Documentation Verification Report

ApproximateSubgroup

πŸ“ Source: Mathlib/Combinatorics/Additive/ApproximateSubgroup.lean

Statistics

MetricCount
DefinitionsIsApproximateAddSubgroup, IsApproximateSubgroup
2
TheoremsaddSubgroup, card_add_self_le, card_nsmul_le, image, mono, neg_eq_self, nonempty, nsmul_inter_nsmul, nsmul_inter_nsmul_covByVAdd_sq_inter_sq, of_small_tripling, one_le, two_nsmul_covByVAdd, zero_mem, card_mul_self_le, card_pow_le, image, inv_eq_self, mono, nonempty, of_small_tripling, one_le, one_mem, pow_inter_pow, pow_inter_pow_covBySMul_sq_inter_sq, sq_covBySMul, subgroup, isApproximateAddSubgroup_zero, isApproximateSubgroup_one
28
Total30

IsApproximateAddSubgroup

Theorems

NameKindAssumesProvesValidatesDepends On
addSubgroup πŸ“–mathematicalβ€”IsApproximateAddSubgroup
Real
Real.instOne
SetLike.coe
β€”ZeroMemClass.zero_mem
AddSubmonoidClass.toZeroMemClass
AddSubgroupClass.toAddSubmonoidClass
neg_coe_set
AddSubgroupClass.toNegMemClass
Finset.card_singleton
Nat.cast_one
le_refl
coe_set_nsmul
Nat.instAtLeastTwoHAddOfNat
OfNat.ofNat_ne_zero
Nat.instCharZero
Finset.coe_singleton
Set.singleton_add
Set.image_congr
zero_add
Set.image_id'
subset_refl
Set.instReflSubset
card_add_self_le πŸ“–mathematicalIsApproximateAddSubgroup
SetLike.coe
Finset
Finset.instSetLike
Real
Real.instLE
Real.instNatCast
Finset.card
Finset.add
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
Real.instMul
β€”two_nsmul
pow_one
card_nsmul_le
card_nsmul_le πŸ“–mathematicalIsApproximateAddSubgroup
SetLike.coe
Finset
Finset.instSetLike
Real
Real.instLE
Real.instNatCast
Finset.card
AddMonoid.toNatSMul
Finset.addMonoid
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
Real.instMul
Monoid.toNatPow
Real.instMonoid
β€”zero_nsmul
Finset.card_zero
Nat.cast_one
zero_tsub
Nat.instCanonicallyOrderedAdd
Nat.instOrderedSub
pow_zero
one_mul
Nat.one_le_cast
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.instZeroLEOneClass
IsStrictOrderedRing.toCharZero
Real.instIsStrictOrderedRing
Finset.one_le_card
Finset.coe_nonempty
nonempty
one_nsmul
tsub_self
le_refl
two_nsmul_covByVAdd
Nat.mono_cast
Finset.card_le_card
Finset.coe_nsmul
Finset.coe_add
SetLike.coe_subset_coe
instIsConcreteLE
Set.nsmul_subset_nsmul_add_of_sq_subset_add
Nat.cast_mul
Nat.cast_le
Finset.card_add_le
mul_le_mul_of_nonneg_right
IsOrderedRing.toMulPosMono
Real.instIsOrderedRing
Nat.cast_pow
Finset.card_nsmul_le
Nat.cast_nonneg'
pow_le_pow_leftβ‚€
IsOrderedRing.toPosMulMono
image πŸ“–mathematicalIsApproximateAddSubgroupSet.image
DFunLike.coe
β€”zero_mem
map_zero
AddMonoidHomClass.toZeroHomClass
Set.image_neg
neg_eq_self
two_nsmul_covByVAdd
Nat.cast_le
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.instZeroLEOneClass
IsStrictOrderedRing.toCharZero
Real.instIsStrictOrderedRing
Finset.card_image_le
Set.image_nsmul
Finset.coe_image
Set.image_add
AddMonoidHomClass.toAddHomClass
Set.image_mono
mono πŸ“–β€”Real
Real.instLE
IsApproximateAddSubgroup
β€”β€”zero_mem
neg_eq_self
CovByVAdd.mono
two_nsmul_covByVAdd
neg_eq_self πŸ“–mathematicalIsApproximateAddSubgroupSet
Set.neg
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
β€”β€”
nonempty πŸ“–mathematicalIsApproximateAddSubgroupSet.Nonemptyβ€”zero_mem
nsmul_inter_nsmul πŸ“–mathematicalIsApproximateAddSubgroupReal
Real.instMul
Monoid.toNatPow
Real.instMonoid
Set
Set.instInter
Set.NSMul
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
β€”Set.zero_mem_nsmul
zero_mem
Set.inter_neg
neg_nsmul
neg_eq_self
CovByVAdd.subset
Set.inter_nsmul_subset
mul_nsmul'
Set.inter_subset_inter
Set.nsmul_subset_nsmul
subset_refl
Set.instReflSubset
nsmul_inter_nsmul_covByVAdd_sq_inter_sq
nsmul_inter_nsmul_covByVAdd_sq_inter_sq πŸ“–mathematicalIsApproximateAddSubgroupCovByVAdd
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddMonoid.toAddAction
Real
Real.instMul
Monoid.toNatPow
Real.instMonoid
Set
Set.instInter
Set.NSMul
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoid.toNatSMul
Set.addMonoid
β€”two_nsmul_covByVAdd
one_le
Nat.cast_mul
Nat.cast_le
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.instZeroLEOneClass
IsStrictOrderedRing.toCharZero
Real.instIsStrictOrderedRing
Finset.card_imageβ‚‚_le
mul_le_mul
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
IsOrderedRing.toMulPosMono
Nat.cast_pow
Finset.card_nsmul_le
Nat.cast_nonneg'
pow_nonneg
IsOrderedRing.toZeroLEOneClass
pow_le_pow_leftβ‚€
le_of_lt
pow_pos
IsStrictOrderedRing.toPosMulStrictMono
IsStrictOrderedRing.toZeroLEOneClass
lt_of_lt_of_le
Mathlib.Meta.Positivity.pos_of_isNat
Real.instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Set.inter_subset_inter
Set.nsmul_subset_nsmul_add_of_sq_subset_add
Set.iUnion_vadd_set
Set.iUnionβ‚‚_inter_iUnionβ‚‚
Set.iUnion_congr_Prop
Finset.coe_nsmul
Finset.mem_coe
Set.iUnion_mono''
neg_eq_self
two_nsmul
Finset.coe_imageβ‚‚
vadd_eq_add
Set.biUnion_image2
Set.exists_vadd_inter_vadd_subset_vadd_neg_add_inter_neg_add
of_small_tripling πŸ“–mathematicalFinset
Finset.instMembership
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
Finset.neg
NegZeroClass.toNeg
Real
Real.instLE
Real.instNatCast
Finset.card
AddMonoid.toNatSMul
Finset.addMonoid
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
Real.instMul
IsApproximateAddSubgroup
Monoid.toNatPow
Real.instMonoid
Set
Set.addMonoid
SetLike.coe
Finset.instSetLike
β€”two_nsmul
zero_add
Set.add_mem_add
neg_nsmul
Finset.coe_neg
succ_nsmul
Finset.small_nsmul_of_small_tripling
Finset.ruzsa_covering_add
Finset.coe_nsmul
Finset.coe_vadd
SetLike.coe_subset_coe
instIsConcreteLE
zero_nsmul
add_assoc
sub_eq_add_neg
one_le πŸ“–mathematicalIsApproximateAddSubgroupReal
Real.instLE
Real.instOne
β€”two_nsmul_covByVAdd
le_imp_le_of_le_of_le
le_refl
Finset.coe_empty
Set.empty_add
Set.subset_empty_iff
Set.nsmul_eq_empty
Set.Nonempty.ne_empty
nonempty
Nat.instAtLeastTwoHAddOfNat
OfNat.ofNat_ne_zero
Nat.instCharZero
Finset.not_nonempty_iff_eq_empty
Nat.one_le_cast
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.instZeroLEOneClass
IsStrictOrderedRing.toCharZero
Real.instIsStrictOrderedRing
Finset.one_le_card
two_nsmul_covByVAdd πŸ“–mathematicalIsApproximateAddSubgroupCovByVAdd
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddMonoid.toAddAction
Set
Set.NSMul
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
AddSemigroup.toAdd
AddMonoid.toAddSemigroup
β€”β€”
zero_mem πŸ“–mathematicalIsApproximateAddSubgroupSet
Set.instMembership
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
β€”β€”

IsApproximateSubgroup

Theorems

NameKindAssumesProvesValidatesDepends On
card_mul_self_le πŸ“–mathematicalIsApproximateSubgroup
SetLike.coe
Finset
Finset.instSetLike
Real
Real.instLE
Real.instNatCast
Finset.card
Finset.mul
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Real.instMul
β€”sq
pow_one
card_pow_le
card_pow_le πŸ“–mathematicalIsApproximateSubgroup
SetLike.coe
Finset
Finset.instSetLike
Real
Real.instLE
Real.instNatCast
Finset.card
Monoid.toNatPow
Finset.monoid
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Real.instMul
Real.instMonoid
β€”pow_zero
Finset.card_one
Nat.cast_one
zero_tsub
Nat.instCanonicallyOrderedAdd
Nat.instOrderedSub
one_mul
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.instZeroLEOneClass
IsStrictOrderedRing.toCharZero
Real.instIsStrictOrderedRing
nonempty
pow_one
tsub_self
sq_covBySMul
Nat.mono_cast
Finset.card_le_card
instIsConcreteLE
Set.pow_subset_pow_mul_of_sq_subset_mul
Finset.card_mul_le
mul_le_mul_of_nonneg_right
IsOrderedRing.toMulPosMono
Real.instIsOrderedRing
Finset.card_pow_le
Nat.cast_nonneg'
pow_le_pow_leftβ‚€
IsOrderedRing.toPosMulMono
image πŸ“–mathematicalIsApproximateSubgroupSet.image
DFunLike.coe
β€”one_mem
map_one
MonoidHomClass.toOneHomClass
inv_eq_self
sq_covBySMul
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.instZeroLEOneClass
IsStrictOrderedRing.toCharZero
Real.instIsStrictOrderedRing
Finset.card_image_le
Finset.coe_image
MonoidHomClass.toMulHomClass
Set.image_mono
inv_eq_self πŸ“–mathematicalIsApproximateSubgroupSet
Set.inv
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
β€”β€”
mono πŸ“–β€”Real
Real.instLE
IsApproximateSubgroup
β€”β€”one_mem
inv_eq_self
CovBySMul.mono
sq_covBySMul
nonempty πŸ“–mathematicalIsApproximateSubgroupSet.Nonemptyβ€”one_mem
of_small_tripling πŸ“–mathematicalFinset
Finset.instMembership
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
Finset.inv
InvOneClass.toInv
Real
Real.instLE
Real.instNatCast
Finset.card
Monoid.toNatPow
Finset.monoid
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Real.instMul
IsApproximateSubgroup
Real.instMonoid
Set
Set.monoid
SetLike.coe
Finset.instSetLike
β€”sq
one_mul
Set.mul_mem_mul
pow_succ
Finset.small_pow_of_small_tripling
Finset.ruzsa_covering_mul
instIsConcreteLE
pow_zero
mul_assoc
div_eq_mul_inv
one_le πŸ“–mathematicalIsApproximateSubgroupReal
Real.instLE
Real.instOne
β€”sq_covBySMul
le_imp_le_of_le_of_le
le_refl
Finset.coe_empty
Set.empty_mul
Set.Nonempty.ne_empty
nonempty
Nat.instCharZero
Nat.instAtLeastTwoHAddOfNat
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.instZeroLEOneClass
IsStrictOrderedRing.toCharZero
Real.instIsStrictOrderedRing
one_mem πŸ“–mathematicalIsApproximateSubgroupSet
Set.instMembership
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
β€”β€”
pow_inter_pow πŸ“–mathematicalIsApproximateSubgroupReal
Real.instMul
Monoid.toNatPow
Real.instMonoid
Set
Set.instInter
Set.NPow
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
β€”Set.one_mem_pow
one_mem
Set.inter_inv
inv_eq_self
CovBySMul.subset
Set.inter_pow_subset
pow_mul'
Set.inter_subset_inter
Set.pow_subset_pow
subset_refl
Set.instReflSubset
pow_inter_pow_covBySMul_sq_inter_sq
pow_inter_pow_covBySMul_sq_inter_sq πŸ“–mathematicalIsApproximateSubgroupCovBySMul
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Monoid.toMulAction
Real
Real.instMul
Monoid.toNatPow
Real.instMonoid
Set
Set.instInter
Set.NPow
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
Set.monoid
β€”sq_covBySMul
one_le
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.instZeroLEOneClass
IsStrictOrderedRing.toCharZero
Real.instIsStrictOrderedRing
Finset.card_imageβ‚‚_le
mul_le_mul
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
IsOrderedRing.toMulPosMono
Finset.card_pow_le
Nat.cast_nonneg'
pow_nonneg
IsOrderedRing.toZeroLEOneClass
pow_le_pow_leftβ‚€
le_of_lt
pow_pos
IsStrictOrderedRing.toPosMulStrictMono
IsStrictOrderedRing.toZeroLEOneClass
lt_of_lt_of_le
Mathlib.Meta.Positivity.pos_of_isNat
Real.instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Set.inter_subset_inter
Set.pow_subset_pow_mul_of_sq_subset_mul
Set.iUnionβ‚‚_inter_iUnionβ‚‚
Set.iUnion_congr_Prop
Set.iUnion_mono''
inv_eq_self
Finset.coe_imageβ‚‚
smul_eq_mul
Set.iUnion_smul_set
Set.biUnion_image2
Set.exists_smul_inter_smul_subset_smul_inv_mul_inter_inv_mul
sq_covBySMul πŸ“–mathematicalIsApproximateSubgroupCovBySMul
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Monoid.toMulAction
Set
Monoid.toNatPow
Set.monoid
β€”β€”
subgroup πŸ“–mathematicalβ€”IsApproximateSubgroup
Real
Real.instOne
SetLike.coe
β€”OneMemClass.one_mem
SubmonoidClass.toOneMemClass
SubgroupClass.toSubmonoidClass
inv_coe_set
SubgroupClass.toInvMemClass
Finset.card_singleton
Nat.cast_one
coe_set_pow
Nat.instCharZero
Nat.instAtLeastTwoHAddOfNat
Finset.coe_singleton
Set.singleton_mul
Set.image_congr
one_mul
Set.image_id'
Set.instReflSubset

(root)

Definitions

NameCategoryTheorems
IsApproximateAddSubgroup πŸ“–CompData
3 mathmath: isApproximateAddSubgroup_zero, IsApproximateAddSubgroup.addSubgroup, IsApproximateAddSubgroup.of_small_tripling
IsApproximateSubgroup πŸ“–CompData
3 mathmath: IsApproximateSubgroup.subgroup, IsApproximateSubgroup.of_small_tripling, isApproximateSubgroup_one

Theorems

NameKindAssumesProvesValidatesDepends On
isApproximateAddSubgroup_zero πŸ“–mathematicalβ€”IsApproximateAddSubgroup
Real
Real.instOne
SetLike.coe
AddSubgroup
AddSubgroup.instSetLike
β€”IsApproximateAddSubgroup.two_nsmul_covByVAdd
Nat.cast_le_one
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.instZeroLEOneClass
IsStrictOrderedRing.toCharZero
Real.instIsStrictOrderedRing
Finset.card_le_one_iff_subset_singleton
Zero.instNonempty
Finset.subset_singleton_iff
Finset.coe_empty
Set.empty_add
Set.subset_empty_iff
Set.nsmul_eq_empty
Set.Nonempty.ne_empty
IsApproximateAddSubgroup.nonempty
Nat.instAtLeastTwoHAddOfNat
OfNat.ofNat_ne_zero
Nat.instCharZero
two_nsmul
Set.singleton_vadd
Finset.coe_singleton
Set.subset_vadd_set_iff
add_zero
Set.vadd_mem_vadd_set
Set.add_mem_add
IsApproximateAddSubgroup.zero_mem
IsApproximateAddSubgroup.neg_eq_self
Set.mem_neg
neg_add_rev
vadd_vadd
neg_add_cancel_left
Set.vadd_set_mono
Set.vadd_set_subset_vadd
Set.neg_mem_neg
IsApproximateAddSubgroup.addSubgroup
AddSubgroup.instAddSubgroupClass
isApproximateSubgroup_one πŸ“–mathematicalβ€”IsApproximateSubgroup
Real
Real.instOne
SetLike.coe
Subgroup
Subgroup.instSetLike
β€”IsApproximateSubgroup.sq_covBySMul
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.instZeroLEOneClass
IsStrictOrderedRing.toCharZero
Real.instIsStrictOrderedRing
One.instNonempty
Finset.coe_empty
Set.empty_mul
Set.Nonempty.ne_empty
IsApproximateSubgroup.nonempty
Nat.instCharZero
Nat.instAtLeastTwoHAddOfNat
sq
Set.singleton_smul
Finset.coe_singleton
Set.subset_smul_set_iff
mul_one
Set.smul_mem_smul_set
Set.mul_mem_mul
IsApproximateSubgroup.one_mem
IsApproximateSubgroup.inv_eq_self
mul_inv_rev
smul_smul
inv_mul_cancel_left
Set.smul_set_mono
Set.smul_set_subset_smul
Set.inv_mem_inv
IsApproximateSubgroup.subgroup
Subgroup.instSubgroupClass

---

← Back to Index