Documentation Verification Report

Behrend

πŸ“ Source: Mathlib/Combinatorics/Additive/AP/Three/Behrend.lean

Statistics

MetricCount
Definitionsbox, dValue, map, nValue, sphere
5
Theoremsbound_aux, bound_aux', box_zero, card_box, card_sphere_le_rothNumberNat, ceil_lt_mul, dValue_pos, div_lt_floor, exists_large_sphere, exists_large_sphere_aux, exp_four_lt, exp_neg_two_mul_le, four_zero_nine_six_lt_exp_sixteen, le_N, le_sqrt_log, log_two_mul_two_le_sqrt_log_eight, lower_bound_le_one, lower_bound_le_one', map_apply, map_eq_iff, map_injOn, map_le_of_mem_box, map_mod, map_monotone, map_succ, map_succ', map_zero, mem_box, nValue_pos, norm_of_mem_sphere, roth_lower_bound, roth_lower_bound_explicit, sphere_subset_box, sphere_subset_preimage_metric_sphere, sphere_zero_right, sphere_zero_subset, sum_eq, sum_lt, sum_sq_le_of_mem_box, threeAPFree_image_sphere, threeAPFree_sphere, three_le_nValue, two_div_one_sub_two_div_e_le_eight, threeAPFree_frontier, threeAPFree_sphere
45
Total50

Behrend

Definitions

NameCategoryTheorems
box πŸ“–CompOp
4 mathmath: box_zero, mem_box, card_box, sphere_subset_box
dValue πŸ“–CompOp
3 mathmath: le_N, bound, dValue_pos
map πŸ“–CompOp
10 mathmath: map_mod, map_succ, map_le_of_mem_box, map_injOn, map_apply, map_succ', map_zero, map_eq_iff, threeAPFree_image_sphere, map_monotone
nValue πŸ“–CompOp
4 mathmath: le_N, nValue_pos, three_le_nValue, bound
sphere πŸ“–CompOp
9 mathmath: sphere_subset_preimage_metric_sphere, sphere_zero_right, sphere_zero_subset, card_sphere_le_rothNumberNat, threeAPFree_image_sphere, exists_large_sphere_aux, sphere_subset_box, threeAPFree_sphere, exists_large_sphere

Theorems

NameKindAssumesProvesValidatesDepends On
bound_aux πŸ“–mathematicalβ€”Real
Real.instLE
DivInvMonoid.toDiv
Real.instDivInvMonoid
Monoid.toNatPow
Real.instMonoid
Real.instNatCast
DFunLike.coe
OrderHom
Nat.instPreorder
OrderHom.instFunLike
rothNumberNat
Nat.instMonoid
β€”Nat.cast_mul
Nat.cast_pow
mul_comm
div_div
pow_subβ‚€
Nat.cast_ne_zero
RCLike.charZero_rclike
div_eq_mul_inv
bound_aux'
bound_aux' πŸ“–mathematicalβ€”Real
Real.instLE
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instNatCast
Monoid.toNatPow
Nat.instMonoid
DFunLike.coe
OrderHom
Nat.instPreorder
OrderHom.instFunLike
rothNumberNat
β€”exists_large_sphere
LE.le.trans
Nat.cast_le
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.instZeroLEOneClass
RCLike.charZero_rclike
card_sphere_le_rothNumberNat
box_zero πŸ“–mathematicalβ€”box
Finset
Finset.instEmptyCollection
β€”Fintype.piFinset_empty
card_box πŸ“–mathematicalβ€”Finset.card
box
Monoid.toNatPow
Nat.instMonoid
β€”Fintype.card_piFinset
Finset.prod_congr
Finset.card_range
Finset.prod_const
Fintype.card_fin
card_sphere_le_rothNumberNat πŸ“–mathematicalβ€”Finset.card
sphere
DFunLike.coe
OrderHom
Nat.instPreorder
OrderHom.instFunLike
rothNumberNat
Monoid.toNatPow
Nat.instMonoid
β€”LE.le.trans_eq
Fin.isEmpty'
Finset.card_le_univ
sphere_zero_right
MulZeroClass.mul_zero
zero_tsub
Nat.instCanonicallyOrderedAdd
Nat.instOrderedSub
zero_pow
ThreeAPFree.le_rothNumberNat
threeAPFree_image_sphere
LE.le.trans_lt
map_le_of_mem_box
sum_lt
Finset.card_image_of_injOn
Set.InjOn.mono
two_mul
LT.lt.trans_le
le_self_add
map_injOn
ceil_lt_mul πŸ“–mathematicalReal
Real.instLE
DivInvMonoid.toDiv
Real.instDivInvMonoid
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Real.instLT
Nat.ceil
Real.semiring
Real.partialOrder
FloorRing.toFloorSemiring
Real.instRing
Real.linearOrder
Real.instIsStrictOrderedRing
Real.instFloorRing
Real.instMul
NNRatCast.toOfScientific
Real.instNNRatCast
β€”Nat.instAtLeastTwoHAddOfNat
LT.lt.trans_le
Real.instIsStrictOrderedRing
Nat.ceil_lt_add_one
LE.le.trans'
Mathlib.Meta.NormNum.isRat_le_true
Mathlib.Meta.NormNum.IsNNRat.to_isRat
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_zero
Mathlib.Meta.NormNum.isNNRat_div
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Meta.NormNum.isNNRat_inv_pos
RCLike.charZero_rclike
le_sub_iff_add_le'
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
sub_one_mul
Mathlib.Meta.NormNum.isNNRat_eq_true
Mathlib.Meta.NormNum.isNNRat_ofScientific_of_true
Mathlib.Meta.NormNum.isNNRat_ratCast
Mathlib.Meta.NormNum.IsRat.to_isNNRat
Mathlib.Meta.NormNum.isRat_mkRat
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.isNat_natCast
Mathlib.Meta.NormNum.IsNat.raw_refl
Mathlib.Meta.NormNum.isNat_pow
Mathlib.Meta.NormNum.IsNatPowT.run
Mathlib.Meta.NormNum.IsNatPowT.bit0
Mathlib.Meta.NormNum.isNat_intCast
Mathlib.Meta.NormNum.isNat_intOfNat
Rat.instCharZero
Mathlib.Meta.NormNum.isRat_sub
Nat.cast_one
div_eq_inv_mul
one_le_div
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Mathlib.Meta.NormNum.isNNRat_lt_true
instNontrivialOfCharZero
IsStrictOrderedRing.toCharZero
dValue_pos πŸ“–mathematicalβ€”dValueβ€”Nat.cast_pos
Real.instIsOrderedRing
Real.instNontrivial
LT.lt.trans_le
Nat.succ_pos'
Real.instIsStrictOrderedRing
dValue.eq_1
Nat.floor_pos
Real.log_le_log_iff
zero_lt_one
Real.instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
div_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.rpow_pos_of_pos
zero_lt_two
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.log_one
Nat.instAtLeastTwoHAddOfNat
Real.log_div
LT.lt.ne'
two_ne_zero
CharZero.NeZero.two
Real.log_rpow
inv_mul_eq_div
sub_nonneg
covariant_swap_add_of_covariant_add
le_div_iffβ‚€
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
nValue_pos
LE.le.trans'
LE.le.trans
LT.lt.le
Nat.ceil_lt_add_one
Real.sqrt_nonneg
two_mul
add_le_add_iff_left
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
Real.le_sqrt_of_sq_le
one_pow
Real.le_log_iff_exp_le
Real.exp_one_lt_d9
Mathlib.Meta.NormNum.isRat_le_true
Mathlib.Meta.NormNum.IsNNRat.to_isRat
Mathlib.Meta.NormNum.isNNRat_ofScientific_of_true
Mathlib.Meta.NormNum.isNNRat_ratCast
Mathlib.Meta.NormNum.IsRat.to_isNNRat
Mathlib.Meta.NormNum.isRat_mkRat
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.isNat_natCast
Mathlib.Meta.NormNum.IsNat.raw_refl
Mathlib.Meta.NormNum.isNat_pow
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.IsNatPowT.run
Mathlib.Meta.NormNum.IsNatPowT.trans
Mathlib.Meta.NormNum.IsNatPowT.bit0
Mathlib.Meta.NormNum.IsNatPowT.bit1
Mathlib.Meta.NormNum.isNNRat_div
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.isNat_intCast
Mathlib.Meta.NormNum.isNat_intOfNat
Mathlib.Meta.NormNum.isNNRat_inv_pos
Rat.instCharZero
Nat.cast_le
mul_le_mul_of_nonneg_left
IsOrderedRing.toPosMulMono
Real.log_nonneg
one_le_two
mul_assoc
Real.sqrt_pos
Real.log_pos
Nat.one_lt_cast
LE.le.trans_lt'
Nat.instIsOrderedAddMonoid
Nat.instZeroLEOneClass
Nat.instCharZero
Real.div_sqrt
log_two_mul_two_le_sqrt_log_eight
Real.sqrt_le_sqrt
Real.log_le_log
div_lt_floor πŸ“–mathematicalReal
Real.instLE
DivInvMonoid.toDiv
Real.instDivInvMonoid
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Real.instSub
Real.instOne
Real.exp
Real.instLT
Nat.floor
Real.semiring
Real.partialOrder
FloorRing.toFloorSemiring
Real.instRing
Real.linearOrder
Real.instIsStrictOrderedRing
Real.instFloorRing
β€”Nat.instAtLeastTwoHAddOfNat
lt_of_le_of_lt
Real.instIsStrictOrderedRing
sub_pos
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
div_lt_one
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.exp_pos
Real.exp_one_gt_two
le_sub_comm
div_eq_mul_one_div
mul_sub
div_sub'
two_ne_zero
CharZero.NeZero.two
RCLike.charZero_rclike
mul_div_assoc'
one_le_div
zero_lt_two
Real.instZeroLEOneClass
NeZero.charZero_one
div_le_iffβ‚€
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
Nat.sub_one_lt_floor
exists_large_sphere πŸ“–mathematicalβ€”Real
Real.instLE
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instNatCast
Monoid.toNatPow
Nat.instMonoid
Finset.card
sphere
β€”exists_large_sphere_aux
pow_zero
Nat.cast_one
MulZeroClass.zero_mul
CharP.cast_eq_zero
CharP.ofCharZero
RCLike.charZero_rclike
div_zero
Real.instIsOrderedRing
Nat.cast_pow
zero_pow
Nat.instCharZero
Nat.instAtLeastTwoHAddOfNat
MulZeroClass.mul_zero
LE.le.trans
div_le_div_of_nonneg_left
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
Nat.cast_nonneg
Nat.cast_add_one_pos
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.instZeroLEOneClass
NeZero.charZero_one
Nat.cast_mul
Nat.cast_sub
sub_sq
mul_one
one_pow
sub_add
sub_sub_self
one_le_mul_of_one_le_of_one_le
IsOrderedRing.toPosMulMono
Nat.one_le_cast
le_sub_iff_add_le
covariant_swap_add_of_covariant_add
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Meta.NormNum.IsNat.to_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.isNat_lt_true
Nat.cast_zero
Nat.instIsOrderedAddMonoid
Nat.instZeroLEOneClass
exists_large_sphere_aux πŸ“–mathematicalβ€”Finset
Finset.instMembership
Finset.range
Monoid.toNatPow
Nat.instMonoid
Real
Real.instLE
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instNatCast
Real.instAdd
Real.instOne
Finset.card
sphere
β€”Finset.exists_le_card_fiber_of_nsmul_le_card_of_maps_to
Real.instIsStrictOrderedRing
Finset.mem_range
sum_sq_le_of_mem_box
Finset.nonempty_range_add_one
Finset.card_range
nsmul_eq_mul
mul_div_assoc'
Nat.cast_add_one
mul_div_cancel_leftβ‚€
EuclideanDomain.toMulDivCancelClass
LT.lt.ne'
Nat.cast_add_one_pos
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
card_box
le_refl
exp_four_lt πŸ“–mathematicalβ€”Real
Real.instLT
Real.exp
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
β€”Nat.instAtLeastTwoHAddOfNat
Real.rpow_natCast
Mathlib.Meta.NormNum.isNat_eq_true
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Meta.NormNum.isNat_pow
Mathlib.Meta.NormNum.IsNatPowT.run
Mathlib.Meta.NormNum.IsNatPowT.trans
Mathlib.Meta.NormNum.IsNatPowT.bit1
Mathlib.Meta.NormNum.IsNatPowT.bit0
Real.lt_log_iff_exp_lt
Real.rpow_pos_of_pos
zero_lt_two
Real.instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.log_rpow
div_lt_iffβ‚€'
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
Real.instIsOrderedRing
Real.instNontrivial
LT.lt.trans_le'
Real.log_two_gt_d9
Mathlib.Meta.NormNum.isRat_le_true
Mathlib.Meta.NormNum.IsNNRat.to_isRat
Mathlib.Meta.NormNum.isNNRat_div
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.isNNRat_inv_pos
Mathlib.Meta.NormNum.isNat_natCast
Mathlib.Meta.NormNum.isNNRat_ofScientific_of_true
Mathlib.Meta.NormNum.isNNRat_ratCast
Mathlib.Meta.NormNum.IsRat.to_isNNRat
Mathlib.Meta.NormNum.isRat_mkRat
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.raw_refl
Mathlib.Meta.NormNum.isNat_intCast
Mathlib.Meta.NormNum.isNat_intOfNat
Rat.instCharZero
exp_neg_two_mul_le πŸ“–mathematicalReal
Real.instLT
Real.instZero
Real.exp
Real.instMul
Real.instNeg
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instSub
Nat.ceil
Real.semiring
Real.partialOrder
FloorRing.toFloorSemiring
Real.instRing
Real.linearOrder
Real.instIsStrictOrderedRing
Real.instFloorRing
β€”Real.instIsStrictOrderedRing
Nat.ceil_lt_add_one
LT.lt.le
Nat.instAtLeastTwoHAddOfNat
le_of_not_gt
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Linarith.add_neg
Mathlib.Tactic.Linarith.sub_neg_of_lt
Real.instIsOrderedRing
le_div_iffβ‚€
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
add_pos
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
zero_lt_one
Real.instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
le_div_iffβ‚€'
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.exp_pos
Real.exp_sub
neg_mul
sub_neg_eq_add
two_mul
sub_add_add_cancel
add_comm
le_trans
le_add_of_nonneg_right
zero_le_one
Real.add_one_le_exp
div_le_div_of_nonneg_right
Real.exp_monotone
le_of_lt
add_pos'
Mathlib.Meta.Positivity.pos_of_isNat
Real.instNontrivial
div_lt_div_of_pos_left
Nat.cast_pos'
Mathlib.Meta.Positivity.nat_ceil_pos
four_zero_nine_six_lt_exp_sixteen πŸ“–mathematicalβ€”Real
Real.instLT
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Real.exp
β€”Nat.instAtLeastTwoHAddOfNat
Real.log_lt_iff_lt_exp
Real.instIsOrderedRing
Real.instNontrivial
RCLike.charZero_rclike
Real.rpow_natCast
Real.log_rpow
zero_lt_two
Real.instZeroLEOneClass
NeZero.charZero_one
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Nat.cast_ofNat
lt_of_not_ge
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.neg_congr
Nat.cast_one
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_mul
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Linarith.add_neg
Real.instIsStrictOrderedRing
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
Mathlib.Tactic.Linarith.mul_neg
neg_neg_of_pos
Mathlib.Tactic.Linarith.zero_lt_one
Mathlib.Meta.NormNum.isNat_lt_true
Mathlib.Tactic.Linarith.mul_nonpos
Mathlib.Tactic.Linarith.sub_nonpos_of_le
CancelDenoms.derive_trans
Mathlib.Meta.NormNum.IsNNRat.to_eq
Mathlib.Meta.NormNum.isNNRat_ofScientific_of_true
Mathlib.Meta.NormNum.isNNRat_ratCast
Mathlib.Meta.NormNum.IsRat.to_isNNRat
Mathlib.Meta.NormNum.isRat_mkRat
Mathlib.Meta.NormNum.isNat_natCast
Mathlib.Meta.NormNum.IsNat.raw_refl
Mathlib.Meta.NormNum.isNat_pow
Mathlib.Meta.NormNum.IsNatPowT.run
Mathlib.Meta.NormNum.IsNatPowT.trans
Mathlib.Meta.NormNum.IsNatPowT.bit0
Mathlib.Meta.NormNum.IsNatPowT.bit1
Mathlib.Meta.NormNum.IsNNRat.to_isRat
Mathlib.Meta.NormNum.isNNRat_div
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.isNat_intCast
Mathlib.Meta.NormNum.isNat_intOfNat
Mathlib.Meta.NormNum.isNNRat_inv_pos
Rat.instCharZero
CancelDenoms.sub_subst
CancelDenoms.div_subst
Mathlib.Meta.NormNum.isNat_eq_true
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Tactic.Linarith.sub_neg_of_lt
Real.log_two_lt_d9
le_N πŸ“–mathematicalβ€”Monoid.toNatPow
Nat.instMonoid
dValue
nValue
β€”LE.le.trans
Nat.instAtLeastTwoHAddOfNat
le_div_iffβ‚€'
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
zero_lt_two
Real.instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Nat.floor_le
div_nonneg
Real.rpow_nonneg
Nat.cast_nonneg
Real.instIsOrderedRing
zero_le_two
Real.rpow_natCast
Real.rpow_le_rpow
mul_nonneg
IsOrderedRing.toPosMulMono
Real.rpow_mul
inv_mul_cancelβ‚€
Nat.cast_ne_zero
LT.lt.ne'
nValue_pos
Real.rpow_one
le_refl
le_sqrt_log πŸ“–mathematicalβ€”Real
Real.instLE
Real.instMul
Real.log
DivInvMonoid.toDiv
Real.instDivInvMonoid
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Real.instSub
Real.instOne
Real.exp
Real.sqrt
β€”Nat.instAtLeastTwoHAddOfNat
mul_le_mul_of_nonneg_right
IsOrderedRing.toMulPosMono
Real.instIsOrderedRing
Real.log_le_log
Mathlib.Tactic.FieldSimp.lt_eq_cancel_lt
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
Mathlib.Tactic.FieldSimp.eq_mul_of_eq_eq_eq_mul
Mathlib.Tactic.FieldSimp.NF.atom_eq_eval
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons
one_mul
Mathlib.Tactic.FieldSimp.eq_div_of_eq_one_of_subst
Mathlib.Tactic.FieldSimp.NF.cons_eq_div_of_eq_div
div_one
Mathlib.Tactic.FieldSimp.NF.eval_cons
Mathlib.Tactic.FieldSimp.zpow'_one
Mathlib.Tactic.FieldSimp.NF.div_eq_eval
Mathlib.Tactic.FieldSimp.subst_sub
Mathlib.Tactic.FieldSimp.NF.one_eq_eval
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval_cons_neg
ne_of_gt
Real.exp_pos
Mathlib.Tactic.FieldSimp.NF.div_eq_eval₃
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₃
mul_one
Mathlib.Tactic.FieldSimp.eq_div_of_subst
Mathlib.Tactic.FieldSimp.NF.cons_eq_div_of_eq_div'
zero_lt_one
Real.instZeroLEOneClass
NeZero.one
GroupWithZero.toNontrivial
mul_pos
Mathlib.Meta.Positivity.pos_of_isNat
Real.instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Mathlib.Meta.NormNum.IsNat.to_eq
Mathlib.Meta.NormNum.isNat_pow
Mathlib.Meta.NormNum.IsNatPowT.run
Mathlib.Meta.NormNum.IsNatPowT.bit1
two_div_one_sub_two_div_e_le_eight
le_of_lt
div_pos
Real.log_pow
Real.le_sqrt_of_sq_le
le_of_not_gt
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Tactic.Ring.sub_congr
Nat.cast_one
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_mul
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Meta.NormNum.IsNatPowT.bit0
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.isNat_add
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Ring.mul_pp_pf_overlap
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Tactic.Linarith.add_neg
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
Mathlib.Tactic.Linarith.mul_neg
CancelDenoms.derive_trans
Mathlib.Meta.NormNum.IsNNRat.to_eq
Mathlib.Meta.NormNum.isNNRat_div
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.isNNRat_inv_pos
RCLike.charZero_rclike
CancelDenoms.sub_subst
CancelDenoms.mul_subst
Mathlib.Meta.NormNum.isNat_eq_true
CancelDenoms.pow_subst
CancelDenoms.div_subst
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Tactic.Linarith.sub_neg_of_lt
Mathlib.Meta.NormNum.isNat_lt_true
Mathlib.Meta.NormNum.isNNRat_ofScientific_of_true
Mathlib.Meta.NormNum.isNNRat_ratCast
Mathlib.Meta.NormNum.IsRat.to_isNNRat
Mathlib.Meta.NormNum.isRat_mkRat
Mathlib.Meta.NormNum.isNat_natCast
Mathlib.Meta.NormNum.IsNat.raw_refl
Mathlib.Meta.NormNum.IsNatPowT.trans
Mathlib.Meta.NormNum.IsNNRat.to_isRat
Mathlib.Meta.NormNum.isNat_intCast
Mathlib.Meta.NormNum.isNat_intOfNat
Rat.instCharZero
Real.log_two_lt_d9
Real.log_two_gt_d9
Mathlib.Tactic.Linarith.mul_nonpos
Mathlib.Tactic.Linarith.sub_nonpos_of_le
mul_nonneg_of_nonpos_of_nonpos
AddGroup.existsAddOfLE
IsRightCancelAdd.addRightReflectLE_of_addRightReflectLT
contravariant_swap_add_of_contravariant_add
contravariant_lt_of_covariant_le
sq_nonneg
IsOrderedRing.toPosMulMono
mul_pos_of_neg_of_neg
IsStrictOrderedRing.toMulPosStrictMono
Real.sqrt_monotone
pow_pos
IsStrictOrderedRing.toZeroLEOneClass
log_two_mul_two_le_sqrt_log_eight πŸ“–mathematicalβ€”Real
Real.instLE
Real.instMul
Real.log
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Real.sqrt
β€”Nat.instAtLeastTwoHAddOfNat
Mathlib.Meta.NormNum.isNat_eq_true
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Meta.NormNum.isNat_pow
Mathlib.Meta.NormNum.IsNatPowT.run
Mathlib.Meta.NormNum.IsNatPowT.bit1
Real.log_pow
Nat.cast_ofNat
Real.le_sqrt_of_sq_le
mul_pow
sq
mul_assoc
mul_comm
mul_le_mul_of_nonneg_right
IsOrderedRing.toMulPosMono
Real.instIsOrderedRing
le_of_not_gt
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Tactic.Ring.neg_congr
Nat.cast_one
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsNatPowT.bit0
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Meta.NormNum.isNat_mul
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
Real.instIsStrictOrderedRing
Mathlib.Tactic.Linarith.add_neg
Mathlib.Tactic.Linarith.mul_neg
neg_neg_of_pos
Real.instIsOrderedAddMonoid
Mathlib.Tactic.Linarith.zero_lt_one
Mathlib.Meta.NormNum.isNat_lt_true
RCLike.charZero_rclike
Mathlib.Tactic.Linarith.sub_neg_of_lt
CancelDenoms.derive_trans
Mathlib.Meta.NormNum.IsNNRat.to_eq
Mathlib.Meta.NormNum.isNNRat_ofScientific_of_true
Mathlib.Meta.NormNum.isNNRat_ratCast
Mathlib.Meta.NormNum.IsRat.to_isNNRat
Mathlib.Meta.NormNum.isRat_mkRat
Mathlib.Meta.NormNum.isNat_natCast
Mathlib.Meta.NormNum.IsNat.raw_refl
Mathlib.Meta.NormNum.IsNatPowT.trans
Mathlib.Meta.NormNum.IsNNRat.to_isRat
Mathlib.Meta.NormNum.isNNRat_div
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.isNat_intCast
Mathlib.Meta.NormNum.isNat_intOfNat
Mathlib.Meta.NormNum.isNNRat_inv_pos
Rat.instCharZero
CancelDenoms.sub_subst
CancelDenoms.div_subst
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Tactic.Linarith.mul_nonpos
Mathlib.Tactic.Linarith.sub_nonpos_of_le
LT.lt.le
Real.log_two_lt_d9
le_of_lt
Mathlib.Meta.Positivity.log_pos_of_isNat
lower_bound_le_one πŸ“–mathematicalβ€”Real
Real.instLE
Real.instMul
Real.instNatCast
Real.exp
Real.instNeg
instOfNatAtLeastTwo
Nat.instAtLeastTwoHAddOfNat
Real.sqrt
Real.log
Real.instOne
β€”Nat.instAtLeastTwoHAddOfNat
LE.le.eq_or_lt
Nat.cast_one
Real.log_one
Real.sqrt_zero
MulZeroClass.mul_zero
Real.exp_zero
mul_one
lower_bound_le_one'
lower_bound_le_one' πŸ“–mathematicalβ€”Real
Real.instLE
Real.instMul
Real.instNatCast
Real.exp
Real.instNeg
instOfNatAtLeastTwo
Nat.instAtLeastTwoHAddOfNat
Real.sqrt
Real.log
Real.instOne
β€”Nat.instAtLeastTwoHAddOfNat
Real.log_le_log_iff
mul_pos
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
Nat.cast_pos
Real.instIsOrderedRing
Real.instNontrivial
LT.lt.trans_le
zero_lt_two
Nat.instZeroLEOneClass
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
Real.exp_pos
zero_lt_one
Real.instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
Real.log_one
Real.log_mul
LT.lt.ne'
Real.log_exp
neg_mul
sub_eq_add_neg
sub_nonpos
covariant_swap_add_of_covariant_add
Real.instIsOrderedAddMonoid
div_le_iffβ‚€
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
Real.sqrt_pos
Real.log_pos
Nat.one_lt_cast
one_lt_two
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
Real.div_sqrt
Real.sqrt_le_left
zero_le_four
Real.log_le_iff_le_exp
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Meta.NormNum.IsNat.to_eq
Mathlib.Meta.NormNum.isNat_pow
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.IsNatPowT.run
Mathlib.Meta.NormNum.IsNatPowT.bit0
le_trans
LT.lt.le
four_zero_nine_six_lt_exp_sixteen
map_apply πŸ“–mathematicalβ€”DFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
Pi.addZeroClass
AddMonoid.toAddZeroClass
Nat.instAddMonoid
AddMonoidHom.instFunLike
map
Finset.sum
Nat.instAddCommMonoid
Finset.univ
Fin.fintype
Monoid.toNatPow
Nat.instMonoid
β€”β€”
map_eq_iff πŸ“–mathematicalβ€”DFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
Pi.addZeroClass
AddMonoid.toAddZeroClass
Nat.instAddMonoid
AddMonoidHom.instFunLike
map
β€”map_mod
mul_eq_mul_right_iff
IsCancelMulZero.toIsRightCancelMulZero
Nat.instIsCancelMulZero
AddLeftCancelSemigroup.toIsLeftCancelAdd
map_succ
LT.lt.ne'
pos_of_gt
Nat.instCanonicallyOrderedAdd
map_succ'
map_injOn πŸ“–mathematicalβ€”Set.InjOn
DFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
Pi.addZeroClass
AddMonoid.toAddZeroClass
Nat.instAddMonoid
AddMonoidHom.instFunLike
map
setOf
β€”Unique.instSubsingleton
Fin.isEmpty'
map_eq_iff
map_le_of_mem_box πŸ“–mathematicalFinset
Finset.instMembership
box
DFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
Pi.addZeroClass
AddMonoid.toAddZeroClass
Nat.instAddMonoid
AddMonoidHom.instFunLike
map
Finset.sum
Nat.instAddCommMonoid
Finset.univ
Fin.fintype
Monoid.toNatPow
Nat.instMonoid
β€”map_monotone
mem_box
map_mod πŸ“–mathematicalβ€”DFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
Pi.addZeroClass
AddMonoid.toAddZeroClass
Nat.instAddMonoid
AddMonoidHom.instFunLike
map
β€”map_succ
map_monotone πŸ“–mathematicalβ€”Monotone
Pi.preorder
Nat.instPreorder
DFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
Pi.addZeroClass
AddMonoid.toAddZeroClass
Nat.instAddMonoid
AddMonoidHom.instFunLike
map
β€”Finset.sum_le_sum
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
map_succ πŸ“–mathematicalβ€”DFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
Pi.addZeroClass
AddMonoid.toAddZeroClass
Nat.instAddMonoid
AddMonoidHom.instFunLike
map
Finset.sum
Nat.instAddCommMonoid
Finset.univ
Fin.fintype
Monoid.toNatPow
Nat.instMonoid
β€”Fin.sum_univ_succ
pow_zero
mul_one
Finset.sum_congr
pow_succ
map_succ' πŸ“–mathematicalβ€”DFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
Pi.addZeroClass
AddMonoid.toAddZeroClass
Nat.instAddMonoid
AddMonoidHom.instFunLike
map
β€”map_succ
map_zero πŸ“–mathematicalβ€”DFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
Pi.addZeroClass
AddMonoid.toAddZeroClass
Nat.instAddMonoid
AddMonoidHom.instFunLike
map
β€”Finset.sum_congr
Finset.univ_eq_empty
Fin.isEmpty'
mem_box πŸ“–mathematicalβ€”Finset
Finset.instMembership
box
β€”β€”
nValue_pos πŸ“–mathematicalβ€”nValueβ€”Real.instIsStrictOrderedRing
Nat.ceil_pos
Real.sqrt_pos
Real.log_pos
Nat.one_lt_cast
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.instZeroLEOneClass
RCLike.charZero_rclike
norm_of_mem_sphere πŸ“–mathematicalFinset
Finset.instMembership
sphere
Norm.norm
WithLp
ENNReal
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
Nat.instAtLeastTwoHAddOfNat
PiLp.instNorm
Real
Fin.fintype
Real.norm
WithLp.toLp
Real.instNatCast
Real.sqrt
β€”Nat.instAtLeastTwoHAddOfNat
EuclideanSpace.norm_eq
Finset.sum_congr
Nat.abs_cast
Real.instIsOrderedRing
Finset.mem_filter
roth_lower_bound πŸ“–mathematicalβ€”Real
Real.instLE
Real.instMul
Real.instNatCast
Real.exp
Real.instNeg
instOfNatAtLeastTwo
Nat.instAtLeastTwoHAddOfNat
Real.sqrt
Real.log
DFunLike.coe
OrderHom
Nat.instPreorder
OrderHom.instFunLike
rothNumberNat
β€”Nat.instAtLeastTwoHAddOfNat
CharP.cast_eq_zero
CharP.ofCharZero
RCLike.charZero_rclike
Real.log_zero
Real.sqrt_zero
MulZeroClass.mul_zero
Real.exp_zero
mul_one
le_or_gt
LT.lt.le
roth_lower_bound_explicit
LE.le.trans
lower_bound_le_one
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.instZeroLEOneClass
zero_add
OrderHom.monotone
roth_lower_bound_explicit πŸ“–mathematicalβ€”Real
Real.instLT
Real.instMul
Real.instNatCast
Real.exp
Real.instNeg
instOfNatAtLeastTwo
Nat.instAtLeastTwoHAddOfNat
Real.sqrt
Real.log
DFunLike.coe
OrderHom
Nat.instPreorder
OrderHom.instFunLike
rothNumberNat
β€”Nat.cast_pos
Real.instIsOrderedRing
Real.instNontrivial
nValue_pos
LE.le.trans'
Mathlib.Meta.NormNum.isNat_le_true
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
Mathlib.Meta.NormNum.isNat_ofNat
dValue_pos
Mathlib.Meta.NormNum.isNat_natSucc
three_le_nValue
le_N
Nat.instAtLeastTwoHAddOfNat
Real.rpow_natCast
Real.div_rpow
Real.rpow_nonneg
LT.lt.le
Real.exp_pos
Real.rpow_mul
inv_mul_eq_div
Nat.cast_sub
Nat.cast_two
same_sub_div
LT.lt.ne'
Real.exp_one_rpow
div_div
Real.rpow_sub
Real.rpow_one
div_eq_mul_inv
mul_le_mul_of_nonneg_left
IsOrderedRing.toPosMulMono
mul_inv
Real.exp_neg
Real.rpow_neg
Nat.cast_nonneg
neg_sub
Real.exp_add
add_mul
Distrib.rightDistribClass
Mathlib.Meta.NormNum.instAtLeastTwo
neg_mul
Mathlib.Meta.NormNum.IsInt.neg_to_eq
Mathlib.Meta.NormNum.isInt_add
Mathlib.Meta.NormNum.isInt_neg
Mathlib.Meta.NormNum.IsNat.to_isInt
mul_le_mul
IsOrderedRing.toMulPosMono
Real.le_log_iff_exp_le
Real.rpow_pos_of_pos
Real.log_rpow
le_div_iffβ‚€
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
Real.instIsStrictOrderedRing
Real.sqrt_pos
Real.log_pos
Nat.one_lt_cast
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.instZeroLEOneClass
RCLike.charZero_rclike
LE.le.trans_lt'
Mathlib.Meta.NormNum.isNat_lt_true
Nat.instCharZero
mul_div_assoc
Real.div_sqrt
neg_le_neg_iff
covariant_swap_add_of_covariant_add
div_mul_eq_mul_div
div_le_iffβ‚€
Nat.le_ceil
le_of_lt
Mathlib.Meta.Positivity.pos_of_isNat
exp_neg_two_mul_le
Nat.cast_pos'
NeZero.charZero_one
lt_of_lt_of_le
Nat.instNontrivial
div_lt_div_of_pos_right
pow_lt_pow_leftβ‚€
IsStrictOrderedRing.toPosMulStrictMono
bound
div_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
tsub_pos_of_lt
Nat.instCanonicallyOrderedAdd
Nat.instOrderedSub
lt_trans
bound_aux
OrderHom.mono
sphere_subset_box πŸ“–mathematicalβ€”Finset
Finset.instHasSubset
sphere
box
β€”Finset.filter_subset
sphere_subset_preimage_metric_sphere πŸ“–mathematicalβ€”Set
Set.instHasSubset
SetLike.coe
Finset
Finset.instSetLike
sphere
Set.preimage
WithLp
ENNReal
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
Nat.instAtLeastTwoHAddOfNat
WithLp.toLp
Real
Real.instNatCast
Metric.sphere
PiLp.instPseudoMetricSpace
fact_one_le_two_ennreal
Fin.fintype
Real.pseudoMetricSpace
PiLp
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
WithLp.instAddCommGroup
Pi.addCommGroup
Real.instAddCommGroup
Real.sqrt
β€”Nat.instAtLeastTwoHAddOfNat
fact_one_le_two_ennreal
Set.mem_preimage
mem_sphere_zero_iff_norm
norm_of_mem_sphere
sphere_zero_right πŸ“–mathematicalβ€”sphere
Finset
Finset.instEmptyCollection
β€”Finset.filter.congr_simp
box_zero
Finset.filter_empty
sphere_zero_subset πŸ“–mathematicalβ€”Finset
Finset.instHasSubset
sphere
Finset.zero
Pi.instZero
MulZeroClass.toZero
Nat.instMulZeroClass
β€”Finset.filter.congr_simp
Unique.instSubsingleton
Nat.instCharZero
Nat.instAtLeastTwoHAddOfNat
sum_eq πŸ“–mathematicalβ€”Finset.sum
Nat.instAddCommMonoid
Finset.univ
Fin.fintype
Monoid.toNatPow
Nat.instMonoid
β€”Nat.instAtLeastTwoHAddOfNat
zero_lt_two
Nat.instZeroLEOneClass
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
Finset.sum_range
Finset.mul_sum
mul_right_comm
mul_comm
geom_sum_mul_add
add_tsub_cancel_right
Nat.instOrderedSub
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
sum_lt πŸ“–mathematicalβ€”Finset.sum
Nat.instAddCommMonoid
Finset.univ
Fin.fintype
Monoid.toNatPow
Nat.instMonoid
β€”Eq.trans_lt
sum_eq
LE.le.trans_lt
LT.lt.ne'
pow_pos
LinearOrderedCommMonoidWithZero.toPosMulStrictMono
Nat.instZeroLEOneClass
sum_sq_le_of_mem_box πŸ“–mathematicalFinset
Finset.instMembership
box
Finset.sum
Nat.instAddCommMonoid
Finset.univ
Fin.fintype
Monoid.toNatPow
Nat.instMonoid
β€”mem_box
LE.le.trans
Finset.sum_le_card_nsmul
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
Finset.card_fin
smul_eq_mul
le_refl
threeAPFree_image_sphere πŸ“–mathematicalβ€”ThreeAPFree
Nat.instAddMonoid
SetLike.coe
Finset
Finset.instSetLike
Finset.image
DFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
Pi.addZeroClass
AddMonoid.toAddZeroClass
AddMonoidHom.instFunLike
map
sphere
β€”Finset.coe_image
ThreeAPFree.image'
AddMonoidHomClass.toAddHomClass
AddMonoidHom.instAddMonoidHomClass
Set.InjOn.mono
Set.add_subset_iff
mem_box
sphere_subset_box
lt_tsub_iff_right
Nat.instOrderedSub
Nat.instAtLeastTwoHAddOfNat
two_mul
Eq.trans_le
add_add_add_comm
add_le_add
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
covariant_swap_add_of_covariant_add
map_injOn
threeAPFree_sphere
threeAPFree_sphere πŸ“–mathematicalβ€”ThreeAPFree
Pi.addMonoid
Nat.instAddMonoid
SetLike.coe
Finset
Finset.instSetLike
sphere
β€”fact_one_le_two_ennreal
Nat.instAtLeastTwoHAddOfNat
PiLp.ext
Nat.cast_zero
Nat.cast_add
ThreeAPFree.of_image
AddMonoidHomClass.isAddFreimanHom
AddMonoidHom.instAddMonoidHomClass
Set.mapsTo_image
Function.Injective.comp_injOn
WithLp.toLp_injective
Function.Injective.injOn
Function.Injective.comp_left
Nat.cast_injective
RCLike.charZero_rclike
Set.subset_univ
ThreeAPFree.mono
Set.image_subset_iff
Set.mem_preimage
mem_sphere_zero_iff_norm
norm_of_mem_sphere
threeAPFree_sphere
UniformConvexSpace.toStrictConvexSpace
InnerProductSpace.toUniformConvexSpace
three_le_nValue πŸ“–mathematicalβ€”nValueβ€”Real.instIsStrictOrderedRing
nValue.eq_1
Nat.lt_ceil
Nat.instAtLeastTwoHAddOfNat
Nat.cast_two
Real.lt_sqrt_of_sq_lt
Real.rpow_natCast
LE.le.trans'
Nat.cast_le
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.instZeroLEOneClass
RCLike.charZero_rclike
Mathlib.Meta.NormNum.isNat_le_true
Real.instIsOrderedRing
Mathlib.Meta.NormNum.isNat_pow
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Meta.NormNum.IsNatPowT.run
Mathlib.Meta.NormNum.IsNatPowT.trans
Mathlib.Meta.NormNum.IsNatPowT.bit1
Mathlib.Meta.NormNum.IsNatPowT.bit0
Mathlib.Meta.NormNum.isNat_natCast
lt_of_lt_of_le
Real.log_rpow
zero_lt_two
NeZero.charZero_one
div_lt_iffβ‚€'
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Mathlib.Meta.NormNum.isNat_lt_true
Nat.cast_zero
LT.lt.trans_le'
Real.log_two_gt_d9
Mathlib.Meta.NormNum.isRat_le_true
Mathlib.Meta.NormNum.IsNNRat.to_isRat
Mathlib.Meta.NormNum.isNNRat_div
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.isNNRat_inv_pos
Mathlib.Meta.NormNum.isNNRat_ofScientific_of_true
Mathlib.Meta.NormNum.isNNRat_ratCast
Mathlib.Meta.NormNum.IsRat.to_isNNRat
Mathlib.Meta.NormNum.isRat_mkRat
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.raw_refl
Mathlib.Meta.NormNum.isNat_intCast
Mathlib.Meta.NormNum.isNat_intOfNat
Rat.instCharZero
Real.log_le_log
Real.rpow_pos_of_pos
two_div_one_sub_two_div_e_le_eight πŸ“–mathematicalβ€”Real
Real.instLE
DivInvMonoid.toDiv
Real.instDivInvMonoid
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Real.instSub
Real.instOne
Real.exp
β€”Nat.instAtLeastTwoHAddOfNat
div_le_iffβ‚€
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
Real.instIsStrictOrderedRing
sub_pos
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
div_lt_one
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
LT.lt.trans'
Real.exp_one_gt_d9
Mathlib.Meta.NormNum.isNNRat_lt_true
instNontrivialOfCharZero
IsStrictOrderedRing.toCharZero
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_zero
Mathlib.Meta.NormNum.isNNRat_ofScientific_of_true
Mathlib.Meta.NormNum.isNNRat_ratCast
RCLike.charZero_rclike
Mathlib.Meta.NormNum.IsRat.to_isNNRat
Mathlib.Meta.NormNum.isRat_mkRat
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.isNat_natCast
Mathlib.Meta.NormNum.IsNat.raw_refl
Mathlib.Meta.NormNum.isNat_pow
Mathlib.Meta.NormNum.IsNatPowT.run
Mathlib.Meta.NormNum.IsNatPowT.trans
Mathlib.Meta.NormNum.IsNatPowT.bit0
Mathlib.Meta.NormNum.IsNatPowT.bit1
Mathlib.Meta.NormNum.IsNNRat.to_isRat
Mathlib.Meta.NormNum.isNNRat_div
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.isNat_intCast
Mathlib.Meta.NormNum.isNat_intOfNat
Mathlib.Meta.NormNum.isNNRat_inv_pos
Rat.instCharZero
Mathlib.Meta.NormNum.instAtLeastTwo
mul_sub
mul_one
mul_div_assoc'
le_sub_comm
Real.exp_pos
le_of_not_gt
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Tactic.Ring.neg_congr
Nat.cast_one
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Meta.NormNum.isNat_mul
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Tactic.Ring.cast_zero
Mathlib.Tactic.Linarith.add_neg
Mathlib.Tactic.Linarith.mul_neg
neg_neg_of_pos
Mathlib.Tactic.Linarith.zero_lt_one
Mathlib.Meta.NormNum.isNat_lt_true
Real.instIsOrderedRing
Mathlib.Tactic.Linarith.sub_neg_of_lt
CancelDenoms.derive_trans
Mathlib.Meta.NormNum.IsNNRat.to_eq
CancelDenoms.sub_subst
CancelDenoms.div_subst
Mathlib.Meta.NormNum.isNat_eq_true
Mathlib.Meta.NormNum.IsNNRat.to_isNat

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
threeAPFree_frontier πŸ“–mathematicalStrictConvex
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
ThreeAPFree
frontier
β€”Nat.instAtLeastTwoHAddOfNat
StrictConvex.eq
IsClosed.frontier_subset
one_half_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
add_halves
CharZero.NeZero.two
IsStrictOrderedRing.toCharZero
one_div
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.inv_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.inv_single
Mathlib.Meta.NormNum.IsNNRat.to_raw_eq
Mathlib.Meta.NormNum.isNNRat_inv_pos
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNNRat_add
Mathlib.Meta.NormNum.IsNNRat.of_raw
Mathlib.Meta.NormNum.IsNNRat.den_nz
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.RingNF.nat_rawCast_1
add_zero
one_smul
smul_add
inv_smul_eq_iffβ‚€
two_smul
threeAPFree_sphere πŸ“–mathematicalβ€”ThreeAPFree
ESeminormedAddMonoid.toAddMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toESeminormedAddMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
Metric.sphere
β€”eq_or_ne
Metric.sphere_zero
threeAPFree_singleton
frontier_closedBall
threeAPFree_frontier
Real.instIsStrictOrderedRing
Metric.isClosed_closedBall
strictConvex_closedBall

---

← Back to Index