Documentation Verification Report

Defs

πŸ“ Source: Mathlib/Combinatorics/Additive/AP/Three/Defs.lean

Statistics

MetricCount
DefinitionsThreeAPFree, instDecidable, ThreeGPFree, instDecidable, addRothNumber, mulRothNumber, rothNumberNat
7
TheoremsaddRothNumber_eq_rothNumberNat, addRothNumber_le_rothNumberNat, addRothNumber_mono, threeAPFree, addRothNumber_congr, threeAPFree_congr, mulRothNumber_mono, threeGPFree, mulRothNumber_congr, threeGPFree_congr, threeAPFree, threeGPFree, addRothNumber_eq, eq_right, image, image', le_addRothNumber, le_rothNumberNat, mono, of_image, prod, vadd_set, eq_right, image, image', le_mulRothNumber, mono, mulRothNumber_eq, of_image, prod, smul_set, smul_setβ‚€, addRothNumber_Ico, addRothNumber_empty, addRothNumber_le, addRothNumber_lt_of_forall_not_threeAPFree, addRothNumber_map_add_left, addRothNumber_map_add_right, addRothNumber_singleton, addRothNumber_spec, addRothNumber_union_le, le_addRothNumber_product, le_mulRothNumber_product, mulRothNumber_empty, mulRothNumber_le, mulRothNumber_lt_of_forall_not_threeGPFree, mulRothNumber_map_mul_left, mulRothNumber_map_mul_right, mulRothNumber_singleton, mulRothNumber_spec, mulRothNumber_union_le, rothNumberNat_add_le, rothNumberNat_def, rothNumberNat_le, rothNumberNat_spec, rothNumberNat_zero, threeAPFree_empty, threeAPFree_iff_eq_right, threeAPFree_image, threeAPFree_insert, threeAPFree_insert_of_lt, threeAPFree_pi, threeAPFree_singleton, threeAPFree_vadd_set, threeGPFree_empty, threeGPFree_image, threeGPFree_insert, threeGPFree_insert_of_lt, threeGPFree_pi, threeGPFree_singleton, threeGPFree_smul_set, threeGPFree_smul_setβ‚€
72
Total79

Fin

Theorems

NameKindAssumesProvesValidatesDepends On
addRothNumber_eq_rothNumberNat πŸ“–mathematicalβ€”DFunLike.coe
OrderHom
Finset
PartialOrder.toPreorder
Finset.partialOrder
Nat.instPreorder
OrderHom.instFunLike
addRothNumber
AddMonoidWithOne.toAddMonoid
instAddMonoidWithOne
Finset.Iio
instPartialOrder
instLocallyFiniteOrderBot
rothNumberNat
β€”IsAddFreimanIso.addRothNumber_congr
Finset.coe_Iio
Finset.coe_range
isAddFreimanIso_Iio
two_ne_zero
addRothNumber_le_rothNumberNat πŸ“–mathematicalβ€”DFunLike.coe
OrderHom
Finset
PartialOrder.toPreorder
Finset.partialOrder
Nat.instPreorder
OrderHom.instFunLike
addRothNumber
AddMonoidWithOne.toAddMonoid
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
instCommRing
Finset.Iio
instPartialOrder
instLocallyFiniteOrderBot
AddMonoidWithOne.toNatCast
rothNumberNat
β€”Finset.coe_range
Finset.coe_Iio
natCast_strictMono
Set.InjOn.mono
CharP.natCast_injOn_Iio
charP
AddRightCancelSemigroup.toIsRightCancelAdd
val_cast_of_lt
cast_val_eq_self
IsAddFreimanHom.addRothNumber_mono
AddMonoidHomClass.isAddFreimanHom
RingHomClass.toAddMonoidHomClass
RingHom.instRingHomClass
Set.BijOn.mapsTo

IsAddFreimanHom

Theorems

NameKindAssumesProvesValidatesDepends On
addRothNumber_mono πŸ“–mathematicalIsAddFreimanHom
SetLike.coe
Finset
Finset.instSetLike
Set.BijOn
DFunLike.coe
OrderHom
PartialOrder.toPreorder
Finset.partialOrder
Nat.instPreorder
OrderHom.instFunLike
addRothNumber
AddCommMonoid.toAddMonoid
β€”addRothNumber_spec
Zero.instNonempty
Set.MapsTo.image_subset
Set.MapsTo.mono
Set.SurjOn.mapsTo_invFunOn
Set.BijOn.surjOn
Finset.coe_subset
Finset.Subset.rfl
Set.SurjOn.mono
Finset.card_image_of_injOn
Set.InjOn.mono
Function.invFunOn_injOn_image
ThreeAPFree.le_addRothNumber
Finset.coe_image
threeAPFree
subset
Set.BijOn.mapsTo
Set.SurjOn.bijOn_subset
Set.BijOn.injOn
SetLike.coe_subset_coe
instIsConcreteLE
threeAPFree πŸ“–β€”IsAddFreimanHom
Set.InjOn
ThreeAPFree
AddCommMonoid.toAddMonoid
β€”β€”ThreeAPFree.of_image
subset_rfl
Set.instReflSubset
ThreeAPFree.mono
Set.MapsTo.image_subset
mapsTo

IsAddFreimanIso

Theorems

NameKindAssumesProvesValidatesDepends On
addRothNumber_congr πŸ“–mathematicalIsAddFreimanIso
SetLike.coe
Finset
Finset.instSetLike
DFunLike.coe
OrderHom
PartialOrder.toPreorder
Finset.partialOrder
Nat.instPreorder
OrderHom.instFunLike
addRothNumber
AddCommMonoid.toAddMonoid
β€”le_antisymm
addRothNumber_spec
Set.InjOn.mono
Finset.coe_subset
Set.BijOn.injOn
bijOn
threeAPFree_congr
subset
Set.InjOn.bijOn_image
Finset.card_image_of_injOn
ThreeAPFree.le_addRothNumber
Finset.coe_image
Set.MapsTo.image_subset
Set.MapsTo.mono
Set.BijOn.mapsTo
Finset.Subset.rfl
IsAddFreimanHom.addRothNumber_mono
isAddFreimanHom
threeAPFree_congr πŸ“–mathematicalIsAddFreimanIsoThreeAPFree
AddCommMonoid.toAddMonoid
β€”threeAPFree_image
subset_rfl
Set.instReflSubset
Set.BijOn.image_eq
bijOn

IsMulFreimanHom

Theorems

NameKindAssumesProvesValidatesDepends On
mulRothNumber_mono πŸ“–mathematicalIsMulFreimanHom
SetLike.coe
Finset
Finset.instSetLike
Set.BijOn
DFunLike.coe
OrderHom
PartialOrder.toPreorder
Finset.partialOrder
Nat.instPreorder
OrderHom.instFunLike
mulRothNumber
CommMonoid.toMonoid
β€”mulRothNumber_spec
One.instNonempty
Set.MapsTo.image_subset
Set.MapsTo.mono
Set.SurjOn.mapsTo_invFunOn
Set.BijOn.surjOn
Finset.coe_subset
Finset.Subset.rfl
Set.SurjOn.mono
Finset.card_image_of_injOn
Set.InjOn.mono
Function.invFunOn_injOn_image
ThreeGPFree.le_mulRothNumber
Finset.coe_image
threeGPFree
subset
Set.BijOn.mapsTo
Set.SurjOn.bijOn_subset
Set.BijOn.injOn
instIsConcreteLE
threeGPFree πŸ“–β€”IsMulFreimanHom
Set.InjOn
ThreeGPFree
CommMonoid.toMonoid
β€”β€”ThreeGPFree.of_image
subset_rfl
Set.instReflSubset
ThreeGPFree.mono
Set.MapsTo.image_subset
mapsTo

IsMulFreimanIso

Theorems

NameKindAssumesProvesValidatesDepends On
mulRothNumber_congr πŸ“–mathematicalIsMulFreimanIso
SetLike.coe
Finset
Finset.instSetLike
DFunLike.coe
OrderHom
PartialOrder.toPreorder
Finset.partialOrder
Nat.instPreorder
OrderHom.instFunLike
mulRothNumber
CommMonoid.toMonoid
β€”le_antisymm
mulRothNumber_spec
Set.InjOn.mono
Finset.coe_subset
Set.BijOn.injOn
bijOn
threeGPFree_congr
subset
Set.InjOn.bijOn_image
Finset.card_image_of_injOn
ThreeGPFree.le_mulRothNumber
Finset.coe_image
Set.MapsTo.image_subset
Set.MapsTo.mono
Set.BijOn.mapsTo
Finset.Subset.rfl
IsMulFreimanHom.mulRothNumber_mono
isMulFreimanHom
threeGPFree_congr πŸ“–mathematicalIsMulFreimanIsoThreeGPFree
CommMonoid.toMonoid
β€”threeGPFree_image
subset_rfl
Set.instReflSubset
Set.BijOn.image_eq
bijOn

Set.Subsingleton

Theorems

NameKindAssumesProvesValidatesDepends On
threeAPFree πŸ“–mathematicalSet.SubsingletonThreeAPFreeβ€”β€”
threeGPFree πŸ“–mathematicalSet.SubsingletonThreeGPFreeβ€”β€”

ThreeAPFree

Definitions

NameCategoryTheorems
instDecidable πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
addRothNumber_eq πŸ“–mathematicalThreeAPFree
SetLike.coe
Finset
Finset.instSetLike
DFunLike.coe
OrderHom
PartialOrder.toPreorder
Finset.partialOrder
Nat.instPreorder
OrderHom.instFunLike
addRothNumber
Finset.card
β€”LE.le.antisymm
addRothNumber_le
le_addRothNumber
Finset.Subset.refl
eq_right πŸ“–β€”ThreeAPFree
AddCommMonoid.toAddMonoid
Set
Set.instMembership
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
β€”β€”IsCancelAdd.toIsLeftCancelAdd
image πŸ“–mathematicalIsAddFreimanIso
Set
Set.instHasSubset
ThreeAPFree
AddCommMonoid.toAddMonoid
Set.imageβ€”threeAPFree_image
image' πŸ“–mathematicalSet.InjOn
DFunLike.coe
Set
Set.add
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
ThreeAPFree
Set.imageβ€”Set.add_mem_add
map_add
le_addRothNumber πŸ“–mathematicalThreeAPFree
SetLike.coe
Finset
Finset.instSetLike
Finset.instHasSubset
Finset.card
DFunLike.coe
OrderHom
PartialOrder.toPreorder
Finset.partialOrder
Nat.instPreorder
OrderHom.instFunLike
addRothNumber
β€”Nat.le_findGreatest
Finset.card_le_card
le_rothNumberNat πŸ“–mathematicalThreeAPFree
Nat.instAddMonoid
SetLike.coe
Finset
Finset.instSetLike
Finset.card
DFunLike.coe
OrderHom
Nat.instPreorder
OrderHom.instFunLike
rothNumberNat
β€”LE.le.trans
Eq.ge
le_addRothNumber
Finset.mem_range
mono πŸ“–β€”Set
Set.instHasSubset
ThreeAPFree
β€”β€”β€”
of_image πŸ“–β€”IsAddFreimanHom
Set.InjOn
Set
Set.instHasSubset
ThreeAPFree
AddCommMonoid.toAddMonoid
Set.image
β€”β€”Set.mem_image_of_mem
IsAddFreimanHom.add_eq_add
prod πŸ“–mathematicalThreeAPFreeProd.instAddMonoid
SProd.sprod
Set
Set.instSProd
β€”β€”
vadd_set πŸ“–mathematicalThreeAPFree
AddCommMonoid.toAddMonoid
HVAdd.hVAdd
Set
instHVAdd
Set.vaddSet
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
AddAction.toAddSemigroupAction
AddMonoid.toAddAction
β€”add_add_add_comm
IsCancelAdd.toIsLeftCancelAdd

ThreeGPFree

Definitions

NameCategoryTheorems
instDecidable πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
eq_right πŸ“–β€”ThreeGPFree
CommMonoid.toMonoid
Set
Set.instMembership
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
β€”β€”IsCancelMul.toIsLeftCancelMul
image πŸ“–mathematicalIsMulFreimanIso
Set
Set.instHasSubset
ThreeGPFree
CommMonoid.toMonoid
Set.imageβ€”threeGPFree_image
image' πŸ“–mathematicalSet.InjOn
DFunLike.coe
Set
Set.mul
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
ThreeGPFree
Set.imageβ€”Set.mul_mem_mul
map_mul
le_mulRothNumber πŸ“–mathematicalThreeGPFree
SetLike.coe
Finset
Finset.instSetLike
Finset.instHasSubset
Finset.card
DFunLike.coe
OrderHom
PartialOrder.toPreorder
Finset.partialOrder
Nat.instPreorder
OrderHom.instFunLike
mulRothNumber
β€”Nat.le_findGreatest
Finset.card_le_card
mono πŸ“–β€”Set
Set.instHasSubset
ThreeGPFree
β€”β€”β€”
mulRothNumber_eq πŸ“–mathematicalThreeGPFree
SetLike.coe
Finset
Finset.instSetLike
DFunLike.coe
OrderHom
PartialOrder.toPreorder
Finset.partialOrder
Nat.instPreorder
OrderHom.instFunLike
mulRothNumber
Finset.card
β€”LE.le.antisymm
mulRothNumber_le
le_mulRothNumber
Finset.Subset.refl
of_image πŸ“–β€”IsMulFreimanHom
Set.InjOn
Set
Set.instHasSubset
ThreeGPFree
CommMonoid.toMonoid
Set.image
β€”β€”Set.mem_image_of_mem
IsMulFreimanHom.mul_eq_mul
prod πŸ“–mathematicalThreeGPFreeProd.instMonoid
SProd.sprod
Set
Set.instSProd
β€”β€”
smul_set πŸ“–mathematicalThreeGPFree
CommMonoid.toMonoid
Set
Set.smulSet
SemigroupAction.toSMul
Monoid.toSemigroup
MulAction.toSemigroupAction
Monoid.toMulAction
β€”mul_mul_mul_comm
IsCancelMul.toIsLeftCancelMul
smul_setβ‚€ πŸ“–mathematicalThreeGPFree
MonoidWithZero.toMonoid
CommMonoidWithZero.toMonoidWithZero
Set
Set.smulSet
SMulZeroClass.toSMul
MulZeroClass.toZero
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
SMulWithZero.toSMulZeroClass
MulZeroClass.toSMulWithZero
β€”mul_mul_mul_comm
IsCancelMulZero.toIsLeftCancelMulZero

(root)

Definitions

NameCategoryTheorems
ThreeAPFree πŸ“–MathDef
17 mathmath: roth_3ap_theorem, rothNumberNat_spec, threeAPFree_sphere, threeAPFree_vadd_set, threeAPFree_iff_eq_right, threeAPFree_frontier, addRothNumber_spec, threeAPFree_singleton, roth_3ap_theorem_nat, threeAPFree_empty, threeAPFree_image, IsAddFreimanIso.threeAPFree_congr, Set.Subsingleton.threeAPFree, Behrend.threeAPFree_image_sphere, Behrend.threeAPFree_sphere, threeAPFree_insert, threeAPFree_insert_of_lt
ThreeGPFree πŸ“–MathDef
10 mathmath: mulRothNumber_spec, threeGPFree_empty, threeGPFree_smul_set, threeGPFree_insert, threeGPFree_insert_of_lt, threeGPFree_singleton, Set.Subsingleton.threeGPFree, threeGPFree_image, threeGPFree_smul_setβ‚€, IsMulFreimanIso.threeGPFree_congr
addRothNumber πŸ“–CompOp
18 mathmath: le_addRothNumber_product, ThreeAPFree.addRothNumber_eq, addRothNumber_union_le, Fin.addRothNumber_eq_rothNumberNat, addRothNumber_spec, addRothNumber_le_ruzsaSzemerediNumber, addRothNumber_empty, rothNumberNat_def, addRothNumber_lt_of_forall_not_threeAPFree, addRothNumber_singleton, ThreeAPFree.le_addRothNumber, addRothNumber_map_add_left, Fin.addRothNumber_le_rothNumberNat, IsAddFreimanIso.addRothNumber_congr, addRothNumber_le, IsAddFreimanHom.addRothNumber_mono, addRothNumber_Ico, addRothNumber_map_add_right
mulRothNumber πŸ“–CompOp
13 mathmath: mulRothNumber_map_mul_left, mulRothNumber_spec, IsMulFreimanHom.mulRothNumber_mono, ThreeGPFree.le_mulRothNumber, IsMulFreimanIso.mulRothNumber_congr, le_mulRothNumber_product, mulRothNumber_empty, ThreeGPFree.mulRothNumber_eq, mulRothNumber_le, mulRothNumber_lt_of_forall_not_threeGPFree, mulRothNumber_map_mul_right, mulRothNumber_union_le, mulRothNumber_singleton
rothNumberNat πŸ“–CompOp
17 mathmath: Behrend.roth_lower_bound, rothNumberNat_spec, Behrend.roth_lower_bound_explicit, rothNumberNat_le, Behrend.bound_aux', rothNumberNat_zero, Fin.addRothNumber_eq_rothNumberNat, rothNumberNat_def, rothNumberNat_isLittleO_id, ThreeAPFree.le_rothNumberNat, Behrend.card_sphere_le_rothNumberNat, rothNumberNat_le_ruzsaSzemerediNumberNat, rothNumberNat_add_le, Fin.addRothNumber_le_rothNumberNat, Behrend.bound_aux, addRothNumber_Ico, rothNumberNat_le_ruzsaSzemerediNumberNat'

Theorems

NameKindAssumesProvesValidatesDepends On
addRothNumber_Ico πŸ“–mathematicalβ€”DFunLike.coe
OrderHom
Finset
PartialOrder.toPreorder
Finset.partialOrder
Nat.instPreorder
OrderHom.instFunLike
addRothNumber
Nat.instAddMonoid
Finset.Ico
Nat.instLocallyFiniteOrder
rothNumberNat
β€”le_total
Finset.Ico_eq_empty_of_le
rothNumberNat_zero
addRothNumber_empty
AddLeftCancelSemigroup.toIsLeftCancelAdd
Finset.range_eq_Ico
Finset.map_eq_image
add_tsub_cancel_of_le
CanonicallyOrderedAdd.toExistsAddOfLE
Nat.instCanonicallyOrderedAdd
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
Nat.instOrderedSub
Finset.image_add_left_Ico
Nat.instIsOrderedCancelAddMonoid
addRothNumber_map_add_left
addRothNumber_empty πŸ“–mathematicalβ€”DFunLike.coe
OrderHom
Finset
PartialOrder.toPreorder
Finset.partialOrder
Nat.instPreorder
OrderHom.instFunLike
addRothNumber
Finset.instEmptyCollection
β€”LE.le.trans
addRothNumber_le
Eq.le
Finset.card_empty
addRothNumber_le πŸ“–mathematicalβ€”DFunLike.coe
OrderHom
Finset
PartialOrder.toPreorder
Finset.partialOrder
Nat.instPreorder
OrderHom.instFunLike
addRothNumber
Finset.card
β€”Nat.findGreatest_le
addRothNumber_lt_of_forall_not_threeAPFree πŸ“–mathematicalThreeAPFree
SetLike.coe
Finset
Finset.instSetLike
DFunLike.coe
OrderHom
PartialOrder.toPreorder
Finset.partialOrder
Nat.instPreorder
OrderHom.instFunLike
addRothNumber
β€”addRothNumber_spec
not_le
Finset.exists_subset_card_eq
Finset.mem_powersetCard
HasSubset.Subset.trans
Finset.instIsTransSubset
ThreeAPFree.mono
addRothNumber_map_add_left πŸ“–mathematicalβ€”DFunLike.coe
OrderHom
Finset
PartialOrder.toPreorder
Finset.partialOrder
Nat.instPreorder
OrderHom.instFunLike
addRothNumber
AddCommMonoid.toAddMonoid
AddCancelCommMonoid.toAddCommMonoid
Finset.map
addLeftEmbedding
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddLeftCancelSemigroup.toIsLeftCancelAdd
AddLeftCancelMonoid.toAddLeftCancelSemigroup
AddCancelCommMonoid.toAddLeftCancelMonoid
β€”le_antisymm
AddLeftCancelSemigroup.toIsLeftCancelAdd
addRothNumber_spec
Finset.subset_map_iff
Finset.card_map
ThreeAPFree.le_addRothNumber
threeAPFree_vadd_set
AddCancelMonoid.toIsCancelAdd
Finset.coe_map
ThreeAPFree.vadd_set
Finset.map_subset_map
addRothNumber_map_add_right πŸ“–mathematicalβ€”DFunLike.coe
OrderHom
Finset
PartialOrder.toPreorder
Finset.partialOrder
Nat.instPreorder
OrderHom.instFunLike
addRothNumber
AddCommMonoid.toAddMonoid
AddCancelCommMonoid.toAddCommMonoid
Finset.map
addRightEmbedding
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddRightCancelSemigroup.toIsRightCancelAdd
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
β€”AddRightCancelSemigroup.toIsRightCancelAdd
IsCancelAdd.toIsLeftCancelAdd
AddCancelMonoid.toIsCancelAdd
IsCancelAdd.toIsRightCancelAdd
addLeftEmbedding_eq_addRightEmbedding
AddLeftCancelSemigroup.toIsLeftCancelAdd
addRothNumber_map_add_left
addRothNumber_singleton πŸ“–mathematicalβ€”DFunLike.coe
OrderHom
Finset
PartialOrder.toPreorder
Finset.partialOrder
Nat.instPreorder
OrderHom.instFunLike
addRothNumber
Finset.instSingleton
β€”ThreeAPFree.addRothNumber_eq
Finset.coe_singleton
threeAPFree_singleton
addRothNumber_spec πŸ“–mathematicalβ€”Finset
Finset.instHasSubset
Finset.card
DFunLike.coe
OrderHom
PartialOrder.toPreorder
Finset.partialOrder
Nat.instPreorder
OrderHom.instFunLike
addRothNumber
ThreeAPFree
SetLike.coe
Finset.instSetLike
β€”Nat.findGreatest_spec
Finset.empty_subset
Finset.card_empty
Finset.coe_empty
threeAPFree_empty
addRothNumber_union_le πŸ“–mathematicalβ€”DFunLike.coe
OrderHom
Finset
PartialOrder.toPreorder
Finset.partialOrder
Nat.instPreorder
OrderHom.instFunLike
addRothNumber
Finset.instUnion
β€”addRothNumber_spec
Finset.inter_union_distrib_left
Finset.inter_eq_left
Finset.card_union_le
add_le_add
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
covariant_swap_add_of_covariant_add
ThreeAPFree.le_addRothNumber
ThreeAPFree.mono
Finset.inter_subset_left
Finset.inter_subset_right
le_addRothNumber_product πŸ“–mathematicalβ€”DFunLike.coe
OrderHom
Finset
PartialOrder.toPreorder
Finset.partialOrder
Nat.instPreorder
OrderHom.instFunLike
addRothNumber
Prod.instAddMonoid
SProd.sprod
Finset.instSProd
β€”addRothNumber_spec
Finset.card_product
ThreeAPFree.le_addRothNumber
Finset.coe_product
ThreeAPFree.prod
Finset.product_subset_product
le_mulRothNumber_product πŸ“–mathematicalβ€”DFunLike.coe
OrderHom
Finset
PartialOrder.toPreorder
Finset.partialOrder
Nat.instPreorder
OrderHom.instFunLike
mulRothNumber
Prod.instMonoid
SProd.sprod
Finset.instSProd
β€”mulRothNumber_spec
Finset.card_product
ThreeGPFree.le_mulRothNumber
Finset.coe_product
ThreeGPFree.prod
Finset.product_subset_product
mulRothNumber_empty πŸ“–mathematicalβ€”DFunLike.coe
OrderHom
Finset
PartialOrder.toPreorder
Finset.partialOrder
Nat.instPreorder
OrderHom.instFunLike
mulRothNumber
Finset.instEmptyCollection
β€”LE.le.trans
mulRothNumber_le
Eq.le
Finset.card_empty
mulRothNumber_le πŸ“–mathematicalβ€”DFunLike.coe
OrderHom
Finset
PartialOrder.toPreorder
Finset.partialOrder
Nat.instPreorder
OrderHom.instFunLike
mulRothNumber
Finset.card
β€”Nat.findGreatest_le
mulRothNumber_lt_of_forall_not_threeGPFree πŸ“–mathematicalThreeGPFree
SetLike.coe
Finset
Finset.instSetLike
DFunLike.coe
OrderHom
PartialOrder.toPreorder
Finset.partialOrder
Nat.instPreorder
OrderHom.instFunLike
mulRothNumber
β€”mulRothNumber_spec
not_le
Finset.exists_subset_card_eq
Finset.mem_powersetCard
HasSubset.Subset.trans
Finset.instIsTransSubset
ThreeGPFree.mono
mulRothNumber_map_mul_left πŸ“–mathematicalβ€”DFunLike.coe
OrderHom
Finset
PartialOrder.toPreorder
Finset.partialOrder
Nat.instPreorder
OrderHom.instFunLike
mulRothNumber
CommMonoid.toMonoid
CancelCommMonoid.toCommMonoid
Finset.map
mulLeftEmbedding
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
LeftCancelSemigroup.toIsLeftCancelMul
LeftCancelMonoid.toLeftCancelSemigroup
CancelCommMonoid.toLeftCancelMonoid
β€”le_antisymm
LeftCancelSemigroup.toIsLeftCancelMul
mulRothNumber_spec
Finset.subset_map_iff
Finset.card_map
ThreeGPFree.le_mulRothNumber
threeGPFree_smul_set
CancelMonoid.toIsCancelMul
Finset.coe_map
ThreeGPFree.smul_set
Finset.map_subset_map
mulRothNumber_map_mul_right πŸ“–mathematicalβ€”DFunLike.coe
OrderHom
Finset
PartialOrder.toPreorder
Finset.partialOrder
Nat.instPreorder
OrderHom.instFunLike
mulRothNumber
CommMonoid.toMonoid
CancelCommMonoid.toCommMonoid
Finset.map
mulRightEmbedding
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
RightCancelSemigroup.toIsRightCancelMul
RightCancelMonoid.toRightCancelSemigroup
CancelMonoid.toRightCancelMonoid
CancelCommMonoid.toCancelMonoid
β€”RightCancelSemigroup.toIsRightCancelMul
IsCancelMul.toIsLeftCancelMul
CancelMonoid.toIsCancelMul
IsCancelMul.toIsRightCancelMul
mulLeftEmbedding_eq_mulRightEmbedding
LeftCancelSemigroup.toIsLeftCancelMul
mulRothNumber_map_mul_left
mulRothNumber_singleton πŸ“–mathematicalβ€”DFunLike.coe
OrderHom
Finset
PartialOrder.toPreorder
Finset.partialOrder
Nat.instPreorder
OrderHom.instFunLike
mulRothNumber
Finset.instSingleton
β€”ThreeGPFree.mulRothNumber_eq
Finset.coe_singleton
threeGPFree_singleton
mulRothNumber_spec πŸ“–mathematicalβ€”Finset
Finset.instHasSubset
Finset.card
DFunLike.coe
OrderHom
PartialOrder.toPreorder
Finset.partialOrder
Nat.instPreorder
OrderHom.instFunLike
mulRothNumber
ThreeGPFree
SetLike.coe
Finset.instSetLike
β€”Nat.findGreatest_spec
Finset.empty_subset
Finset.card_empty
Finset.coe_empty
threeGPFree_empty
mulRothNumber_union_le πŸ“–mathematicalβ€”DFunLike.coe
OrderHom
Finset
PartialOrder.toPreorder
Finset.partialOrder
Nat.instPreorder
OrderHom.instFunLike
mulRothNumber
Finset.instUnion
β€”mulRothNumber_spec
Finset.inter_union_distrib_left
Finset.inter_eq_left
Finset.card_union_le
add_le_add
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
covariant_swap_add_of_covariant_add
ThreeGPFree.le_mulRothNumber
ThreeGPFree.mono
Finset.inter_subset_left
Finset.inter_subset_right
rothNumberNat_add_le πŸ“–mathematicalβ€”DFunLike.coe
OrderHom
Nat.instPreorder
OrderHom.instFunLike
rothNumberNat
β€”AddLeftCancelSemigroup.toIsLeftCancelAdd
Finset.range_add_eq_union
addRothNumber_map_add_left
addRothNumber_union_le
rothNumberNat_def πŸ“–mathematicalβ€”DFunLike.coe
OrderHom
Nat.instPreorder
OrderHom.instFunLike
rothNumberNat
Finset
PartialOrder.toPreorder
Finset.partialOrder
addRothNumber
Nat.instAddMonoid
Finset.range
β€”β€”
rothNumberNat_le πŸ“–mathematicalβ€”DFunLike.coe
OrderHom
Nat.instPreorder
OrderHom.instFunLike
rothNumberNat
β€”LE.le.trans
addRothNumber_le
Eq.le
Finset.card_range
rothNumberNat_spec πŸ“–mathematicalβ€”Finset
Finset.instHasSubset
Finset.range
Finset.card
DFunLike.coe
OrderHom
Nat.instPreorder
OrderHom.instFunLike
rothNumberNat
ThreeAPFree
Nat.instAddMonoid
SetLike.coe
Finset.instSetLike
β€”addRothNumber_spec
rothNumberNat_zero πŸ“–mathematicalβ€”DFunLike.coe
OrderHom
Nat.instPreorder
OrderHom.instFunLike
rothNumberNat
β€”β€”
threeAPFree_empty πŸ“–mathematicalβ€”ThreeAPFree
Set
Set.instEmptyCollection
β€”β€”
threeAPFree_iff_eq_right πŸ“–mathematicalβ€”ThreeAPFree
Nat.instAddMonoid
β€”add_left_cancel
AddLeftCancelSemigroup.toIsLeftCancelAdd
mul_left_cancelβ‚€
IsCancelMulZero.toIsLeftCancelMulZero
Nat.instIsCancelMulZero
two_ne_zero
Nat.instAtLeastTwoHAddOfNat
threeAPFree_image πŸ“–mathematicalIsAddFreimanIso
Set
Set.instHasSubset
ThreeAPFree
AddCommMonoid.toAddMonoid
Set.image
β€”ThreeAPFree.eq_1
Set.InjOn.bijOn_image
Set.InjOn.mono
Set.BijOn.injOn
IsAddFreimanIso.bijOn
Set.BijOn.forall
IsAddFreimanIso.add_eq_add
Set.InjOn.eq_iff
threeAPFree_insert πŸ“–mathematicalβ€”ThreeAPFree
AddCommMonoid.toAddMonoid
Set
Set.instInsert
β€”ThreeAPFree.mono
Set.subset_insert
Set.mem_insert_iff
add_right_cancel
IsCancelAdd.toIsRightCancelAdd
add_comm
threeAPFree_insert_of_lt πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
ThreeAPFree
AddCommMonoid.toAddMonoid
Set
Set.instInsert
β€”threeAPFree_insert
IsOrderedCancelAddMonoid.toIsCancelAdd
LT.lt.ne
add_lt_add_of_lt_of_lt
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
IsCancelAdd.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
IsOrderedCancelAddMonoid.toIsOrderedAddMonoid
IsRightCancelAdd.addRightStrictMono_of_addRightMono
IsCancelAdd.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
threeAPFree_pi πŸ“–mathematicalThreeAPFreePi.addMonoid
Set.pi
Set.univ
β€”β€”
threeAPFree_singleton πŸ“–mathematicalβ€”ThreeAPFree
Set
Set.instSingletonSet
β€”Set.Subsingleton.threeAPFree
Set.subsingleton_singleton
threeAPFree_vadd_set πŸ“–mathematicalβ€”ThreeAPFree
AddCommMonoid.toAddMonoid
HVAdd.hVAdd
Set
instHVAdd
Set.vaddSet
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
AddAction.toAddSemigroupAction
AddMonoid.toAddAction
β€”add_left_cancel
IsCancelAdd.toIsLeftCancelAdd
Set.mem_image_of_mem
add_add_add_comm
vadd_eq_add
ThreeAPFree.vadd_set
threeGPFree_empty πŸ“–mathematicalβ€”ThreeGPFree
Set
Set.instEmptyCollection
β€”β€”
threeGPFree_image πŸ“–mathematicalIsMulFreimanIso
Set
Set.instHasSubset
ThreeGPFree
CommMonoid.toMonoid
Set.image
β€”ThreeGPFree.eq_1
Set.InjOn.bijOn_image
Set.InjOn.mono
Set.BijOn.injOn
IsMulFreimanIso.bijOn
Set.BijOn.forall
IsMulFreimanIso.mul_eq_mul
Set.InjOn.eq_iff
threeGPFree_insert πŸ“–mathematicalβ€”ThreeGPFree
CommMonoid.toMonoid
Set
Set.instInsert
β€”ThreeGPFree.mono
Set.subset_insert
Set.mem_insert_iff
mul_right_cancel
IsCancelMul.toIsRightCancelMul
mul_comm
threeGPFree_insert_of_lt πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
ThreeGPFree
CommMonoid.toMonoid
Set
Set.instInsert
β€”threeGPFree_insert
IsOrderedCancelMonoid.toIsCancelMul
LT.lt.ne
mul_lt_mul_of_lt_of_lt
IsLeftCancelMul.mulLeftStrictMono_of_mulLeftMono
IsCancelMul.toIsLeftCancelMul
IsOrderedMonoid.toMulLeftMono
IsOrderedCancelMonoid.toIsOrderedMonoid
IsRightCancelMul.mulRightStrictMono_of_mulRightMono
IsCancelMul.toIsRightCancelMul
covariant_swap_mul_of_covariant_mul
threeGPFree_pi πŸ“–mathematicalThreeGPFreePi.monoid
Set.pi
Set.univ
β€”β€”
threeGPFree_singleton πŸ“–mathematicalβ€”ThreeGPFree
Set
Set.instSingletonSet
β€”Set.Subsingleton.threeGPFree
Set.subsingleton_singleton
threeGPFree_smul_set πŸ“–mathematicalβ€”ThreeGPFree
CommMonoid.toMonoid
Set
Set.smulSet
SemigroupAction.toSMul
Monoid.toSemigroup
MulAction.toSemigroupAction
Monoid.toMulAction
β€”mul_left_cancel
IsCancelMul.toIsLeftCancelMul
Set.mem_image_of_mem
mul_mul_mul_comm
smul_eq_mul
ThreeGPFree.smul_set
threeGPFree_smul_setβ‚€ πŸ“–mathematicalβ€”ThreeGPFree
MonoidWithZero.toMonoid
CommMonoidWithZero.toMonoidWithZero
Set
Set.smulSet
SMulZeroClass.toSMul
MulZeroClass.toZero
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
SMulWithZero.toSMulZeroClass
MulZeroClass.toSMulWithZero
β€”mul_left_cancelβ‚€
IsCancelMulZero.toIsLeftCancelMulZero
Set.mem_image_of_mem
smul_eq_mul
mul_mul_mul_comm
ThreeGPFree.smul_setβ‚€

---

← Back to Index