiv_functor_map_hom
isLimitEquiv 📖CompOp
2 mathmath: isLimitEquiv_symm_apply_lift, isLimitEquiv_apply_lift_left
liftFromOver 📖CompOp
20 mathmath: coneEquiv_unitIso_hom_app_hom_left, coneEquiv_inverse_obj_π_app_left, coneEquiv_functor_obj_π_app_star, coneEquiv_counitIso_inv_app_hom, coneEquiv_functor_obj_π_app_of, coneEquiv_inverse_obj_pt_left, isLimitEquiv_symm_apply_lift, liftFromOver_obj_obj, coneEquiv_inverse_obj_pt_hom, liftFromOverComp_hom_app, liftFromOver_obj_map, isLimitEquiv_apply_lift_left, coneEquiv_unitIso_inv_app_hom_left, liftFromOverComp_inv_app, liftFromOver_map_app, coneEquiv_inverse_map_hom_left, coneEquiv_functor_obj_pt, coneEquiv_counitIso_hom_app_hom, coneEquiv_inverse_obj_pt_right_as, coneEquiv_functor_map_hom
liftFromOverComp 📖CompOp
2 mathmath: liftFromOverComp_hom_app, liftFromOverComp_inv_app

Theorems

NameKindAssumesProvesValidatesDepends On
commaFromOver_map_left 📖mathematicalCategoryTheory.CommaMorphism.left
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.id
CategoryTheory.Functor.const
CategoryTheory.Functor.comp
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Over.forget
CategoryTheory.Functor.obj
CategoryTheory.Comma.hom
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.map
CategoryTheory.Comma
CategoryTheory.commaCategory
commaFromOver
CategoryTheory.Functor.whiskerRight
commaFromOver_map_right 📖mathematicalCategoryTheory.CommaMorphism.right
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.id
CategoryTheory.Functor.const
CategoryTheory.Functor.comp
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Over.forget
CategoryTheory.Functor.obj
CategoryTheory.Comma.hom
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.map
CategoryTheory.Comma
CategoryTheory.commaCategory
commaFromOver
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
commaFromOver_obj_hom_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Over.forget
CategoryTheory.Functor.const
CategoryTheory.Comma.hom
CategoryTheory.Comma
CategoryTheory.commaCategory
commaFromOver
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
commaFromOver_obj_left 📖mathematicalCategoryTheory.Comma.left
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.id
CategoryTheory.Functor.const
CategoryTheory.Functor.obj
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Comma
CategoryTheory.commaCategory
commaFromOver
CategoryTheory.Functor.comp
CategoryTheory.Over.forget
commaFromOver_obj_right 📖mathematicalCategoryTheory.Comma.right
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.id
CategoryTheory.Functor.const
CategoryTheory.Functor.obj
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Comma
CategoryTheory.commaCategory
commaFromOver
coneEquiv_counitIso_hom_app_hom 📖mathematicalCategoryTheory.Limits.ConeMorphism.hom
CategoryTheory.WithTerminal
instCategory
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Functor.category
liftFromOver
CategoryTheory.Limits.Cone
CategoryTheory.Limits.Cone.category
CategoryTheory.Functor.comp
CategoryTheory.Functor.id
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Equivalence.counitIso
coneEquiv
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cone.pt
coneEquiv_counitIso_inv_app_hom 📖mathematicalCategoryTheory.Limits.ConeMorphism.hom
CategoryTheory.WithTerminal
instCategory
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Functor.category
liftFromOver
CategoryTheory.Limits.Cone
CategoryTheory.Limits.Cone.category
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
CategoryTheory.Equivalence.counitIso
coneEquiv
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cone.pt
coneEquiv_functor_map_hom 📖mathematicalCategoryTheory.Limits.ConeMorphism.hom
CategoryTheory.WithTerminal
instCategory
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Functor.category
liftFromOver
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
CategoryTheory.Limits.Cone.pt
CategoryTheory.Functor.const
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.CommaMorphism.left
CategoryTheory.NatTrans.app
CategoryTheory.Limits.Cone.π
CategoryTheory.Comma.hom
CategoryTheory.Functor.map
CategoryTheory.Limits.Cone
CategoryTheory.Limits.Cone.category
CategoryTheory.Equivalence.functor
coneEquiv
coneEquiv_functor_obj_pt 📖mathematicalCategoryTheory.Limits.Cone.pt
CategoryTheory.WithTerminal
instCategory
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Functor.category
liftFromOver
CategoryTheory.Limits.Cone
CategoryTheory.Limits.Cone.category
CategoryTheory.Equivalence.functor
coneEquiv
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
coneEquiv_functor_obj_π_app_of 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.WithTerminal
instCategory
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cone.pt
CategoryTheory.Over
CategoryTheory.instCategoryOver
liftFromOver
CategoryTheory.Limits.Cone
CategoryTheory.Limits.Cone.category
CategoryTheory.Equivalence.functor
coneEquiv
CategoryTheory.Limits.Cone.π
of
CategoryTheory.CommaMorphism.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
coneEquiv_functor_obj_π_app_star 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.WithTerminal
instCategory
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cone.pt
CategoryTheory.Over
CategoryTheory.instCategoryOver
liftFromOver
CategoryTheory.Limits.Cone
CategoryTheory.Limits.Cone.category
CategoryTheory.Equivalence.functor
coneEquiv
CategoryTheory.Limits.Cone.π
star
CategoryTheory.Comma.hom
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
coneEquiv_inverse_map_hom_left 📖mathematicalCategoryTheory.CommaMorphism.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
CategoryTheory.Limits.Cone.pt
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Functor.obj
CategoryTheory.WithTerminal
instCategory
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
liftFromOver
star
CategoryTheory.NatTrans.app
CategoryTheory.Limits.Cone.π
of
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.right
CategoryTheory.Limits.ConeMorphism.hom
CategoryTheory.Functor.map
CategoryTheory.Limits.Cone
CategoryTheory.Limits.Cone.category
CategoryTheory.Equivalence.inverse
coneEquiv
coneEquiv_inverse_obj_pt_hom 📖mathematicalCategoryTheory.Comma.hom
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
CategoryTheory.Limits.Cone.pt
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Functor.obj
CategoryTheory.Limits.Cone
CategoryTheory.WithTerminal
instCategory
CategoryTheory.Functor
CategoryTheory.Functor.category
liftFromOver
CategoryTheory.Limits.Cone.category
CategoryTheory.Equivalence.inverse
coneEquiv
CategoryTheory.NatTrans.app
CategoryTheory.Functor.const
CategoryTheory.Limits.Cone.π
star
coneEquiv_inverse_obj_pt_left 📖mathematicalCategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
CategoryTheory.Limits.Cone.pt
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Functor.obj
CategoryTheory.Limits.Cone
CategoryTheory.WithTerminal
instCategory
CategoryTheory.Functor
CategoryTheory.Functor.category
liftFromOver
CategoryTheory.Limits.Cone.category
CategoryTheory.Equivalence.inverse
coneEquiv
coneEquiv_inverse_obj_pt_right_as 📖mathematicalCategoryTheory.Discrete.as
CategoryTheory.Comma.right
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
CategoryTheory.Limits.Cone.pt
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Functor.obj
CategoryTheory.Limits.Cone
CategoryTheory.WithTerminal
instCategory
CategoryTheory.Functor
CategoryTheory.Functor.category
liftFromOver
CategoryTheory.Limits.Cone.category
CategoryTheory.Equivalence.inverse
coneEquiv
coneEquiv_inverse_obj_π_app_left 📖mathematicalCategoryTheory.CommaMorphism.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
CategoryTheory.Functor.obj
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.WithTerminal
instCategory
CategoryTheory.Limits.Cone.pt
liftFromOver
star
CategoryTheory.NatTrans.app
CategoryTheory.Limits.Cone.π
CategoryTheory.Limits.Cone
CategoryTheory.Limits.Cone.category
CategoryTheory.Equivalence.inverse
coneEquiv
of
coneEquiv_unitIso_hom_app_hom_left 📖mathematicalCategoryTheory.CommaMorphism.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
CategoryTheory.Limits.Cone.pt
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Functor.obj
CategoryTheory.Limits.Cone
CategoryTheory.Limits.Cone.category
CategoryTheory.Limits.ConeMorphism.hom
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Equivalence.unitIso
CategoryTheory.WithTerminal
instCategory
liftFromOver
coneEquiv
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.left
coneEquiv_unitIso_inv_app_hom_left 📖mathematicalCategoryTheory.CommaMorphism.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
CategoryTheory.Limits.Cone.pt
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Functor.obj
CategoryTheory.Limits.Cone
CategoryTheory.Limits.Cone.category
CategoryTheory.Limits.ConeMorphism.hom
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Equivalence.unitIso
CategoryTheory.WithTerminal
instCategory
liftFromOver
coneEquiv
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.left
isLimitEquiv_apply_lift_left 📖mathematicalCategoryTheory.CommaMorphism.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
CategoryTheory.Limits.Cone.pt
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Limits.IsLimit.lift
DFunLike.coe
Equiv
CategoryTheory.Limits.IsLimit
CategoryTheory.WithTerminal
instCategory
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
liftFromOver
CategoryTheory.Limits.Cone
CategoryTheory.Limits.Cone.category
CategoryTheory.Equivalence.functor
coneEquiv
EquivLike.toFunLike
Equiv.instEquivLike
isLimitEquiv
CategoryTheory.Equivalence.inverse
CategoryTheory.Limits.IsLimit.ofRightAdjoint
CategoryTheory.Equivalence.toAdjunction
CategoryTheory.Category.comp_id
isLimitEquiv_symm_apply_lift 📖mathematicalCategoryTheory.Limits.IsLimit.lift
CategoryTheory.WithTerminal
instCategory
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Functor.category
liftFromOver
CategoryTheory.Limits.Cone
CategoryTheory.Limits.Cone.category
CategoryTheory.Equivalence.inverse
CategoryTheory.Equivalence.symm
coneEquiv
DFunLike.coe
Equiv
CategoryTheory.Limits.IsLimit
CategoryTheory.Equivalence.functor
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
isLimitEquiv
CategoryTheory.Limits.ConeMorphism.hom
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Adjunction.homEquiv
CategoryTheory.Equivalence.toAdjunction
CategoryTheory.Limits.IsLimit.liftConeMorphism
liftFromOverComp_hom_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.WithTerminal
instCategory
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Functor.category
liftFromOver
CategoryTheory.Functor.comp
CategoryTheory.Over.post
CategoryTheory.Iso.hom
liftFromOverComp
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.CategoryStruct.id
star
of
liftFromOverComp_inv_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.WithTerminal
instCategory
CategoryTheory.Functor.comp
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Functor.category
liftFromOver
CategoryTheory.Over.post
CategoryTheory.Iso.inv
liftFromOverComp
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.CategoryStruct.id
star
of
liftFromOver_map_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.WithTerminal
instCategory
CategoryTheory.Functor.obj
CategoryTheory.Comma
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.id
CategoryTheory.Functor.const
CategoryTheory.commaCategory
CategoryTheory.Equivalence.inverse
equivComma
CategoryTheory.Over
CategoryTheory.instCategoryOver
commaFromOver
CategoryTheory.Functor.map
liftFromOver
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
CategoryTheory.CommaMorphism.left
CategoryTheory.CategoryStruct.id
liftFromOver_obj_map 📖mathematicalCategoryTheory.Functor.map
CategoryTheory.WithTerminal
instCategory
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Functor.category
liftFromOver
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
CategoryTheory.CommaMorphism.left
down
CategoryTheory.Comma.hom
CategoryTheory.CategoryStruct.id
liftFromOver_obj_obj 📖mathematicalCategoryTheory.Functor.obj
CategoryTheory.WithTerminal
instCategory
CategoryTheory.Functor
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.Functor.category
liftFromOver
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit

Under

Theorems

NameKindAssumesProvesValidatesDepends On
hasColimit_of_hasColimit_liftFromUnder 📖mathematicalCategoryTheory.Limits.HasColimit
CategoryTheory.Under
CategoryTheory.instCategoryUnder

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
instHasColimitsOfShapeUnderOfWithInitial 📖mathematicalCategoryTheory.Limits.HasColimitsOfShape
CategoryTheory.Under
CategoryTheory.instCategoryUnder
Under.hasColimit_of_hasColimit_liftFromUnder
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
instHasColimitsOfSizeUnder 📖mathematicalCategoryTheory.Limits.HasColimitsOfSize
CategoryTheory.Under
CategoryTheory.instCategoryUnder
instHasColimitsOfShapeUnderOfWithInitial
CategoryTheory.Limits.hasColimitsOfShapeOfHasColimitsOfSize

---

← Back to Index