Cone 📖 | CompData | 189 mathmath: Cones.postcomposeId_hom_app_hom, DiagramOfCones.id, CategoryTheory.Functor.Initial.extendCone_obj_pt, CategoryTheory.WithTerminal.coneEquiv_unitIso_hom_app_hom_left, IsLimit.ofConeEquiv_symm_apply_desc, ConeMorphism.hom_inv_id, hasLimit_iff_hasTerminal_cone, CategoryTheory.Functor.mapConeMapCone_hom_hom, coconeEquivalenceOpConeOp_unitIso, Cones.equivalenceOfReindexing_inverse, Cones.whiskeringEquivalence_functor, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivInverse_obj_π_app, IsLimit.liftConeMorphism_eq_isTerminal_from, ConeMorphism.inv_hom_id_assoc, HasLimit.lift_isoOfNatIso_hom, Cones.postcompose_obj_pt, Cone.equiv_inv_pt, Cones.ext_hom_hom, CategoryTheory.WithTerminal.coneEquiv_inverse_obj_π_app_left, Cones.functorialityEquivalence_functor, Cone.fromCostructuredArrow_map_hom, Cone.toCostructuredArrow_obj, CategoryTheory.Functor.mapConePostcompose_inv_hom, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivCounitIso_hom_app_hom, Cones.extendId_inv_hom, IsLimit.uniqueUpToIso_inv, CategoryTheory.Over.ConstructProducts.conesEquivCounitIso_inv_app_hom_left, CategoryTheory.Over.conePost_obj_π_app, CategoryTheory.Over.ConstructProducts.conesEquiv_unitIso, CategoryTheory.Functor.functorialityCompPostcompose_hom_app_hom, Cone.fromCostructuredArrow_obj_π, Cones.forget_map, CategoryTheory.Functor.Initial.conesEquiv_counitIso, Fork.ι_postcompose, CategoryTheory.WithTerminal.coneEquiv_functor_obj_π_app_star, CategoryTheory.WithTerminal.coneEquiv_counitIso_inv_app_hom, Cones.whiskering_map_hom, CategoryTheory.Functor.mapCoconeOp_inv_hom, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquiv_counitIso, Cone.equivCostructuredArrow_inverse, Cones.whiskeringEquivalence_inverse, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivCounitIso_inv_app_hom, IsLimit.ofIsoLimit_lift, CategoryTheory.Functor.Initial.extendCone_obj_π_app', CategoryTheory.WithTerminal.coneEquiv_functor_obj_π_app_of, CategoryTheory.Presheaf.isSeparated_iff_subsingleton, CategoryTheory.Over.conePostIso_hom_app_hom, Cones.functoriality_obj_π_app, CategoryTheory.Functor.RightExtension.coneAtFunctor_obj, Cones.equivalenceOfReindexing_counitIso, Cone.category_id_hom, IsLimit.equivIsoLimit_symm_apply, DiagramOfCones.mkOfHasLimits_map_hom, coconeEquivalenceOpConeOp_functor_obj, Cone.equiv_hom_fst, Cones.whiskeringEquivalence_unitIso, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivFunctor_obj_pt, IsLimit.ofConeEquiv_apply_desc, TopCat.Presheaf.whiskerIsoMapGenerateCocone_inv_hom, CategoryTheory.Over.ConstructProducts.conesEquivFunctor_map_hom, CategoryTheory.WithTerminal.coneEquiv_inverse_obj_pt_left, IsLimit.uniqueUpToIso_hom, CategoryTheory.Over.conePost_map_hom, CategoryTheory.Functor.RightExtension.coneAtWhiskerRightIso_inv_hom, Cones.postcomposeEquivalence_unitIso, Cones.postcomposeEquivalence_counitIso, CategoryTheory.Functor.postcomposeWhiskerLeftMapCone_inv_hom, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquiv_inverse, Cones.functorialityEquivalence_unitIso, CategoryTheory.Functor.Initial.conesEquiv_unitIso, Cones.functoriality_obj_pt, DiagramOfCones.conePoints_map, Cone.mapConeToUnder_inv_hom, CategoryTheory.WithTerminal.isLimitEquiv_symm_apply_lift, Cones.extendComp_inv_hom, CategoryTheory.Over.ConstructProducts.conesEquivUnitIso_inv_app_hom, Cones.postcomposeEquivalence_functor, Cones.extendIso_inv_hom, Cones.functoriality_faithful, CategoryTheory.WithTerminal.coneEquiv_inverse_obj_pt_hom, CategoryTheory.Over.ConstructProducts.conesEquivCounitIso_hom_app_hom_left, CategoryTheory.IsCofiltered.iff_cone_nonempty, CategoryTheory.Functor.Initial.extendCone_map_hom, Cone.toCostructuredArrow_map, Cones.eta_inv_hom, CategoryTheory.Functor.Initial.conesEquiv_inverse, CategoryTheory.Over.ConstructProducts.conesEquiv_counitIso, Cones.whiskeringEquivalence_counitIso, Cone.equiv_inv_π, Cones.extendIso_hom_hom, instIsIsoHomInvCone, CategoryTheory.IsCofiltered.cone_nonempty, Cone.equiv_hom_snd, PullbackCone.unop_ι_app, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivUnitIso_inv_app_hom, Cones.eta_hom_hom, PullbackCone.isoMk_inv_hom, Cones.functoriality_full, Cones.postcompose_obj_π, CategoryTheory.Adjunction.functorialityUnit'_app_hom, Cones.functoriality_map_hom, Cones.extendId_hom_hom, colimitLimitToLimitColimitCone_iso, Cones.functorialityEquivalence_inverse, CategoryTheory.liftedLimitMapsToOriginal_inv_map_π, Cones.postcomposeComp_inv_app_hom, CategoryTheory.Functor.mapConePostcomposeEquivalenceFunctor_inv_hom, CategoryTheory.Functor.mapConePostcomposeEquivalenceFunctor_hom_hom, Cone.equivCostructuredArrow_functor, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivFunctor_obj_π_app, CategoryTheory.Over.conePostIso_inv_app_hom, TopCat.Presheaf.whiskerIsoMapGenerateCocone_hom_hom, Cones.forget_obj, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivFunctor_map_hom, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivInverse_obj_pt, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivUnitIso_hom_app_hom, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivUnitIsoApp_hom_hom, CategoryTheory.Over.conePost_obj_pt, Cones.functorialityEquivalence_counitIso, CategoryTheory.Over.ConstructProducts.conesEquiv_functor, CategoryTheory.Functor.mapConeWhisker_hom_hom, Cone.equivCostructuredArrow_counitIso, Cones.ext_inv_hom, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivInverse_map_hom, Cone.category_comp_hom, CategoryTheory.Functor.postcomposeWhiskerLeftMapCone_hom_hom, ConeMorphism.hom_inv_id_assoc, Cone.fromCostructuredArrow_obj_pt, CategoryTheory.WithTerminal.isLimitEquiv_apply_lift_left, limit.lift_map, IsLimit.conePointsIsoOfEquivalence_hom, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquivUnitIsoApp_inv_hom, CategoryTheory.Functor.RightExtension.coneAtFunctor_map_hom, CategoryTheory.Functor.mapConePostcompose_hom_hom, IsLimit.conePointsIsoOfEquivalence_inv, CategoryTheory.Over.ConstructProducts.conesEquivFunctor_obj_pt, CategoryTheory.Functor.RightExtension.coneAtWhiskerRightIso_hom_hom, Cones.instIsIsoConeExtend, CategoryTheory.WithTerminal.coneEquiv_unitIso_inv_app_hom_left, DiagramOfCones.comp, CategoryTheory.Functor.mapCoconeOp_hom_hom, Cones.equivalenceOfReindexing_unitIso, CategoryTheory.Over.ConstructProducts.conesEquivUnitIso_hom_app_hom, coconeEquivalenceOpConeOp_inverse_obj, coconeEquivalenceOpConeOp_counitIso, Cone.mapConeToUnder_hom_hom, CategoryTheory.Over.ConstructProducts.conesEquivInverse_obj, CategoryTheory.Functor.Initial.limitConeOfComp_cone, Cone.equivCostructuredArrow_unitIso, CategoryTheory.WithTerminal.coneEquiv_inverse_map_hom_left, CategoryTheory.Functor.mapConeMapCone_inv_hom, Cones.equivalenceOfReindexing_functor, coconeEquivalenceOpConeOp_inverse_map_hom, PullbackCone.isoMk_hom_hom, CategoryTheory.Functor.Initial.extendCone_obj_π_app, CategoryTheory.Functor.functorialityCompPostcompose_inv_app_hom, CategoryTheory.Functor.mapConeWhisker_inv_hom, CategoryTheory.WithTerminal.coneEquiv_functor_obj_pt, CategoryTheory.Over.ConstructProducts.conesEquiv_inverse, coconeEquivalenceOpConeOp_functor_map, CategoryTheory.liftedLimitMapsToOriginal_hom_π, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquiv_functor, TopCat.Presheaf.SheafConditionPairwiseIntersections.coneEquiv_unitIso, HasLimit.lift_isoOfNatIso_inv, limit.lift_map_assoc, Cones.reflects_cone_isomorphism, Cones.extendComp_hom_hom, CategoryTheory.Functor.Initial.conesEquiv_functor, CategoryTheory.Presheaf.subsingleton_iff_isSeparatedFor, Cones.cone_iso_of_hom_iso, HasLimit.lift_isoOfNatIso_hom_assoc, Cones.whiskering_obj, IsTerminal.from_eq_liftConeMorphism, Cones.postcomposeComp_hom_app_hom, Cones.postcompose_map_hom, FundamentalGroupoidFunctor.coneDiscreteComp_obj_mapCone, Cones.postcomposeEquivalence_inverse, Cones.postcomposeId_inv_app_hom, CategoryTheory.WithTerminal.coneEquiv_counitIso_hom_app_hom, CategoryTheory.Over.ConstructProducts.conesEquivFunctor_obj_π_app, IsLimit.hom_isIso, CategoryTheory.Functor.Initial.limitConeOfComp_isLimit, instIsIsoHomHomCone, CategoryTheory.Over.ConstructProducts.conesEquivInverse_map_hom, CategoryTheory.Adjunction.functorialityCounit'_app_hom, CategoryTheory.WithTerminal.coneEquiv_inverse_obj_pt_right_as, HasLimit.lift_isoOfNatIso_inv_assoc, ConeMorphism.inv_hom_id, CategoryTheory.WithTerminal.coneEquiv_functor_map_hom
|