| Metric | Count |
DefinitionsfullyFaithful, ext, fullyFaithful, objOpOp, opIso, preimage, punitIso, CorepresentableBy, coyoneda, equivOfIsoObj, equivUliftCoyonedaIso, homEquiv, isoCoreprX, ofIso, ofIsoObj, toIso, uniqueUpToIso, compUliftCoyonedaCompWhiskeringLeft, compUliftYonedaCompWhiskeringLeft, compYonedaCompWhiskeringLeft, compYonedaCompWhiskeringLeftMaxRight, homNatIso, homNatIso', homNatIsoMaxRight, IsCorepresentable, IsRepresentable, RepresentableBy, equivOfIsoObj, equivUliftYonedaIso, homEquiv, isoReprX, ofIso, ofIsoObj, toIso, uniqueUpToIso, yoneda, coreprW, coreprX, corepresentableBy, corepresentableByEquiv, corepresentableByUliftFunctorEquiv, coreprx, reprW, reprX, representableBy, representableByEquiv, representableByUliftFunctorEquiv, reprx, sectionsEquivHom, uliftCoyonedaCoreprXIso, uliftYonedaReprXIso, fullyFaithful, ext, fullyFaithful, coyoneda, coyonedaCompYonedaObj, coyonedaEquiv, coyonedaEvaluation, coyonedaLemma, coyonedaPairing, curriedCoyonedaLemma, curriedCoyonedaLemma', curriedYonedaLemma, curriedYonedaLemma', largeCurriedCoyonedaLemma, largeCurriedYonedaLemma, prodCategoryInstance1, prodCategoryInstance2, sectionsFunctorNatIsoCoyoneda, uliftCoyoneda, uliftCoyonedaEquiv, uliftCoyonedaIsoCoyoneda, uliftCoyonedaRightOpCompCoyoneda, uliftYoneda, uliftYonedaEquiv, uliftYonedaIsoYoneda, uliftYonedaMap, uliftYonedaOpCompCoyoneda, yoneda, yonedaEquiv, yonedaEvaluation, yonedaLemma, yonedaMap, yonedaOpCompYonedaObj, yonedaPairing | 85 |
TheoremsinstFaithfulOppositeFunctorTypeUliftCoyoneda, instFullOppositeFunctorTypeUliftCoyoneda, coyoneda_faithful, coyoneda_full, fullyFaithful_preimage, isIso, naturality, objOpOp_hom_app, objOpOp_inv_app, coyoneda_homEquiv, equivOfIsoObj_apply, equivOfIsoObj_symm_apply, equivUliftCoyonedaIso_apply, equivUliftCoyonedaIso_symm_apply_homEquiv, ext, ext_iff, homEquiv_comp, homEquiv_eq, homEquiv_symm_comp, isCorepresentable, ofIsoObj_homEquiv, uniqueUpToIso_hom, uniqueUpToIso_inv, compUliftCoyonedaCompWhiskeringLeft_hom_app_app_down, compUliftCoyonedaCompWhiskeringLeft_inv_app_app_down, compUliftYonedaCompWhiskeringLeft_hom_app_app_down, compUliftYonedaCompWhiskeringLeft_inv_app_app_down, compYonedaCompWhiskeringLeftMaxRight_hom_app_app_down, compYonedaCompWhiskeringLeftMaxRight_inv_app_app, homNatIso'_hom_app_down, homNatIso'_inv_app_down, homNatIsoMaxRight_hom_app_down, homNatIsoMaxRight_inv_app, homNatIso_hom_app_down, homNatIso_inv_app_down, has_corepresentation, mk', has_representation, mk', comp_homEquiv_symm, coyoneda_homEquiv, equivOfIsoObj_apply, equivOfIsoObj_symm_apply, equivUliftYonedaIso_apply, equivUliftYonedaIso_symm_apply_homEquiv, ext, ext_iff, homEquiv_comp, homEquiv_eq, homEquiv_unop_comp, isRepresentable, ofIsoObj_homEquiv, uniqueUpToIso_hom, uniqueUpToIso_inv, coreprW_hom_app, corepresentableByUliftFunctorEquiv_apply_homEquiv, corepresentableByUliftFunctorEquiv_symm_apply_homEquiv, instIsCorepresentableCompUliftFunctor, instIsCorepresentableObjOppositeTypeCoyoneda, instIsRepresentableCompOppositeUliftFunctor, instIsRepresentableObjOppositeTypeYoneda, isCorepresentable_comp_uliftFunctor_iff, isRepresentable_comp_uliftFunctor_iff, reprW_hom_app, representableByUliftFunctorEquiv_apply_homEquiv, representableByUliftFunctorEquiv_symm_apply_homEquiv, sectionsEquivHom_apply_app, sectionsEquivHom_naturality, sectionsEquivHom_naturality_symm, uliftCoyonedaCoreprXIso_hom_app, uliftYonedaReprXIso_hom_app, instFaithfulFunctorOppositeTypeUliftYoneda, instFullFunctorOppositeTypeUliftYoneda, fullyFaithful_preimage, isIso, naturality, obj_map_id, yoneda_faithful, yoneda_full, corepresentable_of_natIso, coyonedaEquiv_apply, coyonedaEquiv_comp, coyonedaEquiv_coyoneda_map, coyonedaEquiv_naturality, coyonedaEquiv_symm_app_apply, coyonedaEquiv_symm_map, coyonedaEvaluation_map_down, coyonedaPairingExt, coyonedaPairingExt_iff, coyonedaPairing_map, hom_ext_uliftCoyoneda, hom_ext_uliftYoneda, hom_ext_yoneda, instIsCorepresentableIdType, isIso_iff_coyoneda_map_bijective, isIso_iff_isIso_coyoneda_map, isIso_iff_isIso_yoneda_map, isIso_iff_yoneda_map_bijective, isIso_of_coyoneda_map_bijective, isIso_of_yoneda_map_bijective, isRepresentable_of_natIso, map_coyonedaEquiv, map_yonedaEquiv, map_yonedaEquiv', sectionsFunctorNatIsoCoyoneda_hom_app_app, sectionsFunctorNatIsoCoyoneda_inv_app_coe, uliftCoyonedaEquiv_apply, uliftCoyonedaEquiv_comp, uliftCoyonedaEquiv_naturality, uliftCoyonedaEquiv_symm_apply_app, uliftCoyonedaEquiv_symm_map, uliftCoyonedaEquiv_symm_map_assoc, uliftCoyonedaEquiv_uliftCoyoneda_map, uliftCoyonedaIsoCoyoneda_hom_app_app, uliftCoyonedaIsoCoyoneda_inv_app_app_down, uliftYonedaEquiv_apply, uliftYonedaEquiv_comp, uliftYonedaEquiv_naturality, uliftYonedaEquiv_symm_apply_app, uliftYonedaEquiv_symm_map, uliftYonedaEquiv_symm_map_assoc, uliftYonedaEquiv_uliftYoneda_map, uliftYonedaIsoYoneda_hom_app_app, uliftYonedaIsoYoneda_inv_app_app_down, uliftYonedaMap_app_apply, uliftYoneda_map_app, uliftYoneda_map_app_down, uliftYoneda_obj_map, uliftYoneda_obj_map_down, uliftYoneda_obj_obj, yonedaEquiv_apply, yonedaEquiv_comp, yonedaEquiv_naturality, yonedaEquiv_naturality', yonedaEquiv_symm_app_apply, yonedaEquiv_symm_map, yonedaEquiv_symm_naturality_left, yonedaEquiv_symm_naturality_right, yonedaEquiv_yoneda_map, yonedaEvaluation_map_down, yonedaMap_app_apply, yonedaPairingExt, yonedaPairingExt_iff, yonedaPairing_map, yoneda_map_app, yoneda_obj_map, yoneda_obj_obj | 147 |
| Total | 232 |
| Name | Category | Theorems |
coyoneda π | CompOp | 153 mathmath: Functor.functorHomEquiv_apply_app, HomologicalComplex.evalCompCoyonedaCorepresentableByDoubleId_homEquiv_apply, Functor.natTransEquiv_apply_app, uliftCoyonedaIsoCoyoneda_hom_app_app, coyonedaEquiv_symm_app_apply, GrothendieckTopology.yonedaOpCompCoyoneda_hom_app_app_down, sheafOver_val, cocones_map_app_app, sheafToPresheafCompCoyonedaCompWhiskeringLeftSheafToPresheaf_hom_app_app_val, FunctorToTypes.functorHomEquiv_symm_apply_app_app, Functor.CorepresentableBy.uniqueUpToIso_inv, whiskering_linearCoyoneda, Adjunction.compCoyonedaIso_inv_app_app, Limits.colimitCoyonedaHomIsoLimit'_Ο_apply, MonoidalCategory.DayConvolution.corepresentableByβ_homEquiv, Limits.coyonedaCompLimIsoCones_inv_app, sheafToPresheafCompCoyonedaCompWhiskeringLeftSheafToPresheaf_inv_app_app, Functor.IsCoverDense.isoOver_hom_app, Coyoneda.objOpOp_inv_app, uliftCoyonedaIsoCoyoneda_inv_app_app_down, CostructuredArrow.overEquivPresheafCostructuredArrow_inverse_map_toOverCompCoyoneda, coyonedaEquiv_comp, Limits.PreservesFiniteLimitsOfIsFilteredCostructuredArrowYonedaAux.functorToInterchangeIso_inv_app_app, IsCofiltered.iff_nonempty_limit, Coyoneda.objOpOp_hom_app, Presheaf.isLimit_iff_isSheafFor_presieve, Limits.coyonedaOpColimitIsoLimitCoyoneda_hom_comp_Ο_assoc, Limits.limitCompCoyonedaIsoCone_hom_app, preservesColimitsOfShape_of_isCardinalPresentable_of_essentiallySmall, isFinitelyPresentable_iff_preservesFilteredColimitsOfSize, AddCommGrpCat.coyonedaForget_inv_app_app, Limits.coyonedaOpColimitIsoLimitCoyoneda'_inv_comp_Ο, AddCommGrpCat.coyonedaForget_hom_app_app_hom, Limits.coyonedaOpColimitIsoLimitCoyoneda_inv_comp_Ο_assoc, coyoneda_preservesLimits, Functor.coreprW_hom_app, Functor.natTransEquiv_symm_apply_app, Coyoneda.colimitCocone_ΞΉ_app, Presheaf.functorEnrichedHomCoyonedaObjEquiv_naturality, CommMonCat.coyonedaForget_inv_app_app, HomologicalComplex.instIsCorepresentableCompEvalObjOppositeFunctorTypeCoyonedaOp, Projective.projective_iff_preservesEpimorphisms_coyoneda_obj, sectionsFunctorNatIsoCoyoneda_inv_app_coe, Presheaf.isSeparated_iff_subsingleton, FunctorToTypes.rightAdj_map_app, MonoidalCategory.DayConvolution.corepresentableByβ'_homEquiv, Limits.whiskeringLimYonedaIsoCones_inv_app_app, GrothendieckTopology.yonedaOpCompCoyoneda_inv_app_app, Limits.colimitCoyonedaHomIsoLimitUnop_Ο_apply, FunctorToTypes.rightAdj_map_app_app, isSeparator_iff_faithful_coyoneda_obj, isDetector_iff_reflectsIsomorphisms_coyoneda_obj, Limits.compCoyonedaSectionsEquiv_symm_apply_coe, Enriched.Functor.functorHom_whiskerLeft_natTransEquiv_symm_app, Adjunction.corepresentableBy_homEquiv, Limits.coyonedaOpColimitIsoLimitCoyoneda'_hom_comp_Ο, Limits.PreservesFiniteLimitsOfIsFilteredCostructuredArrowYonedaAux.functorToInterchangeIso_hom_app_app, IsGrothendieckAbelian.preservesColimit_coyoneda_obj_of_mono, coyonedaEquiv_naturality, coyonedaEquiv_apply, Limits.compCoyonedaSectionsEquiv_apply_app, Functor.functorHom_ext_iff, Coyoneda.naturality, MonoidalCategory.DayConvolutionUnit.rightUnitorCorepresentingIso_hom_app_app, MonoidalCategory.DayConvolution.corepresentableBy_homEquiv_symm_apply, Limits.PreservesFiniteLimitsOfIsFilteredCostructuredArrowYonedaAux.isoAux_hom_app, sheafToPresheafCompCoyonedaCompWhiskeringLeftSheafToPresheaf_app_app, Enriched.Functor.natTransEquiv_symm_app_app_apply, coyonedaPreservesLimitsOfShape, instPreservesFilteredColimitsOfSizeObjOppositeFunctorTypeCoyonedaOpOfIsFinitelyPresentable, Coyoneda.colimitCoconeIsColimit_desc, Coyoneda.colimitCocone_pt, preservesFilteredColimits_coyoneda, ObjectProperty.IsDetecting.isIso_iff_of_mono, FunctorToTypes.functorHomEquiv_apply_app, Limits.coyonedaOpColimitIsoLimitCoyoneda_inv_comp_Ο, Functor.instIsCorepresentableCompObjOppositeTypeCoyonedaOpObjLeftAdjointObjIsDefined, CommGrpCat.coyonedaForget_hom_app_app_hom, coyonedaEquiv_coyoneda_map, IsDetecting.isIso_iff_of_mono, Enriched.Functor.natTransEquiv_symm_whiskerRight_functorHom_app, Adjunction.compCoyonedaIso_hom_app_app, MonoidalCategory.DayConvolutionUnit.leftUnitorCorepresentingIso_inv_app_app, Limits.limitCompCoyonedaIsoCone_inv, AddCommMonCat.coyonedaForget_inv_app_app, sectionsFunctorNatIsoCoyoneda_hom_app_app, GrothendieckTopology.uliftYonedaOpCompCoyoneda_hom_app_app_down, MonoidalCategory.DayConvolution.corepresentableBy_homEquiv_apply_app, Limits.coyonedaOpColimitIsoLimitCoyoneda'_inv_comp_Ο_assoc, Functor.IsCoverDense.sheafCoyonedaHom_app, Functor.IsCoverDense.homOver_app, MonoidalCategory.DayConvolution.associatorCorepresentingIso_inv_app_app, Functor.CorepresentableBy.uniqueUpToIso_hom, FunctorToTypes.rightAdj_obj_map_app, GrothendieckTopology.uliftYonedaOpCompCoyoneda_app_app, Coyoneda.instHasColimitObjOppositeFunctorTypeCoyoneda, Functor.instIsCorepresentableObjOppositeTypeCoyoneda, Coyoneda.coyoneda_full, Limits.coyonedaOpColimitIsoLimitCoyoneda_hom_comp_Ο, HomologicalComplex.evalCompCoyonedaCorepresentableByDoubleId_homEquiv_symm_apply, preservesColimit_coyoneda_of_finitePresentation, Limits.whiskeringLimYonedaIsoCones_hom_app_app_app, Square.isPullback_iff_map_coyoneda_isPullback, FunctorToTypes.rightAdj_obj_obj, Limits.coyonedaOpColimitIsoLimitCoyoneda'_hom_comp_Ο_assoc, isCardinalPresentable_iff_isCardinalAccessible_coyoneda_obj, MonoidalCategory.DayConvolutionUnit.leftUnitorCorepresentingIso_hom_app_app, CommGrpCat.coyonedaForget_inv_app_app, MonoidalCategory.DayConvolution.associatorCorepresentingIso_hom_app_app, Functor.IsCoverDense.isoOver_inv_app, CommMonCat.coyonedaForget_hom_app_app_hom, MonoidalCategory.DayConvolutionUnit.corepresentableByLeft_homEquiv, GrothendieckTopology.uliftYonedaOpCompCoyoneda_inv_app_app, isIso_iff_isIso_coyoneda_map, Limits.colimitCoyonedaHomIsoLimit_Ο_apply, Limits.coneOfSectionCompCoyoneda_Ο, HomologicalComplex.evalCompCoyonedaCorepresentableBySingle_homEquiv_symm_apply, HomologicalComplex.evalCompCoyonedaCorepresentableBySingle_homEquiv_apply, coyoneda_preservesLimit, coyonedaPairing_map, CostructuredArrow.overEquivPresheafCostructuredArrow_functor_map_toOverCompCoyoneda, Coyoneda.fullyFaithful_preimage, MorphismProperty.IsCardinalForSmallObjectArgument.preservesColimit, Limits.Cocone.extend_ΞΉ, PreGaloisCategory.PointedGaloisObject.instHasColimitOppositeFunctorTypeCompOpInclCoyoneda, MonoidalCategory.DayConvolutionUnit.rightUnitorCorepresentingIso_inv_app_app, coyonedaEquiv_symm_map, coyonedaPairingExt_iff, Presheaf.isLimit_iff_isSheafFor, AddCommMonCat.coyonedaForget_hom_app_app_hom, instPreservesColimitFunctorOppositeTypeObjCoyonedaOpYoneda, coyonedaFunctor_preservesLimits, isFinitelyPresentable_iff_preservesFilteredColimits, yonedaYonedaColimit_app_inv, SmallObject.preservesColimit, coyonedaFunctor_reflectsLimits, PreGaloisCategory.PointedGaloisObject.cocone_app, GrothendieckTopology.MayerVietorisSquare.sheafCondition_iff_comp_coyoneda, Limits.coyonedaCompLimIsoCones_hom_app_app, Functor.leftAdjointObjIsDefined_iff, Functor.CorepresentableBy.coyoneda_homEquiv, Presheaf.subsingleton_iff_isSeparatedFor, Limits.colimitCoyonedaHomIsoLimitLeftOp_Ο_apply, CommRingCat.preservesFilteredColimits_coyoneda, Limits.Cocone.extensions_app, CommRingCat.preservesColimit_coyoneda_of_finitePresentation, MonoidalCategory.DayConvolutionUnit.corepresentableByRight_homEquiv, map_coyonedaEquiv, GrothendieckTopology.uliftYonedaOpCompCoyoneda_inv_app_app_val_app, Functor.functorHomEquiv_symm_apply_app_app, preservesColimitsOfShape_of_isCardinalPresentable, whiskering_preadditiveCoyoneda, Coyoneda.coyoneda_faithful
|
coyonedaCompYonedaObj π | CompOp | β |
coyonedaEquiv π | CompOp | 7 mathmath: coyonedaEquiv_symm_app_apply, coyonedaEquiv_comp, coyonedaEquiv_naturality, coyonedaEquiv_apply, coyonedaEquiv_coyoneda_map, coyonedaEquiv_symm_map, map_coyonedaEquiv
|
coyonedaEvaluation π | CompOp | 1 mathmath: coyonedaEvaluation_map_down
|
coyonedaLemma π | CompOp | β |
coyonedaPairing π | CompOp | 1 mathmath: coyonedaPairing_map
|
curriedCoyonedaLemma π | CompOp | β |
curriedCoyonedaLemma' π | CompOp | β |
curriedYonedaLemma π | CompOp | β |
curriedYonedaLemma' π | CompOp | β |
largeCurriedCoyonedaLemma π | CompOp | β |
largeCurriedYonedaLemma π | CompOp | 1 mathmath: GrothendieckTopology.yonedaOpCompCoyoneda_inv_app_app
|
prodCategoryInstance1 π | CompOp | β |
prodCategoryInstance2 π | CompOp | 3 mathmath: yonedaPairing_map, yonedaPairingExt_iff, yonedaEvaluation_map_down
|
sectionsFunctorNatIsoCoyoneda π | CompOp | 2 mathmath: sectionsFunctorNatIsoCoyoneda_inv_app_coe, sectionsFunctorNatIsoCoyoneda_hom_app_app
|
uliftCoyoneda π | CompOp | 22 mathmath: Adjunction.compUliftCoyonedaIso_hom_app_app_down, uliftCoyonedaEquiv_apply, uliftCoyonedaIsoCoyoneda_hom_app_app, Functor.uliftCoyonedaCoreprXIso_hom_app, Functor.FullyFaithful.compUliftCoyonedaCompWhiskeringLeft_hom_app_app_down, uliftCoyonedaIsoCoyoneda_inv_app_app_down, uliftCoyonedaEquiv_uliftCoyoneda_map, uliftCoyonedaEquiv_symm_apply_app, Coyoneda.ULiftCoyoneda.instFullOppositeFunctorTypeUliftCoyoneda, Adjunction.compUliftCoyonedaIso_inv_app_app_down, Functor.FullyFaithful.homNatIso'_hom_app_down, Functor.CorepresentableBy.equivUliftCoyonedaIso_symm_apply_homEquiv, Functor.CorepresentableBy.equivUliftCoyonedaIso_apply, uliftCoyonedaEquiv_naturality, uliftCoyonedaEquiv_symm_map_assoc, Functor.FullyFaithful.compUliftCoyonedaCompWhiskeringLeft_inv_app_app_down, Functor.FullyFaithful.homNatIso'_inv_app_down, isCardinalPresentable_iff_isCardinalAccessible_uliftCoyoneda_obj, uliftCoyonedaEquiv_symm_map, instIsCardinalAccessibleObjOppositeFunctorTypeUliftCoyonedaOpOfIsCardinalPresentable, uliftCoyonedaEquiv_comp, Coyoneda.ULiftCoyoneda.instFaithfulOppositeFunctorTypeUliftCoyoneda
|
uliftCoyonedaEquiv π | CompOp | 7 mathmath: uliftCoyonedaEquiv_apply, uliftCoyonedaEquiv_uliftCoyoneda_map, uliftCoyonedaEquiv_symm_apply_app, uliftCoyonedaEquiv_naturality, uliftCoyonedaEquiv_symm_map_assoc, uliftCoyonedaEquiv_symm_map, uliftCoyonedaEquiv_comp
|
uliftCoyonedaIsoCoyoneda π | CompOp | 2 mathmath: uliftCoyonedaIsoCoyoneda_hom_app_app, uliftCoyonedaIsoCoyoneda_inv_app_app_down
|
uliftCoyonedaRightOpCompCoyoneda π | CompOp | β |
uliftYoneda π | CompOp | 72 mathmath: Functor.FullyFaithful.homNatIsoMaxRight_inv_app, ULiftYoneda.instFullFunctorOppositeTypeUliftYoneda, Subfunctor.Subpresheaf.range_eq_ofSection', Presheaf.compULiftYonedaIsoULiftYonedaCompLan.uliftYonedaEquiv_ΞΉ_presheafHom, CategoryOfElements.costructuredArrowULiftYonedaEquivalence_unitIso, Functor.FullyFaithful.homNatIsoMaxRight_hom_app_down, Presheaf.functorToRepresentables_map, Presheaf.instIsLeftKanExtensionFunctorOppositeTypeLanOpHomCompULiftYonedaIsoULiftYonedaCompLan, Presheaf.compULiftYonedaIsoULiftYonedaCompLan.natTrans_app_uliftYoneda_obj, uliftYonedaEquiv_symm_apply_app, Subfunctor.Subpresheaf.ofSection_eq_range', Functor.FullyFaithful.homNatIso_inv_app_down, uliftYonedaEquiv_apply, Functor.FullyFaithful.compUliftYonedaCompWhiskeringLeft_inv_app_app_down, uliftYonedaEquiv_symm_map, uliftYonedaEquiv_naturality, Subfunctor.ofSection_eq_range', Presheaf.restrictedULiftYoneda_map_app, Presheaf.compULiftYonedaIsoULiftYonedaCompLan_inv_app_app_apply_eq_id, Presheaf.functorToRepresentables_obj, Functor.FullyFaithful.compYonedaCompWhiskeringLeftMaxRight_inv_app_app, uliftYonedaEquiv_comp, GrothendieckTopology.uliftYonedaCompSheafToPresheaf_inv_app_app, Sieve.sieveOfUliftSubfunctor_apply, Sieve.uliftNatTransOfLe_comm, uliftYoneda_obj_map, GrothendieckTopology.uliftYonedaCompSheafToPresheaf_hom_app_app, uliftYoneda_obj_obj, CategoryOfElements.costructuredArrowULiftYonedaEquivalence_functor_obj, Presheaf.tautologicalCocone'_pt, uliftYonedaEquiv_uliftYoneda_map, CategoryOfElements.costructuredArrowULiftYonedaEquivalence_functor_map, Subfunctor.range_eq_ofSection', Functor.RepresentableBy.equivUliftYonedaIso_symm_apply_homEquiv, uliftYoneda_obj_map_down, Sieve.uliftFunctorInclusion_app, CategoryOfElements.costructuredArrowULiftYonedaEquivalence_counitIso, uliftYoneda_map_app, Functor.uliftYonedaReprXIso_hom_app, Presheaf.instIsCardinalPresentableFunctorOppositeTypeObjUliftYonedaOfHasColimitsOfSize, Functor.IsRepresentedBy.uliftYonedaIso_hom, uliftYoneda_map_app_down, Functor.FullyFaithful.compYonedaCompWhiskeringLeftMaxRight_hom_app_app_down, GrothendieckTopology.uliftYonedaOpCompCoyoneda_hom_app_app_down, Presheaf.compULiftYonedaIsoULiftYonedaCompLan.uliftYonedaEquiv_presheafHom_uliftYoneda_obj, Sieve.uliftFunctorInclusion_is_mono, uliftYonedaIsoYoneda_hom_app_app, Functor.FullyFaithful.compUliftYonedaCompWhiskeringLeft_hom_app_app_down, Presheaf.map_comp_uliftYonedaEquiv_down_assoc, CategoryOfElements.costructuredArrowULiftYonedaEquivalence_inverse_obj, Functor.IsRepresentedBy.iff_isIso_uliftYonedaEquiv, ULiftYoneda.instFaithfulFunctorOppositeTypeUliftYoneda, Presheaf.map_comp_uliftYonedaEquiv_down, Presheaf.restrictedULiftYonedaHomEquiv'_symm_app_naturality_left, Functor.RepresentableBy.equivUliftYonedaIso_apply, Presheaf.tautologicalCocone'_ΞΉ_app, Presheaf.coconeOfRepresentable_ΞΉ_app, Presheaf.restrictedULiftYonedaHomEquiv'_symm_naturality_right_assoc, Sieve.uliftFunctorInclusion_top_isIso, Presheaf.restrictedULiftYonedaHomEquiv'_symm_app_naturality_left_assoc, uliftYonedaMap_app_apply, Functor.FullyFaithful.homNatIso_hom_app_down, Presheaf.compULiftYonedaIsoULiftYonedaCompLan.coconeApp_naturality, uliftYonedaIsoYoneda_inv_app_app_down, uliftYonedaEquiv_symm_map_assoc, uliftYonedaFunctor_preservesLimits, CategoryOfElements.costructuredArrowULiftYonedaEquivalence_inverse_map, Sieve.toUliftFunctor_app_down_coe, Presheaf.restrictedULiftYonedaHomEquiv'_symm_naturality_right, GrothendieckTopology.uliftYonedaOpCompCoyoneda_inv_app_app_val_app, Presheaf.compULiftYonedaIsoULiftYonedaCompLan.coconeApp_naturality_assoc, Presheaf.instIsLeftKanExtensionOppositeObjFunctorTypeUliftYonedaUliftYonedaMap
|
uliftYonedaEquiv π | CompOp | 27 mathmath: Subfunctor.Subpresheaf.range_eq_ofSection', Presheaf.compULiftYonedaIsoULiftYonedaCompLan.uliftYonedaEquiv_ΞΉ_presheafHom, CategoryOfElements.costructuredArrowULiftYonedaEquivalence_unitIso, uliftYonedaEquiv_symm_apply_app, Subfunctor.Subpresheaf.ofSection_eq_range', uliftYonedaEquiv_apply, uliftYonedaEquiv_symm_map, uliftYonedaEquiv_naturality, Subfunctor.ofSection_eq_range', uliftYonedaEquiv_comp, CategoryOfElements.costructuredArrowULiftYonedaEquivalence_functor_obj, uliftYonedaEquiv_uliftYoneda_map, CategoryOfElements.costructuredArrowULiftYonedaEquivalence_functor_map, Subfunctor.range_eq_ofSection', Presheaf.uliftYonedaAdjunction_homEquiv_app, CategoryOfElements.costructuredArrowULiftYonedaEquivalence_counitIso, Functor.IsRepresentedBy.uliftYonedaIso_hom, Presheaf.uliftYonedaAdjunction_unit_app_app, GrothendieckTopology.uliftYonedaOpCompCoyoneda_hom_app_app_down, Presheaf.compULiftYonedaIsoULiftYonedaCompLan.uliftYonedaEquiv_presheafHom_uliftYoneda_obj, Presheaf.map_comp_uliftYonedaEquiv_down_assoc, CategoryOfElements.costructuredArrowULiftYonedaEquivalence_inverse_obj, Functor.IsRepresentedBy.iff_isIso_uliftYonedaEquiv, Presheaf.map_comp_uliftYonedaEquiv_down, Presheaf.coconeOfRepresentable_ΞΉ_app, uliftYonedaEquiv_symm_map_assoc, CategoryOfElements.costructuredArrowULiftYonedaEquivalence_inverse_map
|
uliftYonedaIsoYoneda π | CompOp | 2 mathmath: uliftYonedaIsoYoneda_hom_app_app, uliftYonedaIsoYoneda_inv_app_app_down
|
uliftYonedaMap π | CompOp | 2 mathmath: uliftYonedaMap_app_apply, Presheaf.instIsLeftKanExtensionOppositeObjFunctorTypeUliftYonedaUliftYonedaMap
|
uliftYonedaOpCompCoyoneda π | CompOp | 1 mathmath: GrothendieckTopology.uliftYonedaOpCompCoyoneda_inv_app_app_val_app
|
yoneda π | CompOp | 274 mathmath: Limits.colimitHomIsoLimitYoneda'_hom_comp_Ο, Functor.FullyFaithful.homNatIsoMaxRight_inv_app, Adjunction.compUliftCoyonedaIso_hom_app_app_down, instSmallOppositeObjFunctorTypeYoneda, Limits.IndizationClosedUnderFilteredColimitsAux.exists_nonempty_limit_obj_of_isColimit, GrothendieckTopology.MayerVietorisSquare.shortComplex_Xβ, yoneda_preservesLimit, Limits.colimitHomIsoLimitYoneda_hom_comp_Ο, SSet.stdSimplex.coe_triangle_down_toOrderHom, CategoryOfElements.costructuredArrowYonedaEquivalenceInverseΟ_hom_app, shrinkYoneda_map, GrothendieckTopology.yonedaOpCompCoyoneda_hom_app_app_down, OverPresheafAux.costructuredArrowPresheafToOver_map, Subfunctor.Subpresheaf.range_eq_ofSection', Presheaf.compULiftYonedaIsoULiftYonedaCompLan.uliftYonedaEquiv_ΞΉ_presheafHom, CategoryOfElements.costructuredArrowYonedaEquivalence_functor, OverPresheafAux.unitAux_hom, IndParallelPairPresentation.hf, Subfunctor.Subpresheaf.range_eq_ofSection, CondensedMod.IsSolid.isIso_solidification_map, NonemptyParallelPairPresentationAux.hf, yoneda_map_app, OverPresheafAux.restrictedYoneda_map, Functor.FullyFaithful.homNatIsoMaxRight_hom_app_down, sheafToPresheafCompYonedaCompWhiskeringLeftSheafToPresheaf_inv_app_app, Limits.IsIndObject.isFiltered, OverPresheafAux.restrictedYoneda_obj, Limits.IndObjectPresentation.extend_ΞΉ_app_app, Limits.opCompYonedaSectionsEquiv_symm_apply_coe, Yoneda.naturality, GrothendieckTopology.yoneda_map_val, Limits.yonedaCompLimIsoCocones_inv_app, Subfunctor.ofSection_eq_range, GrothendieckTopology.MayerVietorisSquare.shortComplex_Xβ, yonedaEquiv_apply, Limits.IndObjectPresentation.instFinalICostructuredArrowFunctorOppositeTypeYonedaToCostructuredArrow, IsFiltered.iff_nonempty_limit, Functor.FullyFaithful.compUliftCoyonedaCompWhiskeringLeft_hom_app_app_down, Coyoneda.objOpOp_inv_app, sheafToPresheafCompYonedaCompWhiskeringLeftSheafToPresheaf_app_app, uliftCoyonedaIsoCoyoneda_inv_app_app_down, Adjunction.compYonedaIso_hom_app_app, PresheafOfModules.freeYonedaEquiv_symm_app, CostructuredArrow.overEquivPresheafCostructuredArrow_inverse_map_toOverCompCoyoneda, Sheaf.isPullback_square_op_map_yoneda_presheafToSheaf_yoneda_iff, Functor.RepresentableBy.coyoneda_homEquiv, Limits.colimitYonedaHomIsoLimit'_Ο_apply, sheafToPresheafCompYonedaCompWhiskeringLeftSheafToPresheaf_hom_app_app_val, Limits.PreservesFiniteLimitsOfIsFilteredCostructuredArrowYonedaAux.functorToInterchangeIso_inv_app_app, GrothendieckTopology.MayerVietorisSquare.biprodAddEquiv_symm_biprodIsoProd_hom_toBiprod_apply, Limits.colimitHomIsoLimitYoneda'_hom_comp_Ο_assoc, Limits.compYonedaSectionsEquiv_apply_app, Functor.imageSieve_eq_imageSieve, Functor.rightAdjointObjIsDefined_iff, yonedaFunctor_reflectsLimits, GrothendieckTopology.MayerVietorisSquare.isPushout, Functor.FullyFaithful.homNatIso_inv_app_down, OverPresheafAux.counitForward_naturalityβ, Coyoneda.objOpOp_hom_app, Limits.Cone.extend_Ο, extensiveTopology.isSheaf_yoneda_obj, Presheaf.isSheaf_yoneda', Functor.FullyFaithful.compUliftYonedaCompWhiskeringLeft_inv_app_app_down, shrinkYoneda_obj, Adjunction.compUliftCoyonedaIso_inv_app_app_down, OverPresheafAux.YonedaCollection.mapβ_snd, Limits.opHomCompWhiskeringLimYonedaIsoCocones_hom_app_app_app, OverPresheafAux.YonedaCollection.yonedaEquivFst_eq, Limits.colimitYonedaHomIsoLimit_Ο_apply, equivYoneda'_inv_val, OverPresheafAux.counitForward_val_snd, Limits.yonedaCompLimIsoCocones_hom_app_app, Yoneda.yoneda_faithful, OverPresheafAux.yonedaCollectionFunctor_obj, Presheaf.compULiftYonedaIsoULiftYonedaCompLan_inv_app_app_apply_eq_id, isIso_iff_isIso_yoneda_map, Functor.IsCoverDense.presheafIso_hom_app, GrothendieckTopology.MayerVietorisSquare.mkβ_f_comp_biprodAddEquiv_symm_biprodIsoProd_hom, Functor.instIsRepresentableCompOppositeOpObjTypeYonedaObjRightAdjointObjIsDefined, Functor.FullyFaithful.compYonedaCompWhiskeringLeftMaxRight_inv_app_app, yoneda_obj_obj, Limits.IndObjectPresentation.toCostructuredArrow_obj_right_as, Presheaf.freeYoneda_map, whiskering_linearYoneda, GrothendieckTopology.yonedaOpCompCoyoneda_inv_app_app, Sieve.sieveOfUliftSubfunctor_apply, yonedaEquiv_yoneda_map, CategoryOfElements.costructuredArrowYonedaEquivalence_counitIso, Limits.opCompYonedaSectionsEquiv_apply_app, CategoryOfElements.costructuredArrowYonedaEquivalence_inverse, Limits.isIndObject_iff, Presheaf.final_toCostructuredArrow_comp_pre, yoneda_preservesLimitsOfShape, Sieve.natTransOfLe_comm, typeEquiv_counitIso_inv_app_val_app, OverPresheafAux.counitAuxAux_inv, SSet.stdSimplex.coe_edge_down_toOrderHom, Limits.IsIndObject.finallySmall, yonedaEquiv_naturality', Functor.instIsRepresentableObjOppositeTypeYoneda, OverPresheafAux.restrictedYonedaObj_map, Limits.IndObjectPresentation.yoneda_isColimit_desc, whiskering_preadditiveYoneda, yoneda_obj_map, Limits.PreservesFiniteLimitsOfIsFilteredCostructuredArrowYonedaAux.functorToInterchangeIso_hom_app_app, CategoryOfElements.fromCostructuredArrow_obj_snd, CostructuredArrow.overEquivPresheafCostructuredArrow_functor_map_toOverCompYoneda, OverPresheafAux.counitBackward_counitForward, Limits.colimitHomIsoLimitYoneda_hom_comp_Ο_assoc, Limits.IndObjectPresentation.toCostructuredArrow_obj_left, Limits.isFiltered_costructuredArrow_yoneda_of_preservesFiniteLimits, Sieve.functorInclusion_app, Limits.IndObjectPresentation.toCostructuredArrow_map_left, isCodetector_iff_reflectsIsomorphisms_yoneda_obj, Limits.PreservesFiniteLimitsOfIsFilteredCostructuredArrowYonedaAux.isoAux_hom_app, Subfunctor.range_eq_ofSection', Functor.FullyFaithful.homNatIso'_hom_app_down, regularTopology.isSheaf_yoneda_obj, Limits.isIndObject_limit_comp_yoneda, Limits.isFiltered_costructuredArrow_yoneda_iff_nonempty_preservesFiniteLimits, uliftYoneda_obj_map_down, Limits.colimitHomIsoLimitYoneda'_inv_comp_Ο_assoc, Limits.IndObjectPresentation.yoneda_ΞΉ_app, Sieve.sieveOfSubfunctor_apply, coherentTopology.isSheaf_yoneda_obj, Limits.IndObjectPresentation.toCostructuredArrow_obj_hom, yonedaFunctor_preservesLimits, OverPresheafAux.counitAux_hom, CategoryOfElements.fromCostructuredArrow_map_coe, Adjunction.compYonedaIso_inv_app_app, Limits.isIndObject_yoneda, Limits.PreservesFiniteLimitsOfIsFilteredCostructuredArrowYonedaAux.flipFunctorToInterchange_inv_app_app, Presheaf.instIsLeftKanExtensionOppositeObjFunctorTypeYonedaYonedaMap, Sieve.yonedaFamily_fromCocone_compatible, OverPresheafAux.unitAuxAux_inv_app_fst, Limits.IndObjectPresentation.ofCocone_I, OverPresheafAux.unitAuxAux_inv_app_snd_coe, PresheafOfModules.Elements.fromFreeYoneda_app_apply, SSet.horn.edgeβ_coe_down, Functor.RepresentableBy.uniqueUpToIso_hom, uliftYoneda_map_app, Yoneda.yoneda_full, SSet.stdSimplex.const_down_toOrderHom, equivYoneda_hom_app, Presieve.IsSheafFor.functorInclusion_comp_extend, yonedaMap_app_apply, Limits.limitCompYonedaIsoCocone_inv, CategoryOfElements.costructuredArrow_yoneda_equivalence_naturality, Limits.coneOfSectionCompYoneda_Ο, Limits.IndObjectPresentation.ofCocone_isColimit, OverPresheafAux.restrictedYonedaObj_obj, OverPresheafAux.MakesOverArrow.app, CategoryOfElements.costructuredArrowYonedaEquivalence_unitIso, OverPresheafAux.OverArrows.app_val, Subfunctor.range_eq_ofSection, yonedaPairing_map, GrothendieckTopology.MayerVietorisSquare.shortComplex_g, uliftYoneda_map_app_down, GrothendieckTopology.MayerVietorisSquare.isPushoutAddCommGrpFreeSheaf, OverPresheafAux.restrictedYonedaObjMapβ_app, GrothendieckTopology.yoneda_obj_val, IndParallelPairPresentation.hg, yonedaPairingExt_iff, isCoseparator_iff_faithful_yoneda_obj, instPresheafIsFiniteObjFunctorOppositeTypeYoneda, typeEquiv_counitIso_hom_app_val_app, CategoryOfElements.toCostructuredArrow_obj, OverPresheafAux.yonedaCollectionFunctor_map, Functor.FullyFaithful.compYonedaCompWhiskeringLeftMaxRight_hom_app_app_down, OverPresheafAux.YonedaCollection.mk_snd, Presheaf.compULiftYonedaIsoULiftYonedaCompLan.uliftYonedaEquiv_presheafHom_uliftYoneda_obj, Functor.CorepresentableBy.equivUliftCoyonedaIso_apply, CategoryOfElements.costructuredArrowYonedaEquivalenceFunctorProj_hom_app, OverPresheafAux.YonedaCollection.mapβ_comp, PresheafOfModules.pullbackObjIsDefined_free_yoneda, uliftYonedaIsoYoneda_hom_app_app, IsCodetecting.isIso_iff_of_epi, Functor.FullyFaithful.compUliftYonedaCompWhiskeringLeft_hom_app_app_down, equivYoneda_inv_app, yoneda'_obj_val, Limits.IndObjectPresentation.extend_isColimit_desc_app, Limits.IndObjectPresentation.ofCocone_ΞΉ, Functor.FullyFaithful.compUliftCoyonedaCompWhiskeringLeft_inv_app_app_down, Presheaf.map_comp_uliftYonedaEquiv_down_assoc, Functor.RepresentableBy.uniqueUpToIso_inv, Sieve.forallYonedaIsSheaf_iff_colimit, Sieve.functorInclusion_top_isIso, Limits.IndObjectPresentation.ofCocone_F, Functor.FullyFaithful.homNatIso'_inv_app_down, yonedaEquiv_naturality, Limits.IndObjectPresentation.ofCocone_β, typeEquiv_functor_map_val_app, map_yonedaEquiv, GrothendieckTopology.MayerVietorisSquare.shortComplex_f, OverPresheafAux.YonedaCollection.mapβ_id, yoneda_preservesLimits, CommRingCat.instIsRightAdjointOppositeObjFunctorTypeYoneda, Presieve.IsSheafFor.functorInclusion_comp_extend_assoc, Presheaf.map_comp_uliftYonedaEquiv_down, Sieve.functorInclusion_is_mono, Injective.injective_iff_preservesEpimorphisms_yoneda_obj, Limits.limitCompYonedaIsoCocone_hom_app, Limits.colimitYonedaHomIsoLimitOp_Ο_apply, Presheaf.tautologicalCocone_ΞΉ_app, Functor.RepresentableBy.equivUliftYonedaIso_apply, CategoryOfElements.costructuredArrowYonedaEquivalenceInverseΟ_inv_app, CostructuredArrow.overEquivPresheafCostructuredArrow_functor_map_toOverCompCoyoneda, yoneda'_comp, Presieve.extension_iff_amalgamation, SSet.horn.primitiveEdge_coe_down, CategoryOfElements.fromCostructuredArrow_obj_mk, Limits.IndObjectPresentation.cocone_pt, Yoneda.fullyFaithful_preimage, equivYoneda'_hom_val, PresheafOfModules.freeYonedaEquiv_comp, cones_map_app_app, Adjunction.representableBy_homEquiv, GrothendieckTopology.MayerVietorisSquare.shortComplex_Xβ, Limits.IndizationClosedUnderFilteredColimitsAux.isFiltered, instSmallHomFunctorOppositeTypeColimitCompYoneda, instPreservesColimitFunctorOppositeTypeObjCoyonedaOpYoneda, Presieve.isSheaf_yoneda', uliftYonedaMap_app_apply, OverPresheafAux.counitForward_counitBackward, OverPresheafAux.costructuredArrowPresheafToOver_obj, Sieve.equalizer_eq_equalizerSieve, Functor.FullyFaithful.homNatIso_hom_app_down, Limits.IndizationClosedUnderFilteredColimitsAux.exists_nonempty_limit_obj_of_colimit, CostructuredArrow.overEquivPresheafCostructuredArrow_inverse_map_toOverCompYoneda, Limits.PreservesFiniteLimitsOfIsFilteredCostructuredArrowYonedaAux.flipFunctorToInterchange_hom_app_app, OverPresheafAux.YonedaCollection.mapβ_snd, yonedaEquiv_symm_map, Functor.IsDenseSubsite.isIso_ranCounit_app_of_isDenseSubsite, Sieve.toFunctor_app_coe, Functor.reprW_hom_app, Limits.colimitHomIsoLimitYoneda_inv_comp_Ο, yonedaYonedaColimit_app_inv, Limits.Cone.extensions_app, yonedaEquiv_symm_naturality_left, ObjectProperty.IsCodetecting.isIso_iff_of_epi, yonedaEquiv_symm_naturality_right, Limits.IndObjectPresentation.yoneda_I, AlgebraicGeometry.LocallyRingedSpace.toΞSpecSheafedSpace_hom_c_app, OverPresheafAux.OverArrows.map_val, uliftYonedaIsoYoneda_inv_app_app_down, Limits.colimitYonedaHomIsoLimitRightOp_Ο_apply, Presheaf.tautologicalCocone_pt, yoneda'_map_val, OverPresheafAux.map_mkPrecomp_eqToHom, NonemptyParallelPairPresentationAux.hg, OverPresheafAux.counitAuxAux_hom, Limits.colimitHomIsoLimitYoneda_inv_comp_Ο_assoc, yoneda_obj_isGeneratedBy, Subfunctor.Subpresheaf.ofSection_eq_range, Limits.opHomCompWhiskeringLimYonedaIsoCocones_inv_app_app, OverPresheafAux.YonedaCollection.mapβ_fst, Sieve.toUliftFunctor_app_down_coe, Limits.IndObjectPresentation.yoneda_F, OverPresheafAux.counitForward_val_fst, Limits.IndObjectPresentation.yoneda_β, CategoryOfElements.fromCostructuredArrow_obj_fst, Yoneda.obj_map_id, map_yonedaEquiv', CategoryOfElements.toCostructuredArrow_map, CategoryOfElements.costructuredArrowYonedaEquivalenceFunctorProj_inv_app, Presheaf.freeYoneda_obj, colimitYonedaHomEquiv_Ο_apply, Sheaf.isSheaf_yoneda_obj, yonedaEquiv_symm_app_apply, Limits.colimitHomIsoLimitYoneda'_inv_comp_Ο, Square.isPushout_iff_op_map_yoneda_isPullback, Limits.compYonedaSectionsEquiv_symm_apply_coe, yonedaEquiv_comp, OverPresheafAux.counitForward_naturalityβ
|
yonedaEquiv π | CompOp | 29 mathmath: GrothendieckTopology.yonedaOpCompCoyoneda_hom_app_app_down, Subfunctor.Subpresheaf.range_eq_ofSection, Subfunctor.ofSection_eq_range, yonedaEquiv_apply, OverPresheafAux.YonedaCollection.yonedaEquivFst_eq, yonedaEquiv_yoneda_map, yonedaEquiv_naturality', CategoryOfElements.fromCostructuredArrow_obj_snd, CategoryOfElements.fromCostructuredArrow_map_coe, OverPresheafAux.unitAuxAux_inv_app_fst, OverPresheafAux.unitAuxAux_inv_app_snd_coe, OverPresheafAux.MakesOverArrow.app, OverPresheafAux.OverArrows.app_val, Subfunctor.range_eq_ofSection, CategoryOfElements.toCostructuredArrow_obj, yonedaEquiv_naturality, map_yonedaEquiv, OverPresheafAux.MakesOverArrow.of_arrow, Presieve.extension_iff_amalgamation, CategoryOfElements.fromCostructuredArrow_obj_mk, yonedaEquiv_symm_map, yonedaEquiv_symm_naturality_left, yonedaEquiv_symm_naturality_right, Subfunctor.Subpresheaf.ofSection_eq_range, AlgebraicGeometry.Scheme.LocalRepresentability.yonedaGluedToSheaf_app_toGlued, map_yonedaEquiv', CategoryOfElements.toCostructuredArrow_map, yonedaEquiv_symm_app_apply, yonedaEquiv_comp
|
yonedaEvaluation π | CompOp | 1 mathmath: yonedaEvaluation_map_down
|
yonedaLemma π | CompOp | β |
yonedaMap π | CompOp | 3 mathmath: Functor.imageSieve_eq_imageSieve, Presheaf.instIsLeftKanExtensionOppositeObjFunctorTypeYonedaYonedaMap, yonedaMap_app_apply
|
yonedaOpCompYonedaObj π | CompOp | β |
yonedaPairing π | CompOp | 1 mathmath: yonedaPairing_map
|