Documentation Verification Report

Yoneda

πŸ“ Source: Mathlib/CategoryTheory/Yoneda.lean

Statistics

MetricCount
DefinitionsfullyFaithful, ext, fullyFaithful, objOpOp, opIso, preimage, punitIso, CorepresentableBy, coyoneda, equivOfIsoObj, equivUliftCoyonedaIso, homEquiv, isoCoreprX, ofIso, ofIsoObj, toIso, uniqueUpToIso, compUliftCoyonedaCompWhiskeringLeft, compUliftYonedaCompWhiskeringLeft, compYonedaCompWhiskeringLeft, compYonedaCompWhiskeringLeftMaxRight, homNatIso, homNatIso', homNatIsoMaxRight, IsCorepresentable, IsRepresentable, RepresentableBy, equivOfIsoObj, equivUliftYonedaIso, homEquiv, isoReprX, ofIso, ofIsoObj, toIso, uniqueUpToIso, yoneda, coreprW, coreprX, corepresentableBy, corepresentableByEquiv, corepresentableByUliftFunctorEquiv, coreprx, reprW, reprX, representableBy, representableByEquiv, representableByUliftFunctorEquiv, reprx, sectionsEquivHom, uliftCoyonedaCoreprXIso, uliftYonedaReprXIso, fullyFaithful, ext, fullyFaithful, coyoneda, coyonedaCompYonedaObj, coyonedaEquiv, coyonedaEvaluation, coyonedaLemma, coyonedaPairing, curriedCoyonedaLemma, curriedCoyonedaLemma', curriedYonedaLemma, curriedYonedaLemma', largeCurriedCoyonedaLemma, largeCurriedYonedaLemma, prodCategoryInstance1, prodCategoryInstance2, sectionsFunctorNatIsoCoyoneda, uliftCoyoneda, uliftCoyonedaEquiv, uliftCoyonedaIsoCoyoneda, uliftCoyonedaRightOpCompCoyoneda, uliftYoneda, uliftYonedaEquiv, uliftYonedaIsoYoneda, uliftYonedaMap, uliftYonedaOpCompCoyoneda, yoneda, yonedaEquiv, yonedaEvaluation, yonedaLemma, yonedaMap, yonedaOpCompYonedaObj, yonedaPairing
85
TheoremsinstFaithfulOppositeFunctorTypeUliftCoyoneda, instFullOppositeFunctorTypeUliftCoyoneda, coyoneda_faithful, coyoneda_full, fullyFaithful_preimage, isIso, naturality, objOpOp_hom_app, objOpOp_inv_app, coyoneda_homEquiv, equivOfIsoObj_apply, equivOfIsoObj_symm_apply, equivUliftCoyonedaIso_apply, equivUliftCoyonedaIso_symm_apply_homEquiv, ext, ext_iff, homEquiv_comp, homEquiv_eq, homEquiv_symm_comp, isCorepresentable, ofIsoObj_homEquiv, uniqueUpToIso_hom, uniqueUpToIso_inv, compUliftCoyonedaCompWhiskeringLeft_hom_app_app_down, compUliftCoyonedaCompWhiskeringLeft_inv_app_app_down, compUliftYonedaCompWhiskeringLeft_hom_app_app_down, compUliftYonedaCompWhiskeringLeft_inv_app_app_down, compYonedaCompWhiskeringLeftMaxRight_hom_app_app_down, compYonedaCompWhiskeringLeftMaxRight_inv_app_app, homNatIso'_hom_app_down, homNatIso'_inv_app_down, homNatIsoMaxRight_hom_app_down, homNatIsoMaxRight_inv_app, homNatIso_hom_app_down, homNatIso_inv_app_down, has_corepresentation, mk', has_representation, mk', comp_homEquiv_symm, coyoneda_homEquiv, equivOfIsoObj_apply, equivOfIsoObj_symm_apply, equivUliftYonedaIso_apply, equivUliftYonedaIso_symm_apply_homEquiv, ext, ext_iff, homEquiv_comp, homEquiv_eq, homEquiv_unop_comp, isRepresentable, ofIsoObj_homEquiv, uniqueUpToIso_hom, uniqueUpToIso_inv, coreprW_hom_app, corepresentableByUliftFunctorEquiv_apply_homEquiv, corepresentableByUliftFunctorEquiv_symm_apply_homEquiv, instIsCorepresentableCompUliftFunctor, instIsCorepresentableObjOppositeTypeCoyoneda, instIsRepresentableCompOppositeUliftFunctor, instIsRepresentableObjOppositeTypeYoneda, isCorepresentable_comp_uliftFunctor_iff, isRepresentable_comp_uliftFunctor_iff, reprW_hom_app, representableByUliftFunctorEquiv_apply_homEquiv, representableByUliftFunctorEquiv_symm_apply_homEquiv, sectionsEquivHom_apply_app, sectionsEquivHom_naturality, sectionsEquivHom_naturality_symm, uliftCoyonedaCoreprXIso_hom_app, uliftYonedaReprXIso_hom_app, instFaithfulFunctorOppositeTypeUliftYoneda, instFullFunctorOppositeTypeUliftYoneda, fullyFaithful_preimage, isIso, naturality, obj_map_id, yoneda_faithful, yoneda_full, corepresentable_of_natIso, coyonedaEquiv_apply, coyonedaEquiv_comp, coyonedaEquiv_coyoneda_map, coyonedaEquiv_naturality, coyonedaEquiv_symm_app_apply, coyonedaEquiv_symm_map, coyonedaEvaluation_map_down, coyonedaPairingExt, coyonedaPairingExt_iff, coyonedaPairing_map, hom_ext_uliftCoyoneda, hom_ext_uliftYoneda, hom_ext_yoneda, instIsCorepresentableIdType, isIso_iff_coyoneda_map_bijective, isIso_iff_isIso_coyoneda_map, isIso_iff_isIso_yoneda_map, isIso_iff_yoneda_map_bijective, isIso_of_coyoneda_map_bijective, isIso_of_yoneda_map_bijective, isRepresentable_of_natIso, map_coyonedaEquiv, map_yonedaEquiv, map_yonedaEquiv', sectionsFunctorNatIsoCoyoneda_hom_app_app, sectionsFunctorNatIsoCoyoneda_inv_app_coe, uliftCoyonedaEquiv_apply, uliftCoyonedaEquiv_comp, uliftCoyonedaEquiv_naturality, uliftCoyonedaEquiv_symm_apply_app, uliftCoyonedaEquiv_symm_map, uliftCoyonedaEquiv_symm_map_assoc, uliftCoyonedaEquiv_uliftCoyoneda_map, uliftCoyonedaIsoCoyoneda_hom_app_app, uliftCoyonedaIsoCoyoneda_inv_app_app_down, uliftYonedaEquiv_apply, uliftYonedaEquiv_comp, uliftYonedaEquiv_naturality, uliftYonedaEquiv_symm_apply_app, uliftYonedaEquiv_symm_map, uliftYonedaEquiv_symm_map_assoc, uliftYonedaEquiv_uliftYoneda_map, uliftYonedaIsoYoneda_hom_app_app, uliftYonedaIsoYoneda_inv_app_app_down, uliftYonedaMap_app_apply, uliftYoneda_map_app, uliftYoneda_map_app_down, uliftYoneda_obj_map, uliftYoneda_obj_map_down, uliftYoneda_obj_obj, yonedaEquiv_apply, yonedaEquiv_comp, yonedaEquiv_naturality, yonedaEquiv_naturality', yonedaEquiv_symm_app_apply, yonedaEquiv_symm_map, yonedaEquiv_symm_naturality_left, yonedaEquiv_symm_naturality_right, yonedaEquiv_yoneda_map, yonedaEvaluation_map_down, yonedaMap_app_apply, yonedaPairingExt, yonedaPairingExt_iff, yonedaPairing_map, yoneda_map_app, yoneda_obj_map, yoneda_obj_obj
147
Total232

CategoryTheory

Definitions

NameCategoryTheorems
coyoneda πŸ“–CompOp
153 mathmath: Functor.functorHomEquiv_apply_app, HomologicalComplex.evalCompCoyonedaCorepresentableByDoubleId_homEquiv_apply, Functor.natTransEquiv_apply_app, uliftCoyonedaIsoCoyoneda_hom_app_app, coyonedaEquiv_symm_app_apply, GrothendieckTopology.yonedaOpCompCoyoneda_hom_app_app_down, sheafOver_val, cocones_map_app_app, sheafToPresheafCompCoyonedaCompWhiskeringLeftSheafToPresheaf_hom_app_app_val, FunctorToTypes.functorHomEquiv_symm_apply_app_app, Functor.CorepresentableBy.uniqueUpToIso_inv, whiskering_linearCoyoneda, Adjunction.compCoyonedaIso_inv_app_app, Limits.colimitCoyonedaHomIsoLimit'_Ο€_apply, MonoidalCategory.DayConvolution.corepresentableByβ‚‚_homEquiv, Limits.coyonedaCompLimIsoCones_inv_app, sheafToPresheafCompCoyonedaCompWhiskeringLeftSheafToPresheaf_inv_app_app, Functor.IsCoverDense.isoOver_hom_app, Coyoneda.objOpOp_inv_app, uliftCoyonedaIsoCoyoneda_inv_app_app_down, CostructuredArrow.overEquivPresheafCostructuredArrow_inverse_map_toOverCompCoyoneda, coyonedaEquiv_comp, Limits.PreservesFiniteLimitsOfIsFilteredCostructuredArrowYonedaAux.functorToInterchangeIso_inv_app_app, IsCofiltered.iff_nonempty_limit, Coyoneda.objOpOp_hom_app, Presheaf.isLimit_iff_isSheafFor_presieve, Limits.coyonedaOpColimitIsoLimitCoyoneda_hom_comp_Ο€_assoc, Limits.limitCompCoyonedaIsoCone_hom_app, preservesColimitsOfShape_of_isCardinalPresentable_of_essentiallySmall, isFinitelyPresentable_iff_preservesFilteredColimitsOfSize, AddCommGrpCat.coyonedaForget_inv_app_app, Limits.coyonedaOpColimitIsoLimitCoyoneda'_inv_comp_Ο€, AddCommGrpCat.coyonedaForget_hom_app_app_hom, Limits.coyonedaOpColimitIsoLimitCoyoneda_inv_comp_Ο€_assoc, coyoneda_preservesLimits, Functor.coreprW_hom_app, Functor.natTransEquiv_symm_apply_app, Coyoneda.colimitCocone_ΞΉ_app, Presheaf.functorEnrichedHomCoyonedaObjEquiv_naturality, CommMonCat.coyonedaForget_inv_app_app, HomologicalComplex.instIsCorepresentableCompEvalObjOppositeFunctorTypeCoyonedaOp, Projective.projective_iff_preservesEpimorphisms_coyoneda_obj, sectionsFunctorNatIsoCoyoneda_inv_app_coe, Presheaf.isSeparated_iff_subsingleton, FunctorToTypes.rightAdj_map_app, MonoidalCategory.DayConvolution.corepresentableByβ‚‚'_homEquiv, Limits.whiskeringLimYonedaIsoCones_inv_app_app, GrothendieckTopology.yonedaOpCompCoyoneda_inv_app_app, Limits.colimitCoyonedaHomIsoLimitUnop_Ο€_apply, FunctorToTypes.rightAdj_map_app_app, isSeparator_iff_faithful_coyoneda_obj, isDetector_iff_reflectsIsomorphisms_coyoneda_obj, Limits.compCoyonedaSectionsEquiv_symm_apply_coe, Enriched.Functor.functorHom_whiskerLeft_natTransEquiv_symm_app, Adjunction.corepresentableBy_homEquiv, Limits.coyonedaOpColimitIsoLimitCoyoneda'_hom_comp_Ο€, Limits.PreservesFiniteLimitsOfIsFilteredCostructuredArrowYonedaAux.functorToInterchangeIso_hom_app_app, IsGrothendieckAbelian.preservesColimit_coyoneda_obj_of_mono, coyonedaEquiv_naturality, coyonedaEquiv_apply, Limits.compCoyonedaSectionsEquiv_apply_app, Functor.functorHom_ext_iff, Coyoneda.naturality, MonoidalCategory.DayConvolutionUnit.rightUnitorCorepresentingIso_hom_app_app, MonoidalCategory.DayConvolution.corepresentableBy_homEquiv_symm_apply, Limits.PreservesFiniteLimitsOfIsFilteredCostructuredArrowYonedaAux.isoAux_hom_app, sheafToPresheafCompCoyonedaCompWhiskeringLeftSheafToPresheaf_app_app, Enriched.Functor.natTransEquiv_symm_app_app_apply, coyonedaPreservesLimitsOfShape, instPreservesFilteredColimitsOfSizeObjOppositeFunctorTypeCoyonedaOpOfIsFinitelyPresentable, Coyoneda.colimitCoconeIsColimit_desc, Coyoneda.colimitCocone_pt, preservesFilteredColimits_coyoneda, ObjectProperty.IsDetecting.isIso_iff_of_mono, FunctorToTypes.functorHomEquiv_apply_app, Limits.coyonedaOpColimitIsoLimitCoyoneda_inv_comp_Ο€, Functor.instIsCorepresentableCompObjOppositeTypeCoyonedaOpObjLeftAdjointObjIsDefined, CommGrpCat.coyonedaForget_hom_app_app_hom, coyonedaEquiv_coyoneda_map, IsDetecting.isIso_iff_of_mono, Enriched.Functor.natTransEquiv_symm_whiskerRight_functorHom_app, Adjunction.compCoyonedaIso_hom_app_app, MonoidalCategory.DayConvolutionUnit.leftUnitorCorepresentingIso_inv_app_app, Limits.limitCompCoyonedaIsoCone_inv, AddCommMonCat.coyonedaForget_inv_app_app, sectionsFunctorNatIsoCoyoneda_hom_app_app, GrothendieckTopology.uliftYonedaOpCompCoyoneda_hom_app_app_down, MonoidalCategory.DayConvolution.corepresentableBy_homEquiv_apply_app, Limits.coyonedaOpColimitIsoLimitCoyoneda'_inv_comp_Ο€_assoc, Functor.IsCoverDense.sheafCoyonedaHom_app, Functor.IsCoverDense.homOver_app, MonoidalCategory.DayConvolution.associatorCorepresentingIso_inv_app_app, Functor.CorepresentableBy.uniqueUpToIso_hom, FunctorToTypes.rightAdj_obj_map_app, GrothendieckTopology.uliftYonedaOpCompCoyoneda_app_app, Coyoneda.instHasColimitObjOppositeFunctorTypeCoyoneda, Functor.instIsCorepresentableObjOppositeTypeCoyoneda, Coyoneda.coyoneda_full, Limits.coyonedaOpColimitIsoLimitCoyoneda_hom_comp_Ο€, HomologicalComplex.evalCompCoyonedaCorepresentableByDoubleId_homEquiv_symm_apply, preservesColimit_coyoneda_of_finitePresentation, Limits.whiskeringLimYonedaIsoCones_hom_app_app_app, Square.isPullback_iff_map_coyoneda_isPullback, FunctorToTypes.rightAdj_obj_obj, Limits.coyonedaOpColimitIsoLimitCoyoneda'_hom_comp_Ο€_assoc, isCardinalPresentable_iff_isCardinalAccessible_coyoneda_obj, MonoidalCategory.DayConvolutionUnit.leftUnitorCorepresentingIso_hom_app_app, CommGrpCat.coyonedaForget_inv_app_app, MonoidalCategory.DayConvolution.associatorCorepresentingIso_hom_app_app, Functor.IsCoverDense.isoOver_inv_app, CommMonCat.coyonedaForget_hom_app_app_hom, MonoidalCategory.DayConvolutionUnit.corepresentableByLeft_homEquiv, GrothendieckTopology.uliftYonedaOpCompCoyoneda_inv_app_app, isIso_iff_isIso_coyoneda_map, Limits.colimitCoyonedaHomIsoLimit_Ο€_apply, Limits.coneOfSectionCompCoyoneda_Ο€, HomologicalComplex.evalCompCoyonedaCorepresentableBySingle_homEquiv_symm_apply, HomologicalComplex.evalCompCoyonedaCorepresentableBySingle_homEquiv_apply, coyoneda_preservesLimit, coyonedaPairing_map, CostructuredArrow.overEquivPresheafCostructuredArrow_functor_map_toOverCompCoyoneda, Coyoneda.fullyFaithful_preimage, MorphismProperty.IsCardinalForSmallObjectArgument.preservesColimit, Limits.Cocone.extend_ΞΉ, PreGaloisCategory.PointedGaloisObject.instHasColimitOppositeFunctorTypeCompOpInclCoyoneda, MonoidalCategory.DayConvolutionUnit.rightUnitorCorepresentingIso_inv_app_app, coyonedaEquiv_symm_map, coyonedaPairingExt_iff, Presheaf.isLimit_iff_isSheafFor, AddCommMonCat.coyonedaForget_hom_app_app_hom, instPreservesColimitFunctorOppositeTypeObjCoyonedaOpYoneda, coyonedaFunctor_preservesLimits, isFinitelyPresentable_iff_preservesFilteredColimits, yonedaYonedaColimit_app_inv, SmallObject.preservesColimit, coyonedaFunctor_reflectsLimits, PreGaloisCategory.PointedGaloisObject.cocone_app, GrothendieckTopology.MayerVietorisSquare.sheafCondition_iff_comp_coyoneda, Limits.coyonedaCompLimIsoCones_hom_app_app, Functor.leftAdjointObjIsDefined_iff, Functor.CorepresentableBy.coyoneda_homEquiv, Presheaf.subsingleton_iff_isSeparatedFor, Limits.colimitCoyonedaHomIsoLimitLeftOp_Ο€_apply, CommRingCat.preservesFilteredColimits_coyoneda, Limits.Cocone.extensions_app, CommRingCat.preservesColimit_coyoneda_of_finitePresentation, MonoidalCategory.DayConvolutionUnit.corepresentableByRight_homEquiv, map_coyonedaEquiv, GrothendieckTopology.uliftYonedaOpCompCoyoneda_inv_app_app_val_app, Functor.functorHomEquiv_symm_apply_app_app, preservesColimitsOfShape_of_isCardinalPresentable, whiskering_preadditiveCoyoneda, Coyoneda.coyoneda_faithful
coyonedaCompYonedaObj πŸ“–CompOpβ€”
coyonedaEquiv πŸ“–CompOp
7 mathmath: coyonedaEquiv_symm_app_apply, coyonedaEquiv_comp, coyonedaEquiv_naturality, coyonedaEquiv_apply, coyonedaEquiv_coyoneda_map, coyonedaEquiv_symm_map, map_coyonedaEquiv
coyonedaEvaluation πŸ“–CompOp
1 mathmath: coyonedaEvaluation_map_down
coyonedaLemma πŸ“–CompOpβ€”
coyonedaPairing πŸ“–CompOp
1 mathmath: coyonedaPairing_map
curriedCoyonedaLemma πŸ“–CompOpβ€”
curriedCoyonedaLemma' πŸ“–CompOpβ€”
curriedYonedaLemma πŸ“–CompOpβ€”
curriedYonedaLemma' πŸ“–CompOpβ€”
largeCurriedCoyonedaLemma πŸ“–CompOpβ€”
largeCurriedYonedaLemma πŸ“–CompOp
1 mathmath: GrothendieckTopology.yonedaOpCompCoyoneda_inv_app_app
prodCategoryInstance1 πŸ“–CompOpβ€”
prodCategoryInstance2 πŸ“–CompOp
3 mathmath: yonedaPairing_map, yonedaPairingExt_iff, yonedaEvaluation_map_down
sectionsFunctorNatIsoCoyoneda πŸ“–CompOp
2 mathmath: sectionsFunctorNatIsoCoyoneda_inv_app_coe, sectionsFunctorNatIsoCoyoneda_hom_app_app
uliftCoyoneda πŸ“–CompOp
22 mathmath: Adjunction.compUliftCoyonedaIso_hom_app_app_down, uliftCoyonedaEquiv_apply, uliftCoyonedaIsoCoyoneda_hom_app_app, Functor.uliftCoyonedaCoreprXIso_hom_app, Functor.FullyFaithful.compUliftCoyonedaCompWhiskeringLeft_hom_app_app_down, uliftCoyonedaIsoCoyoneda_inv_app_app_down, uliftCoyonedaEquiv_uliftCoyoneda_map, uliftCoyonedaEquiv_symm_apply_app, Coyoneda.ULiftCoyoneda.instFullOppositeFunctorTypeUliftCoyoneda, Adjunction.compUliftCoyonedaIso_inv_app_app_down, Functor.FullyFaithful.homNatIso'_hom_app_down, Functor.CorepresentableBy.equivUliftCoyonedaIso_symm_apply_homEquiv, Functor.CorepresentableBy.equivUliftCoyonedaIso_apply, uliftCoyonedaEquiv_naturality, uliftCoyonedaEquiv_symm_map_assoc, Functor.FullyFaithful.compUliftCoyonedaCompWhiskeringLeft_inv_app_app_down, Functor.FullyFaithful.homNatIso'_inv_app_down, isCardinalPresentable_iff_isCardinalAccessible_uliftCoyoneda_obj, uliftCoyonedaEquiv_symm_map, instIsCardinalAccessibleObjOppositeFunctorTypeUliftCoyonedaOpOfIsCardinalPresentable, uliftCoyonedaEquiv_comp, Coyoneda.ULiftCoyoneda.instFaithfulOppositeFunctorTypeUliftCoyoneda
uliftCoyonedaEquiv πŸ“–CompOp
7 mathmath: uliftCoyonedaEquiv_apply, uliftCoyonedaEquiv_uliftCoyoneda_map, uliftCoyonedaEquiv_symm_apply_app, uliftCoyonedaEquiv_naturality, uliftCoyonedaEquiv_symm_map_assoc, uliftCoyonedaEquiv_symm_map, uliftCoyonedaEquiv_comp
uliftCoyonedaIsoCoyoneda πŸ“–CompOp
2 mathmath: uliftCoyonedaIsoCoyoneda_hom_app_app, uliftCoyonedaIsoCoyoneda_inv_app_app_down
uliftCoyonedaRightOpCompCoyoneda πŸ“–CompOpβ€”
uliftYoneda πŸ“–CompOp
72 mathmath: Functor.FullyFaithful.homNatIsoMaxRight_inv_app, ULiftYoneda.instFullFunctorOppositeTypeUliftYoneda, Subfunctor.Subpresheaf.range_eq_ofSection', Presheaf.compULiftYonedaIsoULiftYonedaCompLan.uliftYonedaEquiv_ΞΉ_presheafHom, CategoryOfElements.costructuredArrowULiftYonedaEquivalence_unitIso, Functor.FullyFaithful.homNatIsoMaxRight_hom_app_down, Presheaf.functorToRepresentables_map, Presheaf.instIsLeftKanExtensionFunctorOppositeTypeLanOpHomCompULiftYonedaIsoULiftYonedaCompLan, Presheaf.compULiftYonedaIsoULiftYonedaCompLan.natTrans_app_uliftYoneda_obj, uliftYonedaEquiv_symm_apply_app, Subfunctor.Subpresheaf.ofSection_eq_range', Functor.FullyFaithful.homNatIso_inv_app_down, uliftYonedaEquiv_apply, Functor.FullyFaithful.compUliftYonedaCompWhiskeringLeft_inv_app_app_down, uliftYonedaEquiv_symm_map, uliftYonedaEquiv_naturality, Subfunctor.ofSection_eq_range', Presheaf.restrictedULiftYoneda_map_app, Presheaf.compULiftYonedaIsoULiftYonedaCompLan_inv_app_app_apply_eq_id, Presheaf.functorToRepresentables_obj, Functor.FullyFaithful.compYonedaCompWhiskeringLeftMaxRight_inv_app_app, uliftYonedaEquiv_comp, GrothendieckTopology.uliftYonedaCompSheafToPresheaf_inv_app_app, Sieve.sieveOfUliftSubfunctor_apply, Sieve.uliftNatTransOfLe_comm, uliftYoneda_obj_map, GrothendieckTopology.uliftYonedaCompSheafToPresheaf_hom_app_app, uliftYoneda_obj_obj, CategoryOfElements.costructuredArrowULiftYonedaEquivalence_functor_obj, Presheaf.tautologicalCocone'_pt, uliftYonedaEquiv_uliftYoneda_map, CategoryOfElements.costructuredArrowULiftYonedaEquivalence_functor_map, Subfunctor.range_eq_ofSection', Functor.RepresentableBy.equivUliftYonedaIso_symm_apply_homEquiv, uliftYoneda_obj_map_down, Sieve.uliftFunctorInclusion_app, CategoryOfElements.costructuredArrowULiftYonedaEquivalence_counitIso, uliftYoneda_map_app, Functor.uliftYonedaReprXIso_hom_app, Presheaf.instIsCardinalPresentableFunctorOppositeTypeObjUliftYonedaOfHasColimitsOfSize, Functor.IsRepresentedBy.uliftYonedaIso_hom, uliftYoneda_map_app_down, Functor.FullyFaithful.compYonedaCompWhiskeringLeftMaxRight_hom_app_app_down, GrothendieckTopology.uliftYonedaOpCompCoyoneda_hom_app_app_down, Presheaf.compULiftYonedaIsoULiftYonedaCompLan.uliftYonedaEquiv_presheafHom_uliftYoneda_obj, Sieve.uliftFunctorInclusion_is_mono, uliftYonedaIsoYoneda_hom_app_app, Functor.FullyFaithful.compUliftYonedaCompWhiskeringLeft_hom_app_app_down, Presheaf.map_comp_uliftYonedaEquiv_down_assoc, CategoryOfElements.costructuredArrowULiftYonedaEquivalence_inverse_obj, Functor.IsRepresentedBy.iff_isIso_uliftYonedaEquiv, ULiftYoneda.instFaithfulFunctorOppositeTypeUliftYoneda, Presheaf.map_comp_uliftYonedaEquiv_down, Presheaf.restrictedULiftYonedaHomEquiv'_symm_app_naturality_left, Functor.RepresentableBy.equivUliftYonedaIso_apply, Presheaf.tautologicalCocone'_ΞΉ_app, Presheaf.coconeOfRepresentable_ΞΉ_app, Presheaf.restrictedULiftYonedaHomEquiv'_symm_naturality_right_assoc, Sieve.uliftFunctorInclusion_top_isIso, Presheaf.restrictedULiftYonedaHomEquiv'_symm_app_naturality_left_assoc, uliftYonedaMap_app_apply, Functor.FullyFaithful.homNatIso_hom_app_down, Presheaf.compULiftYonedaIsoULiftYonedaCompLan.coconeApp_naturality, uliftYonedaIsoYoneda_inv_app_app_down, uliftYonedaEquiv_symm_map_assoc, uliftYonedaFunctor_preservesLimits, CategoryOfElements.costructuredArrowULiftYonedaEquivalence_inverse_map, Sieve.toUliftFunctor_app_down_coe, Presheaf.restrictedULiftYonedaHomEquiv'_symm_naturality_right, GrothendieckTopology.uliftYonedaOpCompCoyoneda_inv_app_app_val_app, Presheaf.compULiftYonedaIsoULiftYonedaCompLan.coconeApp_naturality_assoc, Presheaf.instIsLeftKanExtensionOppositeObjFunctorTypeUliftYonedaUliftYonedaMap
uliftYonedaEquiv πŸ“–CompOp
27 mathmath: Subfunctor.Subpresheaf.range_eq_ofSection', Presheaf.compULiftYonedaIsoULiftYonedaCompLan.uliftYonedaEquiv_ΞΉ_presheafHom, CategoryOfElements.costructuredArrowULiftYonedaEquivalence_unitIso, uliftYonedaEquiv_symm_apply_app, Subfunctor.Subpresheaf.ofSection_eq_range', uliftYonedaEquiv_apply, uliftYonedaEquiv_symm_map, uliftYonedaEquiv_naturality, Subfunctor.ofSection_eq_range', uliftYonedaEquiv_comp, CategoryOfElements.costructuredArrowULiftYonedaEquivalence_functor_obj, uliftYonedaEquiv_uliftYoneda_map, CategoryOfElements.costructuredArrowULiftYonedaEquivalence_functor_map, Subfunctor.range_eq_ofSection', Presheaf.uliftYonedaAdjunction_homEquiv_app, CategoryOfElements.costructuredArrowULiftYonedaEquivalence_counitIso, Functor.IsRepresentedBy.uliftYonedaIso_hom, Presheaf.uliftYonedaAdjunction_unit_app_app, GrothendieckTopology.uliftYonedaOpCompCoyoneda_hom_app_app_down, Presheaf.compULiftYonedaIsoULiftYonedaCompLan.uliftYonedaEquiv_presheafHom_uliftYoneda_obj, Presheaf.map_comp_uliftYonedaEquiv_down_assoc, CategoryOfElements.costructuredArrowULiftYonedaEquivalence_inverse_obj, Functor.IsRepresentedBy.iff_isIso_uliftYonedaEquiv, Presheaf.map_comp_uliftYonedaEquiv_down, Presheaf.coconeOfRepresentable_ΞΉ_app, uliftYonedaEquiv_symm_map_assoc, CategoryOfElements.costructuredArrowULiftYonedaEquivalence_inverse_map
uliftYonedaIsoYoneda πŸ“–CompOp
2 mathmath: uliftYonedaIsoYoneda_hom_app_app, uliftYonedaIsoYoneda_inv_app_app_down
uliftYonedaMap πŸ“–CompOp
2 mathmath: uliftYonedaMap_app_apply, Presheaf.instIsLeftKanExtensionOppositeObjFunctorTypeUliftYonedaUliftYonedaMap
uliftYonedaOpCompCoyoneda πŸ“–CompOp
1 mathmath: GrothendieckTopology.uliftYonedaOpCompCoyoneda_inv_app_app_val_app
yoneda πŸ“–CompOp
274 mathmath: Limits.colimitHomIsoLimitYoneda'_hom_comp_Ο€, Functor.FullyFaithful.homNatIsoMaxRight_inv_app, Adjunction.compUliftCoyonedaIso_hom_app_app_down, instSmallOppositeObjFunctorTypeYoneda, Limits.IndizationClosedUnderFilteredColimitsAux.exists_nonempty_limit_obj_of_isColimit, GrothendieckTopology.MayerVietorisSquare.shortComplex_X₃, yoneda_preservesLimit, Limits.colimitHomIsoLimitYoneda_hom_comp_Ο€, SSet.stdSimplex.coe_triangle_down_toOrderHom, CategoryOfElements.costructuredArrowYonedaEquivalenceInverseΟ€_hom_app, shrinkYoneda_map, GrothendieckTopology.yonedaOpCompCoyoneda_hom_app_app_down, OverPresheafAux.costructuredArrowPresheafToOver_map, Subfunctor.Subpresheaf.range_eq_ofSection', Presheaf.compULiftYonedaIsoULiftYonedaCompLan.uliftYonedaEquiv_ΞΉ_presheafHom, CategoryOfElements.costructuredArrowYonedaEquivalence_functor, OverPresheafAux.unitAux_hom, IndParallelPairPresentation.hf, Subfunctor.Subpresheaf.range_eq_ofSection, CondensedMod.IsSolid.isIso_solidification_map, NonemptyParallelPairPresentationAux.hf, yoneda_map_app, OverPresheafAux.restrictedYoneda_map, Functor.FullyFaithful.homNatIsoMaxRight_hom_app_down, sheafToPresheafCompYonedaCompWhiskeringLeftSheafToPresheaf_inv_app_app, Limits.IsIndObject.isFiltered, OverPresheafAux.restrictedYoneda_obj, Limits.IndObjectPresentation.extend_ΞΉ_app_app, Limits.opCompYonedaSectionsEquiv_symm_apply_coe, Yoneda.naturality, GrothendieckTopology.yoneda_map_val, Limits.yonedaCompLimIsoCocones_inv_app, Subfunctor.ofSection_eq_range, GrothendieckTopology.MayerVietorisSquare.shortComplex_X₁, yonedaEquiv_apply, Limits.IndObjectPresentation.instFinalICostructuredArrowFunctorOppositeTypeYonedaToCostructuredArrow, IsFiltered.iff_nonempty_limit, Functor.FullyFaithful.compUliftCoyonedaCompWhiskeringLeft_hom_app_app_down, Coyoneda.objOpOp_inv_app, sheafToPresheafCompYonedaCompWhiskeringLeftSheafToPresheaf_app_app, uliftCoyonedaIsoCoyoneda_inv_app_app_down, Adjunction.compYonedaIso_hom_app_app, PresheafOfModules.freeYonedaEquiv_symm_app, CostructuredArrow.overEquivPresheafCostructuredArrow_inverse_map_toOverCompCoyoneda, Sheaf.isPullback_square_op_map_yoneda_presheafToSheaf_yoneda_iff, Functor.RepresentableBy.coyoneda_homEquiv, Limits.colimitYonedaHomIsoLimit'_Ο€_apply, sheafToPresheafCompYonedaCompWhiskeringLeftSheafToPresheaf_hom_app_app_val, Limits.PreservesFiniteLimitsOfIsFilteredCostructuredArrowYonedaAux.functorToInterchangeIso_inv_app_app, GrothendieckTopology.MayerVietorisSquare.biprodAddEquiv_symm_biprodIsoProd_hom_toBiprod_apply, Limits.colimitHomIsoLimitYoneda'_hom_comp_Ο€_assoc, Limits.compYonedaSectionsEquiv_apply_app, Functor.imageSieve_eq_imageSieve, Functor.rightAdjointObjIsDefined_iff, yonedaFunctor_reflectsLimits, GrothendieckTopology.MayerVietorisSquare.isPushout, Functor.FullyFaithful.homNatIso_inv_app_down, OverPresheafAux.counitForward_naturality₁, Coyoneda.objOpOp_hom_app, Limits.Cone.extend_Ο€, extensiveTopology.isSheaf_yoneda_obj, Presheaf.isSheaf_yoneda', Functor.FullyFaithful.compUliftYonedaCompWhiskeringLeft_inv_app_app_down, shrinkYoneda_obj, Adjunction.compUliftCoyonedaIso_inv_app_app_down, OverPresheafAux.YonedaCollection.mapβ‚‚_snd, Limits.opHomCompWhiskeringLimYonedaIsoCocones_hom_app_app_app, OverPresheafAux.YonedaCollection.yonedaEquivFst_eq, Limits.colimitYonedaHomIsoLimit_Ο€_apply, equivYoneda'_inv_val, OverPresheafAux.counitForward_val_snd, Limits.yonedaCompLimIsoCocones_hom_app_app, Yoneda.yoneda_faithful, OverPresheafAux.yonedaCollectionFunctor_obj, Presheaf.compULiftYonedaIsoULiftYonedaCompLan_inv_app_app_apply_eq_id, isIso_iff_isIso_yoneda_map, Functor.IsCoverDense.presheafIso_hom_app, GrothendieckTopology.MayerVietorisSquare.mkβ‚€_f_comp_biprodAddEquiv_symm_biprodIsoProd_hom, Functor.instIsRepresentableCompOppositeOpObjTypeYonedaObjRightAdjointObjIsDefined, Functor.FullyFaithful.compYonedaCompWhiskeringLeftMaxRight_inv_app_app, yoneda_obj_obj, Limits.IndObjectPresentation.toCostructuredArrow_obj_right_as, Presheaf.freeYoneda_map, whiskering_linearYoneda, GrothendieckTopology.yonedaOpCompCoyoneda_inv_app_app, Sieve.sieveOfUliftSubfunctor_apply, yonedaEquiv_yoneda_map, CategoryOfElements.costructuredArrowYonedaEquivalence_counitIso, Limits.opCompYonedaSectionsEquiv_apply_app, CategoryOfElements.costructuredArrowYonedaEquivalence_inverse, Limits.isIndObject_iff, Presheaf.final_toCostructuredArrow_comp_pre, yoneda_preservesLimitsOfShape, Sieve.natTransOfLe_comm, typeEquiv_counitIso_inv_app_val_app, OverPresheafAux.counitAuxAux_inv, SSet.stdSimplex.coe_edge_down_toOrderHom, Limits.IsIndObject.finallySmall, yonedaEquiv_naturality', Functor.instIsRepresentableObjOppositeTypeYoneda, OverPresheafAux.restrictedYonedaObj_map, Limits.IndObjectPresentation.yoneda_isColimit_desc, whiskering_preadditiveYoneda, yoneda_obj_map, Limits.PreservesFiniteLimitsOfIsFilteredCostructuredArrowYonedaAux.functorToInterchangeIso_hom_app_app, CategoryOfElements.fromCostructuredArrow_obj_snd, CostructuredArrow.overEquivPresheafCostructuredArrow_functor_map_toOverCompYoneda, OverPresheafAux.counitBackward_counitForward, Limits.colimitHomIsoLimitYoneda_hom_comp_Ο€_assoc, Limits.IndObjectPresentation.toCostructuredArrow_obj_left, Limits.isFiltered_costructuredArrow_yoneda_of_preservesFiniteLimits, Sieve.functorInclusion_app, Limits.IndObjectPresentation.toCostructuredArrow_map_left, isCodetector_iff_reflectsIsomorphisms_yoneda_obj, Limits.PreservesFiniteLimitsOfIsFilteredCostructuredArrowYonedaAux.isoAux_hom_app, Subfunctor.range_eq_ofSection', Functor.FullyFaithful.homNatIso'_hom_app_down, regularTopology.isSheaf_yoneda_obj, Limits.isIndObject_limit_comp_yoneda, Limits.isFiltered_costructuredArrow_yoneda_iff_nonempty_preservesFiniteLimits, uliftYoneda_obj_map_down, Limits.colimitHomIsoLimitYoneda'_inv_comp_Ο€_assoc, Limits.IndObjectPresentation.yoneda_ΞΉ_app, Sieve.sieveOfSubfunctor_apply, coherentTopology.isSheaf_yoneda_obj, Limits.IndObjectPresentation.toCostructuredArrow_obj_hom, yonedaFunctor_preservesLimits, OverPresheafAux.counitAux_hom, CategoryOfElements.fromCostructuredArrow_map_coe, Adjunction.compYonedaIso_inv_app_app, Limits.isIndObject_yoneda, Limits.PreservesFiniteLimitsOfIsFilteredCostructuredArrowYonedaAux.flipFunctorToInterchange_inv_app_app, Presheaf.instIsLeftKanExtensionOppositeObjFunctorTypeYonedaYonedaMap, Sieve.yonedaFamily_fromCocone_compatible, OverPresheafAux.unitAuxAux_inv_app_fst, Limits.IndObjectPresentation.ofCocone_I, OverPresheafAux.unitAuxAux_inv_app_snd_coe, PresheafOfModules.Elements.fromFreeYoneda_app_apply, SSet.horn.edge₃_coe_down, Functor.RepresentableBy.uniqueUpToIso_hom, uliftYoneda_map_app, Yoneda.yoneda_full, SSet.stdSimplex.const_down_toOrderHom, equivYoneda_hom_app, Presieve.IsSheafFor.functorInclusion_comp_extend, yonedaMap_app_apply, Limits.limitCompYonedaIsoCocone_inv, CategoryOfElements.costructuredArrow_yoneda_equivalence_naturality, Limits.coneOfSectionCompYoneda_Ο€, Limits.IndObjectPresentation.ofCocone_isColimit, OverPresheafAux.restrictedYonedaObj_obj, OverPresheafAux.MakesOverArrow.app, CategoryOfElements.costructuredArrowYonedaEquivalence_unitIso, OverPresheafAux.OverArrows.app_val, Subfunctor.range_eq_ofSection, yonedaPairing_map, GrothendieckTopology.MayerVietorisSquare.shortComplex_g, uliftYoneda_map_app_down, GrothendieckTopology.MayerVietorisSquare.isPushoutAddCommGrpFreeSheaf, OverPresheafAux.restrictedYonedaObjMap₁_app, GrothendieckTopology.yoneda_obj_val, IndParallelPairPresentation.hg, yonedaPairingExt_iff, isCoseparator_iff_faithful_yoneda_obj, instPresheafIsFiniteObjFunctorOppositeTypeYoneda, typeEquiv_counitIso_hom_app_val_app, CategoryOfElements.toCostructuredArrow_obj, OverPresheafAux.yonedaCollectionFunctor_map, Functor.FullyFaithful.compYonedaCompWhiskeringLeftMaxRight_hom_app_app_down, OverPresheafAux.YonedaCollection.mk_snd, Presheaf.compULiftYonedaIsoULiftYonedaCompLan.uliftYonedaEquiv_presheafHom_uliftYoneda_obj, Functor.CorepresentableBy.equivUliftCoyonedaIso_apply, CategoryOfElements.costructuredArrowYonedaEquivalenceFunctorProj_hom_app, OverPresheafAux.YonedaCollection.map₁_comp, PresheafOfModules.pullbackObjIsDefined_free_yoneda, uliftYonedaIsoYoneda_hom_app_app, IsCodetecting.isIso_iff_of_epi, Functor.FullyFaithful.compUliftYonedaCompWhiskeringLeft_hom_app_app_down, equivYoneda_inv_app, yoneda'_obj_val, Limits.IndObjectPresentation.extend_isColimit_desc_app, Limits.IndObjectPresentation.ofCocone_ΞΉ, Functor.FullyFaithful.compUliftCoyonedaCompWhiskeringLeft_inv_app_app_down, Presheaf.map_comp_uliftYonedaEquiv_down_assoc, Functor.RepresentableBy.uniqueUpToIso_inv, Sieve.forallYonedaIsSheaf_iff_colimit, Sieve.functorInclusion_top_isIso, Limits.IndObjectPresentation.ofCocone_F, Functor.FullyFaithful.homNatIso'_inv_app_down, yonedaEquiv_naturality, Limits.IndObjectPresentation.ofCocone_ℐ, typeEquiv_functor_map_val_app, map_yonedaEquiv, GrothendieckTopology.MayerVietorisSquare.shortComplex_f, OverPresheafAux.YonedaCollection.map₁_id, yoneda_preservesLimits, CommRingCat.instIsRightAdjointOppositeObjFunctorTypeYoneda, Presieve.IsSheafFor.functorInclusion_comp_extend_assoc, Presheaf.map_comp_uliftYonedaEquiv_down, Sieve.functorInclusion_is_mono, Injective.injective_iff_preservesEpimorphisms_yoneda_obj, Limits.limitCompYonedaIsoCocone_hom_app, Limits.colimitYonedaHomIsoLimitOp_Ο€_apply, Presheaf.tautologicalCocone_ΞΉ_app, Functor.RepresentableBy.equivUliftYonedaIso_apply, CategoryOfElements.costructuredArrowYonedaEquivalenceInverseΟ€_inv_app, CostructuredArrow.overEquivPresheafCostructuredArrow_functor_map_toOverCompCoyoneda, yoneda'_comp, Presieve.extension_iff_amalgamation, SSet.horn.primitiveEdge_coe_down, CategoryOfElements.fromCostructuredArrow_obj_mk, Limits.IndObjectPresentation.cocone_pt, Yoneda.fullyFaithful_preimage, equivYoneda'_hom_val, PresheafOfModules.freeYonedaEquiv_comp, cones_map_app_app, Adjunction.representableBy_homEquiv, GrothendieckTopology.MayerVietorisSquare.shortComplex_Xβ‚‚, Limits.IndizationClosedUnderFilteredColimitsAux.isFiltered, instSmallHomFunctorOppositeTypeColimitCompYoneda, instPreservesColimitFunctorOppositeTypeObjCoyonedaOpYoneda, Presieve.isSheaf_yoneda', uliftYonedaMap_app_apply, OverPresheafAux.counitForward_counitBackward, OverPresheafAux.costructuredArrowPresheafToOver_obj, Sieve.equalizer_eq_equalizerSieve, Functor.FullyFaithful.homNatIso_hom_app_down, Limits.IndizationClosedUnderFilteredColimitsAux.exists_nonempty_limit_obj_of_colimit, CostructuredArrow.overEquivPresheafCostructuredArrow_inverse_map_toOverCompYoneda, Limits.PreservesFiniteLimitsOfIsFilteredCostructuredArrowYonedaAux.flipFunctorToInterchange_hom_app_app, OverPresheafAux.YonedaCollection.map₁_snd, yonedaEquiv_symm_map, Functor.IsDenseSubsite.isIso_ranCounit_app_of_isDenseSubsite, Sieve.toFunctor_app_coe, Functor.reprW_hom_app, Limits.colimitHomIsoLimitYoneda_inv_comp_Ο€, yonedaYonedaColimit_app_inv, Limits.Cone.extensions_app, yonedaEquiv_symm_naturality_left, ObjectProperty.IsCodetecting.isIso_iff_of_epi, yonedaEquiv_symm_naturality_right, Limits.IndObjectPresentation.yoneda_I, AlgebraicGeometry.LocallyRingedSpace.toΞ“SpecSheafedSpace_hom_c_app, OverPresheafAux.OverArrows.map_val, uliftYonedaIsoYoneda_inv_app_app_down, Limits.colimitYonedaHomIsoLimitRightOp_Ο€_apply, Presheaf.tautologicalCocone_pt, yoneda'_map_val, OverPresheafAux.map_mkPrecomp_eqToHom, NonemptyParallelPairPresentationAux.hg, OverPresheafAux.counitAuxAux_hom, Limits.colimitHomIsoLimitYoneda_inv_comp_Ο€_assoc, yoneda_obj_isGeneratedBy, Subfunctor.Subpresheaf.ofSection_eq_range, Limits.opHomCompWhiskeringLimYonedaIsoCocones_inv_app_app, OverPresheafAux.YonedaCollection.mapβ‚‚_fst, Sieve.toUliftFunctor_app_down_coe, Limits.IndObjectPresentation.yoneda_F, OverPresheafAux.counitForward_val_fst, Limits.IndObjectPresentation.yoneda_ℐ, CategoryOfElements.fromCostructuredArrow_obj_fst, Yoneda.obj_map_id, map_yonedaEquiv', CategoryOfElements.toCostructuredArrow_map, CategoryOfElements.costructuredArrowYonedaEquivalenceFunctorProj_inv_app, Presheaf.freeYoneda_obj, colimitYonedaHomEquiv_Ο€_apply, Sheaf.isSheaf_yoneda_obj, yonedaEquiv_symm_app_apply, Limits.colimitHomIsoLimitYoneda'_inv_comp_Ο€, Square.isPushout_iff_op_map_yoneda_isPullback, Limits.compYonedaSectionsEquiv_symm_apply_coe, yonedaEquiv_comp, OverPresheafAux.counitForward_naturalityβ‚‚
yonedaEquiv πŸ“–CompOp
29 mathmath: GrothendieckTopology.yonedaOpCompCoyoneda_hom_app_app_down, Subfunctor.Subpresheaf.range_eq_ofSection, Subfunctor.ofSection_eq_range, yonedaEquiv_apply, OverPresheafAux.YonedaCollection.yonedaEquivFst_eq, yonedaEquiv_yoneda_map, yonedaEquiv_naturality', CategoryOfElements.fromCostructuredArrow_obj_snd, CategoryOfElements.fromCostructuredArrow_map_coe, OverPresheafAux.unitAuxAux_inv_app_fst, OverPresheafAux.unitAuxAux_inv_app_snd_coe, OverPresheafAux.MakesOverArrow.app, OverPresheafAux.OverArrows.app_val, Subfunctor.range_eq_ofSection, CategoryOfElements.toCostructuredArrow_obj, yonedaEquiv_naturality, map_yonedaEquiv, OverPresheafAux.MakesOverArrow.of_arrow, Presieve.extension_iff_amalgamation, CategoryOfElements.fromCostructuredArrow_obj_mk, yonedaEquiv_symm_map, yonedaEquiv_symm_naturality_left, yonedaEquiv_symm_naturality_right, Subfunctor.Subpresheaf.ofSection_eq_range, AlgebraicGeometry.Scheme.LocalRepresentability.yonedaGluedToSheaf_app_toGlued, map_yonedaEquiv', CategoryOfElements.toCostructuredArrow_map, yonedaEquiv_symm_app_apply, yonedaEquiv_comp
yonedaEvaluation πŸ“–CompOp
1 mathmath: yonedaEvaluation_map_down
yonedaLemma πŸ“–CompOpβ€”
yonedaMap πŸ“–CompOp
3 mathmath: Functor.imageSieve_eq_imageSieve, Presheaf.instIsLeftKanExtensionOppositeObjFunctorTypeYonedaYonedaMap, yonedaMap_app_apply
yonedaOpCompYonedaObj πŸ“–CompOpβ€”
yonedaPairing πŸ“–CompOp
1 mathmath: yonedaPairing_map

Theorems

NameKindAssumesProvesValidatesDepends On
corepresentable_of_natIso πŸ“–mathematicalβ€”Functor.IsCorepresentableβ€”Functor.CorepresentableBy.isCorepresentable
coyonedaEquiv_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Quiver.Hom
Functor
types
CategoryStruct.toQuiver
Category.toCategoryStruct
Functor.category
Functor.obj
Opposite
Category.opposite
coyoneda
Opposite.op
EquivLike.toFunLike
Equiv.instEquivLike
coyonedaEquiv
NatTrans.app
CategoryStruct.id
β€”β€”
coyonedaEquiv_comp πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Quiver.Hom
Functor
types
CategoryStruct.toQuiver
Category.toCategoryStruct
Functor.category
Functor.obj
Opposite
Category.opposite
coyoneda
Opposite.op
EquivLike.toFunLike
Equiv.instEquivLike
coyonedaEquiv
CategoryStruct.comp
NatTrans.app
β€”β€”
coyonedaEquiv_coyoneda_map πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Quiver.Hom
Functor
types
CategoryStruct.toQuiver
Category.toCategoryStruct
Functor.category
Functor.obj
Opposite
Category.opposite
coyoneda
Opposite.op
EquivLike.toFunLike
Equiv.instEquivLike
coyonedaEquiv
Functor.map
Quiver.Hom.op
β€”coyonedaEquiv_apply
Category.comp_id
coyonedaEquiv_naturality πŸ“–mathematicalβ€”Functor.map
types
DFunLike.coe
Equiv
Quiver.Hom
Functor
CategoryStruct.toQuiver
Category.toCategoryStruct
Functor.category
Functor.obj
Opposite
Category.opposite
coyoneda
Opposite.op
EquivLike.toFunLike
Equiv.instEquivLike
coyonedaEquiv
CategoryStruct.comp
Quiver.Hom.op
β€”NatTrans.naturality
Category.id_comp
Category.comp_id
coyonedaEquiv_symm_app_apply πŸ“–mathematicalβ€”NatTrans.app
types
Functor.obj
Opposite
Category.opposite
Functor
Functor.category
coyoneda
Opposite.op
DFunLike.coe
Equiv
Quiver.Hom
CategoryStruct.toQuiver
Category.toCategoryStruct
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
coyonedaEquiv
Functor.map
β€”β€”
coyonedaEquiv_symm_map πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Functor.obj
types
Quiver.Hom
Functor
CategoryStruct.toQuiver
Category.toCategoryStruct
Functor.category
Opposite
Category.opposite
coyoneda
Opposite.op
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
coyonedaEquiv
Functor.map
CategoryStruct.comp
Quiver.Hom.op
β€”Equiv.surjective
coyonedaEquiv_naturality
Equiv.symm_apply_apply
coyonedaEvaluation_map_down πŸ“–mathematicalβ€”Functor.obj
Functor
types
prod'
Functor.category
evaluationUncurried
Functor.map
coyonedaEvaluation
NatTrans.app
Quiver.Hom
CategoryStruct.toQuiver
Category.toCategoryStruct
β€”β€”
coyonedaPairingExt πŸ“–β€”NatTrans.app
types
Opposite.unop
Functor
Opposite
Functor.obj
prod'
Functor.category
Category.opposite
Functor.prod
Functor.rightOp
coyoneda
Functor.id
β€”β€”NatTrans.ext
coyonedaPairingExt_iff πŸ“–mathematicalβ€”NatTrans.app
types
Opposite.unop
Functor
Opposite
Functor.obj
prod'
Functor.category
Category.opposite
Functor.prod
Functor.rightOp
coyoneda
Functor.id
β€”coyonedaPairingExt
coyonedaPairing_map πŸ“–mathematicalβ€”Functor.map
Functor
types
prod'
Functor.category
coyonedaPairing
CategoryStruct.comp
Category.toCategoryStruct
Functor.obj
Opposite
Category.opposite
coyoneda
Opposite.op
Quiver.Hom.op
CategoryStruct.toQuiver
Quiver.Hom
Functor.prod
Functor.rightOp
Functor.id
β€”β€”
hom_ext_uliftCoyoneda πŸ“–β€”CategoryStruct.comp
Functor
types
Category.toCategoryStruct
Functor.category
Functor.obj
Opposite
Category.opposite
uliftCoyoneda
β€”β€”NatTrans.ext'
types_ext
FunctorToTypes.map_id_apply
hom_ext_uliftYoneda πŸ“–β€”CategoryStruct.comp
Functor
Opposite
Category.opposite
types
Category.toCategoryStruct
Functor.category
Functor.obj
uliftYoneda
β€”β€”NatTrans.ext'
types_ext
FunctorToTypes.map_id_apply
hom_ext_yoneda πŸ“–β€”CategoryStruct.comp
Functor
Opposite
Category.opposite
types
Category.toCategoryStruct
Functor.category
Functor.obj
yoneda
β€”β€”NatTrans.ext'
types_ext
Equiv.apply_symm_apply
instIsCorepresentableIdType πŸ“–mathematicalβ€”Functor.IsCorepresentable
types
Functor.id
β€”corepresentable_of_natIso
Functor.instIsCorepresentableObjOppositeTypeCoyoneda
isIso_iff_coyoneda_map_bijective πŸ“–mathematicalβ€”IsIso
Function.Bijective
Quiver.Hom
CategoryStruct.toQuiver
Category.toCategoryStruct
CategoryStruct.comp
β€”isIso_iff_bijective
NatIso.isIso_app_of_isIso
Functor.map_isIso
isIso_op
isIso_of_coyoneda_map_bijective
isIso_iff_isIso_coyoneda_map πŸ“–mathematicalβ€”IsIso
types
Functor.obj
Opposite
Category.opposite
Functor
Functor.category
coyoneda
Opposite.op
NatTrans.app
Functor.map
Quiver.Hom.op
CategoryStruct.toQuiver
Category.toCategoryStruct
β€”isIso_iff_coyoneda_map_bijective
isIso_iff_bijective
isIso_iff_isIso_yoneda_map πŸ“–mathematicalβ€”IsIso
types
Functor.obj
Opposite
Category.opposite
Functor
Functor.category
yoneda
Opposite.op
NatTrans.app
Functor.map
β€”isIso_iff_yoneda_map_bijective
isIso_iff_bijective
isIso_iff_yoneda_map_bijective πŸ“–mathematicalβ€”IsIso
Function.Bijective
Quiver.Hom
CategoryStruct.toQuiver
Category.toCategoryStruct
CategoryStruct.comp
β€”isIso_iff_bijective
NatIso.isIso_app_of_isIso
Functor.map_isIso
isIso_of_yoneda_map_bijective
isIso_of_coyoneda_map_bijective πŸ“–mathematicalFunction.Bijective
Quiver.Hom
CategoryStruct.toQuiver
Category.toCategoryStruct
CategoryStruct.comp
IsIsoβ€”Category.id_comp
Category.comp_id
isIso_of_yoneda_map_bijective πŸ“–mathematicalFunction.Bijective
Quiver.Hom
CategoryStruct.toQuiver
Category.toCategoryStruct
CategoryStruct.comp
IsIsoβ€”Category.assoc
Category.comp_id
Category.id_comp
isRepresentable_of_natIso πŸ“–mathematicalβ€”Functor.IsRepresentableβ€”Functor.RepresentableBy.isRepresentable
map_coyonedaEquiv πŸ“–mathematicalβ€”Functor.map
types
DFunLike.coe
Equiv
Quiver.Hom
Functor
CategoryStruct.toQuiver
Category.toCategoryStruct
Functor.category
Functor.obj
Opposite
Category.opposite
coyoneda
Opposite.op
EquivLike.toFunLike
Equiv.instEquivLike
coyonedaEquiv
NatTrans.app
β€”coyonedaEquiv_naturality
coyonedaEquiv_comp
coyonedaEquiv_coyoneda_map
map_yonedaEquiv πŸ“–mathematicalβ€”Functor.map
Opposite
Category.opposite
types
Opposite.op
Quiver.Hom.op
CategoryStruct.toQuiver
Category.toCategoryStruct
DFunLike.coe
Equiv
Quiver.Hom
Functor
Functor.category
Functor.obj
yoneda
EquivLike.toFunLike
Equiv.instEquivLike
yonedaEquiv
NatTrans.app
β€”yonedaEquiv_naturality
yonedaEquiv_comp
yonedaEquiv_yoneda_map
map_yonedaEquiv' πŸ“–mathematicalβ€”Functor.map
Opposite
Category.opposite
types
DFunLike.coe
Equiv
Quiver.Hom
Functor
CategoryStruct.toQuiver
Category.toCategoryStruct
Functor.category
Functor.obj
yoneda
Opposite.unop
Opposite.op
EquivLike.toFunLike
Equiv.instEquivLike
yonedaEquiv
NatTrans.app
Quiver.Hom.unop
β€”yonedaEquiv_naturality'
yonedaEquiv_comp
yonedaEquiv_yoneda_map
sectionsFunctorNatIsoCoyoneda_hom_app_app πŸ“–mathematicalβ€”NatTrans.app
types
Opposite.unop
Functor
Opposite.op
Functor.obj
Functor.category
Functor.const
Functor.sectionsFunctor
Opposite
Category.opposite
coyoneda
Iso.hom
sectionsFunctorNatIsoCoyoneda
Set
Set.instMembership
Functor.sections
β€”β€”
sectionsFunctorNatIsoCoyoneda_inv_app_coe πŸ“–mathematicalβ€”Set
Set.instMembership
Functor.sections
NatTrans.app
Functor
types
Functor.category
Functor.obj
Opposite
Category.opposite
coyoneda
Opposite.op
Functor.const
Functor.sectionsFunctor
Iso.inv
sectionsFunctorNatIsoCoyoneda
Unique.instInhabited
β€”β€”
uliftCoyonedaEquiv_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Quiver.Hom
Functor
types
CategoryStruct.toQuiver
Category.toCategoryStruct
Functor.category
Functor.obj
Opposite
Category.opposite
uliftCoyoneda
Opposite.unop
EquivLike.toFunLike
Equiv.instEquivLike
uliftCoyonedaEquiv
NatTrans.app
CategoryStruct.id
β€”β€”
uliftCoyonedaEquiv_comp πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Quiver.Hom
Functor
types
CategoryStruct.toQuiver
Category.toCategoryStruct
Functor.category
Functor.obj
Opposite
Category.opposite
uliftCoyoneda
Opposite.unop
EquivLike.toFunLike
Equiv.instEquivLike
uliftCoyonedaEquiv
CategoryStruct.comp
NatTrans.app
β€”β€”
uliftCoyonedaEquiv_naturality πŸ“–mathematicalβ€”Functor.map
types
DFunLike.coe
Equiv
Quiver.Hom
Functor
CategoryStruct.toQuiver
Category.toCategoryStruct
Functor.category
Functor.obj
Opposite
Category.opposite
uliftCoyoneda
Opposite.op
Opposite.unop
EquivLike.toFunLike
Equiv.instEquivLike
uliftCoyonedaEquiv
CategoryStruct.comp
Quiver.Hom.op
β€”FunctorToTypes.naturality
Category.id_comp
Category.comp_id
uliftCoyonedaEquiv_symm_apply_app πŸ“–mathematicalβ€”NatTrans.app
types
Functor.obj
Opposite
Category.opposite
Functor
Functor.category
uliftCoyoneda
DFunLike.coe
Equiv
Opposite.unop
Quiver.Hom
CategoryStruct.toQuiver
Category.toCategoryStruct
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
uliftCoyonedaEquiv
Functor.map
β€”β€”
uliftCoyonedaEquiv_symm_map πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Functor.obj
types
Opposite.unop
Opposite.op
Quiver.Hom
Functor
CategoryStruct.toQuiver
Category.toCategoryStruct
Functor.category
Opposite
Category.opposite
uliftCoyoneda
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
uliftCoyonedaEquiv
Functor.map
CategoryStruct.comp
Quiver.Hom.op
β€”Equiv.surjective
uliftCoyonedaEquiv_naturality
Equiv.symm_apply_apply
uliftCoyonedaEquiv_symm_map_assoc πŸ“–mathematicalβ€”CategoryStruct.comp
Functor
types
Category.toCategoryStruct
Functor.category
Functor.obj
Opposite
Category.opposite
uliftCoyoneda
Opposite.op
DFunLike.coe
Equiv
Quiver.Hom
CategoryStruct.toQuiver
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
uliftCoyonedaEquiv
Functor.map
Quiver.Hom.op
β€”Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
uliftCoyonedaEquiv_symm_map
uliftCoyonedaEquiv_uliftCoyoneda_map πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Quiver.Hom
Functor
types
CategoryStruct.toQuiver
Category.toCategoryStruct
Functor.category
Functor.obj
Opposite
Category.opposite
uliftCoyoneda
Opposite.unop
EquivLike.toFunLike
Equiv.instEquivLike
uliftCoyonedaEquiv
Functor.map
Quiver.Hom.unop
β€”Category.comp_id
uliftCoyonedaIsoCoyoneda_hom_app_app πŸ“–mathematicalβ€”NatTrans.app
types
Functor.obj
Opposite
Category.opposite
Functor
Functor.category
uliftCoyoneda
coyoneda
Iso.hom
uliftCoyonedaIsoCoyoneda
Quiver.Hom
CategoryStruct.toQuiver
Category.toCategoryStruct
Opposite.unop
β€”β€”
uliftCoyonedaIsoCoyoneda_inv_app_app_down πŸ“–mathematicalβ€”Functor.obj
Opposite
Category.opposite
types
Functor
Functor.category
yoneda
NatTrans.app
coyoneda
uliftCoyoneda
Iso.inv
uliftCoyonedaIsoCoyoneda
β€”β€”
uliftYonedaEquiv_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Quiver.Hom
Functor
Opposite
Category.opposite
types
CategoryStruct.toQuiver
Category.toCategoryStruct
Functor.category
Functor.obj
uliftYoneda
Opposite.op
EquivLike.toFunLike
Equiv.instEquivLike
uliftYonedaEquiv
NatTrans.app
CategoryStruct.id
β€”β€”
uliftYonedaEquiv_comp πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Quiver.Hom
Functor
Opposite
Category.opposite
types
CategoryStruct.toQuiver
Category.toCategoryStruct
Functor.category
Functor.obj
uliftYoneda
Opposite.op
EquivLike.toFunLike
Equiv.instEquivLike
uliftYonedaEquiv
CategoryStruct.comp
NatTrans.app
β€”β€”
uliftYonedaEquiv_naturality πŸ“–mathematicalβ€”Functor.map
Opposite
Category.opposite
types
DFunLike.coe
Equiv
Quiver.Hom
Functor
CategoryStruct.toQuiver
Category.toCategoryStruct
Functor.category
Functor.obj
uliftYoneda
Opposite.unop
Opposite.op
EquivLike.toFunLike
Equiv.instEquivLike
uliftYonedaEquiv
CategoryStruct.comp
Quiver.Hom.unop
β€”FunctorToTypes.naturality
Category.comp_id
Category.id_comp
uliftYonedaEquiv_symm_apply_app πŸ“–mathematicalβ€”NatTrans.app
Opposite
Category.opposite
types
Functor.obj
Functor
Functor.category
uliftYoneda
DFunLike.coe
Equiv
Opposite.op
Quiver.Hom
CategoryStruct.toQuiver
Category.toCategoryStruct
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
uliftYonedaEquiv
Functor.map
Quiver.Hom.op
Opposite.unop
β€”β€”
uliftYonedaEquiv_symm_map πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Functor.obj
Opposite
Category.opposite
types
Opposite.op
Opposite.unop
Quiver.Hom
Functor
CategoryStruct.toQuiver
Category.toCategoryStruct
Functor.category
uliftYoneda
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
uliftYonedaEquiv
Functor.map
CategoryStruct.comp
Quiver.Hom.unop
β€”Equiv.surjective
uliftYonedaEquiv_naturality
Equiv.symm_apply_apply
uliftYonedaEquiv_symm_map_assoc πŸ“–mathematicalβ€”CategoryStruct.comp
Functor
Opposite
Category.opposite
types
Category.toCategoryStruct
Functor.category
Functor.obj
uliftYoneda
Opposite.unop
DFunLike.coe
Equiv
Opposite.op
Quiver.Hom
CategoryStruct.toQuiver
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
uliftYonedaEquiv
Functor.map
Quiver.Hom.unop
β€”Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
uliftYonedaEquiv_symm_map
uliftYonedaEquiv_uliftYoneda_map πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Quiver.Hom
Functor
Opposite
Category.opposite
types
CategoryStruct.toQuiver
Category.toCategoryStruct
Functor.category
Functor.obj
uliftYoneda
Opposite.op
EquivLike.toFunLike
Equiv.instEquivLike
uliftYonedaEquiv
Functor.map
β€”Category.id_comp
uliftYonedaIsoYoneda_hom_app_app πŸ“–mathematicalβ€”NatTrans.app
Opposite
Category.opposite
types
Functor.obj
Functor
Functor.category
uliftYoneda
yoneda
Iso.hom
uliftYonedaIsoYoneda
Quiver.Hom
CategoryStruct.toQuiver
Category.toCategoryStruct
Opposite.unop
β€”β€”
uliftYonedaIsoYoneda_inv_app_app_down πŸ“–mathematicalβ€”Functor.obj
Opposite
Category.opposite
types
Functor
Functor.category
yoneda
NatTrans.app
uliftYoneda
Iso.inv
uliftYonedaIsoYoneda
β€”β€”
uliftYonedaMap_app_apply πŸ“–mathematicalβ€”NatTrans.app
Opposite
Category.opposite
types
Functor.obj
Functor
Functor.category
uliftYoneda
Functor.comp
Functor.op
uliftYonedaMap
yoneda
Quiver.Hom
CategoryStruct.toQuiver
Category.toCategoryStruct
Opposite.unop
Functor.map
β€”β€”
uliftYoneda_map_app πŸ“–mathematicalβ€”NatTrans.app
Opposite
Category.opposite
types
Functor.obj
Functor
Functor.category
Functor.whiskeringRight
uliftFunctor
yoneda
Functor.map
uliftYoneda
Quiver.Hom
CategoryStruct.toQuiver
Category.toCategoryStruct
Opposite.unop
CategoryStruct.comp
β€”β€”
uliftYoneda_map_app_down πŸ“–mathematicalβ€”Functor.obj
Opposite
Category.opposite
types
Functor
Functor.category
yoneda
NatTrans.app
uliftYoneda
Functor.map
CategoryStruct.comp
Category.toCategoryStruct
Opposite.unop
β€”β€”
uliftYoneda_obj_map πŸ“–mathematicalβ€”Functor.map
Opposite
Category.opposite
types
Functor.obj
Functor
Functor.category
uliftYoneda
Quiver.Hom
CategoryStruct.toQuiver
Category.toCategoryStruct
Opposite.unop
CategoryStruct.comp
Quiver.Hom.unop
β€”β€”
uliftYoneda_obj_map_down πŸ“–mathematicalβ€”Functor.obj
Opposite
Category.opposite
types
Functor
Functor.category
yoneda
Functor.map
uliftYoneda
CategoryStruct.comp
Category.toCategoryStruct
Opposite.unop
Quiver.Hom.unop
CategoryStruct.toQuiver
β€”β€”
uliftYoneda_obj_obj πŸ“–mathematicalβ€”Functor.obj
Opposite
Category.opposite
types
Functor
Functor.category
uliftYoneda
Quiver.Hom
CategoryStruct.toQuiver
Category.toCategoryStruct
Opposite.unop
β€”β€”
yonedaEquiv_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Quiver.Hom
Functor
Opposite
Category.opposite
types
CategoryStruct.toQuiver
Category.toCategoryStruct
Functor.category
Functor.obj
yoneda
Opposite.op
EquivLike.toFunLike
Equiv.instEquivLike
yonedaEquiv
NatTrans.app
CategoryStruct.id
β€”β€”
yonedaEquiv_comp πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Quiver.Hom
Functor
Opposite
Category.opposite
types
CategoryStruct.toQuiver
Category.toCategoryStruct
Functor.category
Functor.obj
yoneda
Opposite.op
EquivLike.toFunLike
Equiv.instEquivLike
yonedaEquiv
CategoryStruct.comp
NatTrans.app
β€”β€”
yonedaEquiv_naturality πŸ“–mathematicalβ€”Functor.map
Opposite
Category.opposite
types
Opposite.op
Quiver.Hom.op
CategoryStruct.toQuiver
Category.toCategoryStruct
DFunLike.coe
Equiv
Quiver.Hom
Functor
Functor.category
Functor.obj
yoneda
EquivLike.toFunLike
Equiv.instEquivLike
yonedaEquiv
CategoryStruct.comp
β€”NatTrans.naturality
Category.comp_id
Category.id_comp
yonedaEquiv_naturality' πŸ“–mathematicalβ€”Functor.map
Opposite
Category.opposite
types
DFunLike.coe
Equiv
Quiver.Hom
Functor
CategoryStruct.toQuiver
Category.toCategoryStruct
Functor.category
Functor.obj
yoneda
Opposite.unop
Opposite.op
EquivLike.toFunLike
Equiv.instEquivLike
yonedaEquiv
CategoryStruct.comp
Quiver.Hom.unop
β€”yonedaEquiv_naturality
yonedaEquiv_symm_app_apply πŸ“–mathematicalβ€”NatTrans.app
Opposite
Category.opposite
types
Functor.obj
Functor
Functor.category
yoneda
DFunLike.coe
Equiv
Opposite.op
Quiver.Hom
CategoryStruct.toQuiver
Category.toCategoryStruct
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
yonedaEquiv
Functor.map
Opposite.unop
Quiver.Hom.op
β€”β€”
yonedaEquiv_symm_map πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Functor.obj
Opposite
Category.opposite
types
Opposite.op
Opposite.unop
Quiver.Hom
Functor
CategoryStruct.toQuiver
Category.toCategoryStruct
Functor.category
yoneda
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
yonedaEquiv
Functor.map
CategoryStruct.comp
Quiver.Hom.unop
β€”Equiv.surjective
yonedaEquiv_naturality'
Equiv.symm_apply_apply
yonedaEquiv_symm_naturality_left πŸ“–mathematicalβ€”CategoryStruct.comp
Functor
Opposite
Category.opposite
types
Category.toCategoryStruct
Functor.category
Functor.obj
yoneda
Functor.map
DFunLike.coe
Equiv
Opposite.op
Quiver.Hom
CategoryStruct.toQuiver
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
yonedaEquiv
Quiver.Hom.op
β€”Equiv.injective
Equiv.apply_symm_apply
yonedaEquiv_yoneda_map
yonedaEquiv_symm_naturality_right πŸ“–mathematicalβ€”CategoryStruct.comp
Functor
Opposite
Category.opposite
types
Category.toCategoryStruct
Functor.category
Functor.obj
yoneda
DFunLike.coe
Equiv
Opposite.op
Quiver.Hom
CategoryStruct.toQuiver
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
yonedaEquiv
NatTrans.app
β€”Equiv.injective
Equiv.apply_symm_apply
yonedaEquiv_yoneda_map πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Quiver.Hom
Functor
Opposite
Category.opposite
types
CategoryStruct.toQuiver
Category.toCategoryStruct
Functor.category
Functor.obj
yoneda
Opposite.op
EquivLike.toFunLike
Equiv.instEquivLike
yonedaEquiv
Functor.map
β€”yonedaEquiv_apply
Category.id_comp
yonedaEvaluation_map_down πŸ“–mathematicalβ€”Functor.obj
Opposite
Functor
Category.opposite
types
prodCategoryInstance2
evaluationUncurried
Functor.map
yonedaEvaluation
NatTrans.app
Quiver.Hom
CategoryStruct.toQuiver
CategoryStruct.opposite
Category.toCategoryStruct
Functor.category
β€”β€”
yonedaMap_app_apply πŸ“–mathematicalβ€”NatTrans.app
Opposite
Category.opposite
types
Functor.obj
Functor
Functor.category
yoneda
Functor.comp
Functor.op
yonedaMap
Functor.map
Opposite.unop
β€”β€”
yonedaPairingExt πŸ“–β€”NatTrans.app
Opposite
Category.opposite
types
Opposite.unop
Functor
Functor.obj
prodCategoryInstance2
prod'
Functor.category
Functor.prod
Functor.op
yoneda
Functor.id
β€”β€”NatTrans.ext
yonedaPairingExt_iff πŸ“–mathematicalβ€”NatTrans.app
Opposite
Category.opposite
types
Opposite.unop
Functor
Functor.obj
prodCategoryInstance2
prod'
Functor.category
Functor.prod
Functor.op
yoneda
Functor.id
β€”yonedaPairingExt
yonedaPairing_map πŸ“–mathematicalβ€”Functor.map
Opposite
Functor
Category.opposite
types
prodCategoryInstance2
yonedaPairing
CategoryStruct.comp
Category.toCategoryStruct
Functor.category
Functor.obj
yoneda
Opposite.unop
Quiver.Hom.unop
CategoryStruct.toQuiver
Quiver.Hom
CategoryStruct.opposite
prod'
Functor.prod
Functor.op
Functor.id
β€”β€”
yoneda_map_app πŸ“–mathematicalβ€”NatTrans.app
Opposite
Category.opposite
types
Quiver.Hom
CategoryStruct.toQuiver
Category.toCategoryStruct
Opposite.unop
CategoryStruct.comp
Quiver.Hom.unop
Functor.map
Functor
Functor.category
yoneda
β€”β€”
yoneda_obj_map πŸ“–mathematicalβ€”Functor.map
Opposite
Category.opposite
types
Functor.obj
Functor
Functor.category
yoneda
CategoryStruct.comp
Category.toCategoryStruct
Opposite.unop
Quiver.Hom.unop
CategoryStruct.toQuiver
β€”β€”
yoneda_obj_obj πŸ“–mathematicalβ€”Functor.obj
Opposite
Category.opposite
types
Functor
Functor.category
yoneda
Quiver.Hom
CategoryStruct.toQuiver
Category.toCategoryStruct
Opposite.unop
β€”β€”

CategoryTheory.Coyoneda

Definitions

NameCategoryTheorems
ext πŸ“–CompOpβ€”
fullyFaithful πŸ“–CompOp
3 mathmath: CategoryTheory.Functor.CorepresentableBy.uniqueUpToIso_inv, CategoryTheory.Functor.CorepresentableBy.uniqueUpToIso_hom, fullyFaithful_preimage
objOpOp πŸ“–CompOp
2 mathmath: objOpOp_inv_app, objOpOp_hom_app
opIso πŸ“–CompOpβ€”
preimage πŸ“–CompOpβ€”
punitIso πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
coyoneda_faithful πŸ“–mathematicalβ€”CategoryTheory.Functor.Faithful
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor
CategoryTheory.types
CategoryTheory.Functor.category
CategoryTheory.coyoneda
β€”CategoryTheory.Functor.FullyFaithful.faithful
coyoneda_full πŸ“–mathematicalβ€”CategoryTheory.Functor.Full
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor
CategoryTheory.types
CategoryTheory.Functor.category
CategoryTheory.coyoneda
β€”CategoryTheory.Functor.FullyFaithful.full
fullyFaithful_preimage πŸ“–mathematicalβ€”CategoryTheory.Functor.FullyFaithful.preimage
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor
CategoryTheory.types
CategoryTheory.Functor.category
CategoryTheory.coyoneda
fullyFaithful
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Opposite.unop
CategoryTheory.NatTrans.app
CategoryTheory.Functor.obj
CategoryTheory.CategoryStruct.id
β€”β€”
isIso πŸ“–mathematicalβ€”CategoryTheory.IsIso
Opposite
CategoryTheory.Category.opposite
β€”CategoryTheory.isIso_of_fully_faithful
coyoneda_full
coyoneda_faithful
naturality πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Opposite.unop
CategoryTheory.NatTrans.app
CategoryTheory.types
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.coyoneda
β€”CategoryTheory.FunctorToTypes.naturality
objOpOp_hom_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.coyoneda
Opposite.op
CategoryTheory.yoneda
CategoryTheory.Iso.hom
objOpOp
DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Opposite.unop
EquivLike.toFunLike
Equiv.instEquivLike
CategoryTheory.opEquiv
β€”β€”
objOpOp_inv_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.yoneda
CategoryTheory.coyoneda
Opposite.op
CategoryTheory.Iso.inv
objOpOp
DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Opposite.unop
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
CategoryTheory.opEquiv
β€”β€”

CategoryTheory.Coyoneda.ULiftCoyoneda

Definitions

NameCategoryTheorems
fullyFaithful πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
instFaithfulOppositeFunctorTypeUliftCoyoneda πŸ“–mathematicalβ€”CategoryTheory.Functor.Faithful
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor
CategoryTheory.types
CategoryTheory.Functor.category
CategoryTheory.uliftCoyoneda
β€”CategoryTheory.Functor.FullyFaithful.faithful
instFullOppositeFunctorTypeUliftCoyoneda πŸ“–mathematicalβ€”CategoryTheory.Functor.Full
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor
CategoryTheory.types
CategoryTheory.Functor.category
CategoryTheory.uliftCoyoneda
β€”CategoryTheory.Functor.FullyFaithful.full

CategoryTheory.Functor

Definitions

NameCategoryTheorems
CorepresentableBy πŸ“–CompData
7 mathmath: CorepresentableBy.equivOfIsoObj_symm_apply, CorepresentableBy.equivOfIsoObj_apply, corepresentableByUliftFunctorEquiv_apply_homEquiv, corepresentableByUliftFunctorEquiv_symm_apply_homEquiv, CorepresentableBy.equivUliftCoyonedaIso_symm_apply_homEquiv, CorepresentableBy.equivUliftCoyonedaIso_apply, IsCorepresentable.has_corepresentation
IsCorepresentable πŸ“–CompData
19 mathmath: CategoryTheory.Types.instIsCorepresentableForgetTypeHom, GrpCat.forget_isCorepresentable, CorepresentableBy.isCorepresentable, instIsCorepresentableCompUliftFunctor, HomologicalComplex.instIsCorepresentableCompEvalObjOppositeFunctorTypeCoyonedaOp, CommGrpCat.forget_isCorepresentable, IsCorepresentable.mk', AddMonCat.forget_isCorepresentable, MonCat.forget_isCorepresentable, CategoryTheory.instIsCorepresentableIdType, instIsCorepresentableCompObjOppositeTypeCoyonedaOpObjLeftAdjointObjIsDefined, CategoryTheory.corepresentable_of_natIso, instIsCorepresentableObjOppositeTypeCoyoneda, AddCommMonCat.forget_isCorepresentable, AddGrpCat.forget_isCorepresentable, AddCommGrpCat.forget_isCorepresentable, leftAdjointObjIsDefined_iff, isCorepresentable_comp_uliftFunctor_iff, CommMonCat.forget_isCorepresentable
IsRepresentable πŸ“–CompData
13 mathmath: AlgebraicGeometry.Scheme.LocalRepresentability.isRepresentable, rightAdjointObjIsDefined_iff, CategoryTheory.essImage_yonedaMon, CategoryTheory.essImage_yonedaGrp, instIsRepresentableCompOppositeOpObjTypeYonedaObjRightAdjointObjIsDefined, IsRepresentable.mk', IsRepresentable.iff_exists_isRepresentedBy, instIsRepresentableObjOppositeTypeYoneda, RepresentableBy.isRepresentable, instIsRepresentableCompOppositeUliftFunctor, CategoryTheory.isRepresentable_of_natIso, CategoryTheory.isRepresentable_hasClassifier_iff, isRepresentable_comp_uliftFunctor_iff
RepresentableBy πŸ“–CompData
7 mathmath: representableByUliftFunctorEquiv_symm_apply_homEquiv, IsRepresentable.has_representation, RepresentableBy.equivOfIsoObj_symm_apply, RepresentableBy.equivOfIsoObj_apply, RepresentableBy.equivUliftYonedaIso_symm_apply_homEquiv, representableByUliftFunctorEquiv_apply_homEquiv, RepresentableBy.equivUliftYonedaIso_apply
coreprW πŸ“–CompOp
1 mathmath: coreprW_hom_app
coreprX πŸ“–CompOp
2 mathmath: uliftCoyonedaCoreprXIso_hom_app, coreprW_hom_app
corepresentableBy πŸ“–CompOpβ€”
corepresentableByEquiv πŸ“–CompOpβ€”
corepresentableByUliftFunctorEquiv πŸ“–CompOp
2 mathmath: corepresentableByUliftFunctorEquiv_apply_homEquiv, corepresentableByUliftFunctorEquiv_symm_apply_homEquiv
coreprx πŸ“–CompOp
2 mathmath: uliftCoyonedaCoreprXIso_hom_app, coreprW_hom_app
reprW πŸ“–CompOp
1 mathmath: reprW_hom_app
reprX πŸ“–CompOp
3 mathmath: IsRepresentedBy.of_isRepresentable, uliftYonedaReprXIso_hom_app, reprW_hom_app
representableBy πŸ“–CompOpβ€”
representableByEquiv πŸ“–CompOpβ€”
representableByUliftFunctorEquiv πŸ“–CompOp
2 mathmath: representableByUliftFunctorEquiv_symm_apply_homEquiv, representableByUliftFunctorEquiv_apply_homEquiv
reprx πŸ“–CompOp
3 mathmath: IsRepresentedBy.of_isRepresentable, uliftYonedaReprXIso_hom_app, reprW_hom_app
sectionsEquivHom πŸ“–CompOp
3 mathmath: sectionsEquivHom_naturality, sectionsEquivHom_naturality_symm, sectionsEquivHom_apply_app
uliftCoyonedaCoreprXIso πŸ“–CompOp
1 mathmath: uliftCoyonedaCoreprXIso_hom_app
uliftYonedaReprXIso πŸ“–CompOp
1 mathmath: uliftYonedaReprXIso_hom_app

Theorems

NameKindAssumesProvesValidatesDepends On
coreprW_hom_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
CategoryTheory.types
obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor
category
CategoryTheory.coyoneda
Opposite.op
coreprX
CategoryTheory.Iso.hom
coreprW
map
coreprx
β€”CorepresentableBy.homEquiv_eq
corepresentableByUliftFunctorEquiv_apply_homEquiv πŸ“–mathematicalβ€”CorepresentableBy.homEquiv
DFunLike.coe
Equiv
CorepresentableBy
comp
CategoryTheory.types
CategoryTheory.uliftFunctor
EquivLike.toFunLike
Equiv.instEquivLike
corepresentableByUliftFunctorEquiv
Equiv.trans
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
obj
Equiv.ulift
β€”β€”
corepresentableByUliftFunctorEquiv_symm_apply_homEquiv πŸ“–mathematicalβ€”CorepresentableBy.homEquiv
comp
CategoryTheory.types
CategoryTheory.uliftFunctor
DFunLike.coe
Equiv
CorepresentableBy
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
corepresentableByUliftFunctorEquiv
Equiv.trans
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
obj
Equiv.ulift
β€”β€”
instIsCorepresentableCompUliftFunctor πŸ“–mathematicalβ€”IsCorepresentable
comp
CategoryTheory.types
CategoryTheory.uliftFunctor
β€”isCorepresentable_comp_uliftFunctor_iff
instIsCorepresentableObjOppositeTypeCoyoneda πŸ“–mathematicalβ€”IsCorepresentable
obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor
CategoryTheory.types
category
CategoryTheory.coyoneda
β€”IsCorepresentable.mk'
instIsRepresentableCompOppositeUliftFunctor πŸ“–mathematicalβ€”IsRepresentable
comp
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.uliftFunctor
β€”isRepresentable_comp_uliftFunctor_iff
instIsRepresentableObjOppositeTypeYoneda πŸ“–mathematicalβ€”IsRepresentable
obj
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
category
CategoryTheory.yoneda
β€”IsRepresentable.mk'
isCorepresentable_comp_uliftFunctor_iff πŸ“–mathematicalβ€”IsCorepresentable
comp
CategoryTheory.types
CategoryTheory.uliftFunctor
β€”β€”
isRepresentable_comp_uliftFunctor_iff πŸ“–mathematicalβ€”IsRepresentable
comp
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.uliftFunctor
β€”β€”
reprW_hom_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
obj
CategoryTheory.Functor
category
CategoryTheory.yoneda
reprX
CategoryTheory.Iso.hom
reprW
map
Opposite.op
Opposite.unop
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
reprx
β€”RepresentableBy.homEquiv_eq
representableByUliftFunctorEquiv_apply_homEquiv πŸ“–mathematicalβ€”RepresentableBy.homEquiv
DFunLike.coe
Equiv
RepresentableBy
comp
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.uliftFunctor
EquivLike.toFunLike
Equiv.instEquivLike
representableByUliftFunctorEquiv
Equiv.trans
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
obj
Opposite.op
Equiv.ulift
β€”β€”
representableByUliftFunctorEquiv_symm_apply_homEquiv πŸ“–mathematicalβ€”RepresentableBy.homEquiv
comp
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.uliftFunctor
DFunLike.coe
Equiv
RepresentableBy
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
representableByUliftFunctorEquiv
Equiv.trans
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
obj
Opposite.op
Equiv.ulift
β€”β€”
sectionsEquivHom_apply_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
CategoryTheory.types
obj
CategoryTheory.Functor
category
const
DFunLike.coe
Equiv
Set.Elem
sections
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
EquivLike.toFunLike
Equiv.instEquivLike
sectionsEquivHom
Set
Set.instMembership
β€”β€”
sectionsEquivHom_naturality πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Set.Elem
sections
Quiver.Hom
CategoryTheory.Functor
CategoryTheory.types
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
category
obj
const
EquivLike.toFunLike
Equiv.instEquivLike
sectionsEquivHom
map
sectionsFunctor
CategoryTheory.CategoryStruct.comp
β€”β€”
sectionsEquivHom_naturality_symm πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.Functor
CategoryTheory.types
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
category
obj
const
Set.Elem
sections
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
sectionsEquivHom
CategoryTheory.CategoryStruct.comp
map
sectionsFunctor
β€”β€”
uliftCoyonedaCoreprXIso_hom_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
CategoryTheory.types
obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor
category
CategoryTheory.uliftCoyoneda
Opposite.op
coreprX
CategoryTheory.Iso.hom
uliftCoyonedaCoreprXIso
map
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
coreprx
β€”CorepresentableBy.homEquiv_eq
uliftYonedaReprXIso_hom_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
obj
CategoryTheory.Functor
category
CategoryTheory.uliftYoneda
reprX
CategoryTheory.Iso.hom
uliftYonedaReprXIso
map
Opposite.op
Opposite.unop
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Quiver.Hom
reprx
β€”RepresentableBy.homEquiv_eq

CategoryTheory.Functor.CorepresentableBy

Definitions

NameCategoryTheorems
coyoneda πŸ“–CompOp
1 mathmath: coyoneda_homEquiv
equivOfIsoObj πŸ“–CompOp
2 mathmath: equivOfIsoObj_symm_apply, equivOfIsoObj_apply
equivUliftCoyonedaIso πŸ“–CompOp
2 mathmath: equivUliftCoyonedaIso_symm_apply_homEquiv, equivUliftCoyonedaIso_apply
homEquiv πŸ“–CompOp
24 mathmath: HomologicalComplex.evalCompCoyonedaCorepresentableByDoubleId_homEquiv_apply, uniqueUpToIso_inv, CategoryTheory.MonoidalCategory.DayConvolution.corepresentableByβ‚‚_homEquiv, ofIsoObj_homEquiv, homEquiv_eq, CategoryTheory.MonoidalCategory.DayConvolution.corepresentableByβ‚‚'_homEquiv, CategoryTheory.Functor.corepresentableByUliftFunctorEquiv_apply_homEquiv, CategoryTheory.Adjunction.corepresentableBy_homEquiv, CategoryTheory.Functor.Elements.initialOfCorepresentableBy_snd, CategoryTheory.MonoidalCategory.DayConvolution.corepresentableBy_homEquiv_symm_apply, CategoryTheory.Functor.corepresentableByUliftFunctorEquiv_symm_apply_homEquiv, equivUliftCoyonedaIso_symm_apply_homEquiv, equivUliftCoyonedaIso_apply, CategoryTheory.MonoidalCategory.DayConvolution.corepresentableBy_homEquiv_apply_app, homEquiv_comp, uniqueUpToIso_hom, HomologicalComplex.evalCompCoyonedaCorepresentableByDoubleId_homEquiv_symm_apply, CategoryTheory.MonoidalCategory.DayConvolutionUnit.corepresentableByLeft_homEquiv, HomologicalComplex.evalCompCoyonedaCorepresentableBySingle_homEquiv_symm_apply, HomologicalComplex.evalCompCoyonedaCorepresentableBySingle_homEquiv_apply, ext_iff, homEquiv_symm_comp, coyoneda_homEquiv, CategoryTheory.MonoidalCategory.DayConvolutionUnit.corepresentableByRight_homEquiv
isoCoreprX πŸ“–CompOpβ€”
ofIso πŸ“–CompOpβ€”
ofIsoObj πŸ“–CompOp
3 mathmath: equivOfIsoObj_symm_apply, equivOfIsoObj_apply, ofIsoObj_homEquiv
toIso πŸ“–CompOpβ€”
uniqueUpToIso πŸ“–CompOp
2 mathmath: uniqueUpToIso_inv, uniqueUpToIso_hom

Theorems

NameKindAssumesProvesValidatesDepends On
coyoneda_homEquiv πŸ“–mathematicalβ€”homEquiv
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor
CategoryTheory.types
CategoryTheory.Functor.category
CategoryTheory.coyoneda
Opposite.unop
coyoneda
Equiv.refl
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
β€”β€”
equivOfIsoObj_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
CategoryTheory.Functor.CorepresentableBy
EquivLike.toFunLike
Equiv.instEquivLike
equivOfIsoObj
ofIsoObj
β€”β€”
equivOfIsoObj_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
CategoryTheory.Functor.CorepresentableBy
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
equivOfIsoObj
ofIsoObj
CategoryTheory.Iso.symm
β€”β€”
equivUliftCoyonedaIso_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
CategoryTheory.Functor.CorepresentableBy
CategoryTheory.Iso
CategoryTheory.Functor
CategoryTheory.types
CategoryTheory.Functor.category
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.uliftCoyoneda
Opposite.op
EquivLike.toFunLike
Equiv.instEquivLike
equivUliftCoyonedaIso
CategoryTheory.NatIso.ofComponents
equivEquivIso
Equiv.trans
CategoryTheory.yoneda
Equiv.ulift
homEquiv
β€”β€”
equivUliftCoyonedaIso_symm_apply_homEquiv πŸ“–mathematicalβ€”homEquiv
DFunLike.coe
Equiv
CategoryTheory.Iso
CategoryTheory.Functor
CategoryTheory.types
CategoryTheory.Functor.category
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.uliftCoyoneda
Opposite.op
CategoryTheory.Functor.CorepresentableBy
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
equivUliftCoyonedaIso
Equiv.trans
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Equiv.ulift
equivEquivIso
CategoryTheory.Iso.app
β€”β€”
ext πŸ“–β€”DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.types
EquivLike.toFunLike
Equiv.instEquivLike
homEquiv
CategoryTheory.CategoryStruct.id
β€”β€”homEquiv_eq
Equiv.ext
ext_iff πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.types
EquivLike.toFunLike
Equiv.instEquivLike
homEquiv
CategoryTheory.CategoryStruct.id
β€”ext
homEquiv_comp πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.types
EquivLike.toFunLike
Equiv.instEquivLike
homEquiv
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor.map
β€”β€”
homEquiv_eq πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.types
EquivLike.toFunLike
Equiv.instEquivLike
homEquiv
CategoryTheory.Functor.map
CategoryTheory.CategoryStruct.id
β€”CategoryTheory.Category.id_comp
homEquiv_comp
homEquiv_symm_comp πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
DFunLike.coe
Equiv
CategoryTheory.Functor.obj
CategoryTheory.types
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
homEquiv
CategoryTheory.Functor.map
β€”Equiv.injective
homEquiv_comp
Equiv.apply_symm_apply
isCorepresentable πŸ“–mathematicalβ€”CategoryTheory.Functor.IsCorepresentableβ€”β€”
ofIsoObj_homEquiv πŸ“–mathematicalβ€”homEquiv
ofIsoObj
Equiv.trans
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.types
CategoryTheory.Iso.homFromEquiv
β€”β€”
uniqueUpToIso_hom πŸ“–mathematicalβ€”CategoryTheory.Iso.hom
uniqueUpToIso
Quiver.Hom.unop
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Opposite.op
CategoryTheory.Functor.FullyFaithful.preimage
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor
CategoryTheory.types
CategoryTheory.Functor.category
CategoryTheory.coyoneda
CategoryTheory.Coyoneda.fullyFaithful
CategoryTheory.Functor.obj
CategoryTheory.NatIso.ofComponents
Quiver.Hom
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
Equiv.trans
homEquiv
β€”β€”
uniqueUpToIso_inv πŸ“–mathematicalβ€”CategoryTheory.Iso.inv
uniqueUpToIso
Quiver.Hom.unop
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Opposite.op
CategoryTheory.Functor.FullyFaithful.preimage
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor
CategoryTheory.types
CategoryTheory.Functor.category
CategoryTheory.coyoneda
CategoryTheory.Coyoneda.fullyFaithful
CategoryTheory.Functor.obj
CategoryTheory.NatIso.ofComponents
Quiver.Hom
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
Equiv.trans
homEquiv
β€”β€”

CategoryTheory.Functor.FullyFaithful

Definitions

NameCategoryTheorems
compUliftCoyonedaCompWhiskeringLeft πŸ“–CompOp
2 mathmath: compUliftCoyonedaCompWhiskeringLeft_hom_app_app_down, compUliftCoyonedaCompWhiskeringLeft_inv_app_app_down
compUliftYonedaCompWhiskeringLeft πŸ“–CompOp
2 mathmath: compUliftYonedaCompWhiskeringLeft_inv_app_app_down, compUliftYonedaCompWhiskeringLeft_hom_app_app_down
compYonedaCompWhiskeringLeft πŸ“–CompOpβ€”
compYonedaCompWhiskeringLeftMaxRight πŸ“–CompOp
2 mathmath: compYonedaCompWhiskeringLeftMaxRight_inv_app_app, compYonedaCompWhiskeringLeftMaxRight_hom_app_app_down
homNatIso πŸ“–CompOp
2 mathmath: homNatIso_inv_app_down, homNatIso_hom_app_down
homNatIso' πŸ“–CompOp
2 mathmath: homNatIso'_hom_app_down, homNatIso'_inv_app_down
homNatIsoMaxRight πŸ“–CompOp
2 mathmath: homNatIsoMaxRight_inv_app, homNatIsoMaxRight_hom_app_down

Theorems

NameKindAssumesProvesValidatesDepends On
compUliftCoyonedaCompWhiskeringLeft_hom_app_app_down πŸ“–mathematicalβ€”CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.yoneda
Opposite.op
Opposite.unop
CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.Functor.op
CategoryTheory.uliftCoyoneda
CategoryTheory.Functor.whiskeringLeft
CategoryTheory.Iso.hom
compUliftCoyonedaCompWhiskeringLeft
preimage
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
β€”β€”
compUliftCoyonedaCompWhiskeringLeft_inv_app_app_down πŸ“–mathematicalβ€”CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.yoneda
Opposite.op
Opposite.unop
CategoryTheory.NatTrans.app
CategoryTheory.uliftCoyoneda
CategoryTheory.Functor.comp
CategoryTheory.Functor.op
CategoryTheory.Functor.whiskeringLeft
CategoryTheory.Iso.inv
compUliftCoyonedaCompWhiskeringLeft
CategoryTheory.Functor.map
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
β€”β€”
compUliftYonedaCompWhiskeringLeft_hom_app_app_down πŸ“–mathematicalβ€”CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.yoneda
CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.uliftYoneda
CategoryTheory.Functor.whiskeringLeft
CategoryTheory.Functor.op
CategoryTheory.Iso.hom
compUliftYonedaCompWhiskeringLeft
preimage
Opposite.unop
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
β€”β€”
compUliftYonedaCompWhiskeringLeft_inv_app_app_down πŸ“–mathematicalβ€”CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.yoneda
CategoryTheory.Functor.op
CategoryTheory.NatTrans.app
CategoryTheory.uliftYoneda
CategoryTheory.Functor.comp
CategoryTheory.Functor.whiskeringLeft
CategoryTheory.Iso.inv
compUliftYonedaCompWhiskeringLeft
CategoryTheory.Functor.map
Opposite.unop
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
β€”β€”
compYonedaCompWhiskeringLeftMaxRight_hom_app_app_down πŸ“–mathematicalβ€”CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.yoneda
CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.Functor.whiskeringLeft
CategoryTheory.Functor.op
CategoryTheory.uliftYoneda
CategoryTheory.Iso.hom
compYonedaCompWhiskeringLeftMaxRight
preimage
Opposite.unop
β€”β€”
compYonedaCompWhiskeringLeftMaxRight_inv_app_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.uliftYoneda
CategoryTheory.Functor.comp
CategoryTheory.yoneda
CategoryTheory.Functor.whiskeringLeft
CategoryTheory.Functor.op
CategoryTheory.Iso.inv
compYonedaCompWhiskeringLeftMaxRight
CategoryTheory.Functor.map
Opposite.unop
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
β€”β€”
homNatIso'_hom_app_down πŸ“–mathematicalβ€”CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.yoneda
Opposite.op
CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.uliftCoyoneda
CategoryTheory.Iso.hom
homNatIso'
preimage
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
β€”β€”
homNatIso'_inv_app_down πŸ“–mathematicalβ€”CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.yoneda
Opposite.op
CategoryTheory.NatTrans.app
CategoryTheory.uliftCoyoneda
CategoryTheory.Functor.comp
CategoryTheory.Iso.inv
homNatIso'
CategoryTheory.Functor.map
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
β€”β€”
homNatIsoMaxRight_hom_app_down πŸ“–mathematicalβ€”CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.yoneda
CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.Functor.op
CategoryTheory.uliftYoneda
CategoryTheory.Iso.hom
homNatIsoMaxRight
preimage
Opposite.unop
β€”β€”
homNatIsoMaxRight_inv_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.uliftYoneda
CategoryTheory.Functor.comp
CategoryTheory.Functor.op
CategoryTheory.yoneda
CategoryTheory.Iso.inv
homNatIsoMaxRight
CategoryTheory.Functor.map
Opposite.unop
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
β€”β€”
homNatIso_hom_app_down πŸ“–mathematicalβ€”CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.yoneda
CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.Functor.op
CategoryTheory.uliftYoneda
CategoryTheory.Iso.hom
homNatIso
preimage
Opposite.unop
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
β€”β€”
homNatIso_inv_app_down πŸ“–mathematicalβ€”CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.yoneda
CategoryTheory.Functor.op
CategoryTheory.NatTrans.app
CategoryTheory.uliftYoneda
CategoryTheory.Functor.comp
CategoryTheory.Iso.inv
homNatIso
CategoryTheory.Functor.map
Opposite.unop
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
β€”β€”

CategoryTheory.Functor.IsCorepresentable

Theorems

NameKindAssumesProvesValidatesDepends On
has_corepresentation πŸ“–mathematicalβ€”CategoryTheory.Functor.CorepresentableByβ€”β€”
mk' πŸ“–mathematicalβ€”CategoryTheory.Functor.IsCorepresentableβ€”CategoryTheory.Functor.CorepresentableBy.isCorepresentable

CategoryTheory.Functor.IsRepresentable

Theorems

NameKindAssumesProvesValidatesDepends On
has_representation πŸ“–mathematicalβ€”CategoryTheory.Functor.RepresentableByβ€”β€”
mk' πŸ“–mathematicalβ€”CategoryTheory.Functor.IsRepresentableβ€”CategoryTheory.Functor.RepresentableBy.isRepresentable

CategoryTheory.Functor.RepresentableBy

Definitions

NameCategoryTheorems
equivOfIsoObj πŸ“–CompOp
2 mathmath: equivOfIsoObj_symm_apply, equivOfIsoObj_apply
equivUliftYonedaIso πŸ“–CompOp
2 mathmath: equivUliftYonedaIso_symm_apply_homEquiv, equivUliftYonedaIso_apply
homEquiv πŸ“–CompOp
27 mathmath: CategoryTheory.Classifier.SubobjectRepresentableBy.pullback_homEquiv_symm_obj_Ξ©β‚€, CategoryTheory.Functor.Monoidal.RepresentableBy.tensorObj_homEquiv, homEquiv_eq, CategoryTheory.yonedaMonObjIsoOfRepresentableBy_hom_app_hom_apply, CategoryTheory.yonedaMonObjIsoOfRepresentableBy_inv_app_hom_apply, CategoryTheory.MonObj.ofRepresentableBy_one, coyoneda_homEquiv, CategoryTheory.Functor.representableByUliftFunctorEquiv_symm_apply_homEquiv, comp_homEquiv_symm, CategoryTheory.Classifier.SubobjectRepresentableBy.homEquiv_eq, equivUliftYonedaIso_symm_apply_homEquiv, homEquiv_comp, isRepresentedBy, homEquiv_unop_comp, CategoryTheory.yonedaGrpObjIsoOfRepresentableBy_hom, CategoryTheory.yonedaGrpObjIsoOfRepresentableBy_inv, uniqueUpToIso_hom, CategoryTheory.MonObj.ofRepresentableBy_mul, ext_iff, CategoryTheory.Functor.representableByUliftFunctorEquiv_apply_homEquiv, uniqueUpToIso_inv, equivUliftYonedaIso_apply, CategoryTheory.Adjunction.representableBy_homEquiv, CategoryTheory.Functor.Elements.initialOfRepresentableBy_snd, ofIsoObj_homEquiv, CategoryTheory.Functor.IsRepresentedBy.iff_exists_representableBy, CategoryTheory.Functor.IsRepresentedBy.representableBy_homEquiv_apply
isoReprX πŸ“–CompOpβ€”
ofIso πŸ“–CompOpβ€”
ofIsoObj πŸ“–CompOp
3 mathmath: equivOfIsoObj_symm_apply, equivOfIsoObj_apply, ofIsoObj_homEquiv
toIso πŸ“–CompOpβ€”
uniqueUpToIso πŸ“–CompOp
2 mathmath: uniqueUpToIso_hom, uniqueUpToIso_inv
yoneda πŸ“–CompOp
1 mathmath: coyoneda_homEquiv

Theorems

NameKindAssumesProvesValidatesDepends On
comp_homEquiv_symm πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
DFunLike.coe
Equiv
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
Opposite.op
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
homEquiv
CategoryTheory.Functor.map
Quiver.Hom.op
β€”Equiv.injective
homEquiv_comp
Equiv.apply_symm_apply
coyoneda_homEquiv πŸ“–mathematicalβ€”homEquiv
CategoryTheory.Functor.obj
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.category
CategoryTheory.yoneda
yoneda
Equiv.refl
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
β€”β€”
equivOfIsoObj_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
CategoryTheory.Functor.RepresentableBy
EquivLike.toFunLike
Equiv.instEquivLike
equivOfIsoObj
ofIsoObj
β€”β€”
equivOfIsoObj_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
CategoryTheory.Functor.RepresentableBy
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
equivOfIsoObj
ofIsoObj
CategoryTheory.Iso.symm
β€”β€”
equivUliftYonedaIso_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
CategoryTheory.Functor.RepresentableBy
CategoryTheory.Iso
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.category
CategoryTheory.Functor.obj
CategoryTheory.uliftYoneda
EquivLike.toFunLike
Equiv.instEquivLike
equivUliftYonedaIso
CategoryTheory.NatIso.ofComponents
equivEquivIso
Equiv.trans
CategoryTheory.yoneda
Equiv.ulift
homEquiv
Opposite.unop
β€”β€”
equivUliftYonedaIso_symm_apply_homEquiv πŸ“–mathematicalβ€”homEquiv
DFunLike.coe
Equiv
CategoryTheory.Iso
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.category
CategoryTheory.Functor.obj
CategoryTheory.uliftYoneda
CategoryTheory.Functor.RepresentableBy
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
equivUliftYonedaIso
Equiv.trans
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Opposite.op
Equiv.ulift
equivEquivIso
CategoryTheory.Iso.app
β€”β€”
ext πŸ“–β€”DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
Opposite.op
EquivLike.toFunLike
Equiv.instEquivLike
homEquiv
CategoryTheory.CategoryStruct.id
β€”β€”homEquiv_eq
Equiv.ext
ext_iff πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
Opposite.op
EquivLike.toFunLike
Equiv.instEquivLike
homEquiv
CategoryTheory.CategoryStruct.id
β€”ext
homEquiv_comp πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
Opposite.op
EquivLike.toFunLike
Equiv.instEquivLike
homEquiv
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor.map
Quiver.Hom.op
β€”β€”
homEquiv_eq πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
Opposite.op
EquivLike.toFunLike
Equiv.instEquivLike
homEquiv
CategoryTheory.Functor.map
Quiver.Hom.op
CategoryTheory.CategoryStruct.id
β€”CategoryTheory.Category.comp_id
homEquiv_comp
homEquiv_unop_comp πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Opposite.unop
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
Opposite.op
EquivLike.toFunLike
Equiv.instEquivLike
homEquiv
CategoryTheory.CategoryStruct.comp
Quiver.Hom.unop
CategoryTheory.Functor.map
β€”homEquiv_comp
isRepresentable πŸ“–mathematicalβ€”CategoryTheory.Functor.IsRepresentableβ€”β€”
ofIsoObj_homEquiv πŸ“–mathematicalβ€”homEquiv
ofIsoObj
Equiv.trans
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
Opposite.op
CategoryTheory.Iso.homToEquiv
β€”β€”
uniqueUpToIso_hom πŸ“–mathematicalβ€”CategoryTheory.Iso.hom
uniqueUpToIso
CategoryTheory.Functor.FullyFaithful.preimage
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.category
CategoryTheory.yoneda
CategoryTheory.Yoneda.fullyFaithful
CategoryTheory.Functor.obj
CategoryTheory.NatIso.ofComponents
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Opposite.unop
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
homEquiv
Equiv.trans
β€”β€”
uniqueUpToIso_inv πŸ“–mathematicalβ€”CategoryTheory.Iso.inv
uniqueUpToIso
CategoryTheory.Functor.FullyFaithful.preimage
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.category
CategoryTheory.yoneda
CategoryTheory.Yoneda.fullyFaithful
CategoryTheory.Functor.obj
CategoryTheory.NatIso.ofComponents
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Opposite.unop
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
homEquiv
Equiv.trans
β€”β€”

CategoryTheory.ULiftYoneda

Definitions

NameCategoryTheorems
fullyFaithful πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
instFaithfulFunctorOppositeTypeUliftYoneda πŸ“–mathematicalβ€”CategoryTheory.Functor.Faithful
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.category
CategoryTheory.uliftYoneda
β€”CategoryTheory.Functor.FullyFaithful.faithful
instFullFunctorOppositeTypeUliftYoneda πŸ“–mathematicalβ€”CategoryTheory.Functor.Full
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.category
CategoryTheory.uliftYoneda
β€”CategoryTheory.Functor.FullyFaithful.full

CategoryTheory.Yoneda

Definitions

NameCategoryTheorems
ext πŸ“–CompOpβ€”
fullyFaithful πŸ“–CompOp
3 mathmath: CategoryTheory.Functor.RepresentableBy.uniqueUpToIso_hom, CategoryTheory.Functor.RepresentableBy.uniqueUpToIso_inv, fullyFaithful_preimage

Theorems

NameKindAssumesProvesValidatesDepends On
fullyFaithful_preimage πŸ“–mathematicalβ€”CategoryTheory.Functor.FullyFaithful.preimage
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.category
CategoryTheory.yoneda
fullyFaithful
CategoryTheory.NatTrans.app
CategoryTheory.Functor.obj
Opposite.op
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
β€”β€”
isIso πŸ“–mathematicalβ€”CategoryTheory.IsIsoβ€”CategoryTheory.isIso_of_fully_faithful
yoneda_full
yoneda_faithful
naturality πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.NatTrans.app
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.yoneda
Opposite.op
Opposite.unop
β€”CategoryTheory.FunctorToTypes.naturality
obj_map_id πŸ“–mathematicalβ€”CategoryTheory.Functor.map
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.yoneda
Opposite.op
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.NatTrans.app
Opposite.unop
Quiver.Hom.unop
CategoryTheory.CategoryStruct.toQuiver
β€”CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
yoneda_faithful πŸ“–mathematicalβ€”CategoryTheory.Functor.Faithful
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.category
CategoryTheory.yoneda
β€”CategoryTheory.Functor.FullyFaithful.faithful
yoneda_full πŸ“–mathematicalβ€”CategoryTheory.Functor.Full
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.category
CategoryTheory.yoneda
β€”CategoryTheory.Functor.FullyFaithful.full

---

← Back to Index