Documentation Verification Report

CauchyDavenport

📁 Source: Mathlib/Combinatorics/Additive/CauchyDavenport.lean

Statistics

MetricCount
Definitions0
Theoremscauchy_davenport, cauchy_davenport_add_of_linearOrder_isCancelAdd, cauchy_davenport_minOrder_add, cauchy_davenport_minOrder_mul, cauchy_davenport_mul_of_linearOrder_isCancelMul, cauchy_davenport_of_isAddTorsionFree, cauchy_davenport_of_isMulTorsionFree
7
Total7

ZMod

Theorems

NameKindAssumesProvesValidatesDepends On
cauchy_davenport 📖mathematicalNat.Prime
Finset.Nonempty
ZMod
Finset.card
Finset
Finset.add
decidableEq
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
commRing
minOrder_of_prime
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsOrderedRing.toZeroLEOneClass
cauchy_davenport_minOrder_add

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
cauchy_davenport_add_of_linearOrder_isCancelAdd 📖mathematicalFinset.NonemptyFinset.card
Finset
Finset.add
LinearOrder.toDecidableEq
Finset.eq_singleton_iff_unique_mem
Finset.mem_inter
Finset.add_mem_add
Finset.max'_mem
Finset.mem_singleton_self
Finset.min'_mem
Finset.mem_add
Finset.mem_singleton
IsCancelAdd.toIsRightCancelAdd
LE.le.eq_of_not_lt
Finset.le_max'
LT.lt.not_ge
add_lt_add_left
IsRightCancelAdd.addRightStrictMono_of_addRightMono
add_le_add_right
Finset.min'_le
Finset.card_singleton_add
IsCancelAdd.toIsLeftCancelAdd
Finset.card_add_singleton
Finset.card_union_add_card_inter
Finset.card_singleton
Finset.card_mono
Finset.union_subset
Finset.add_subset_add_left
Finset.singleton_subset_iff
Finset.add_subset_add_right
cauchy_davenport_minOrder_add 📖mathematicalFinset.NonemptyENat
Preorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
SemilatticeInf.toMin
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
AddMonoid.minOrder
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
ENat.instNatCast
Finset.card
Finset
Finset.add
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
Set.WellFoundedOn.induction
min_le_iff
Nat.cast_le
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsOrderedRing.toZeroLEOneClass
tsub_le_iff_right
Nat.instOrderedSub
lt_or_ge
neg_add_rev
Finset.card_neg
add_comm
Finset.Nonempty.neg
Finset.Nonempty.exists_eq_singleton_or_nontrivial
Finset.card_singleton_add
AddLeftCancelSemigroup.toIsLeftCancelAdd
Finset.card_singleton
le_refl
Iff.not
neg_add_eq_zero
Finset.mem_inter
Finset.mem_vadd_finset
add_neg_cancel_left
eq_or_ne
AddSubgroup.forall_mem_zmultiples
zsmul_induction_right
neg_add_cancel
Finset.coe_vadd_finset
VAddCommClass.vadd_comm
Set.vaddCommClass_set
VAddCommClass.opposite_mid
VAddAssocClass.left
Set.vadd_mem_vadd_set
op_vadd_eq_add
AddOpposite.op_neg
Set.mem_vadd_set_iff_neg_vadd_mem
AddSemigroup.opposite_vaddCommClass
LE.le.trans
AddMonoid.minOrder_le_natCard
AddSubgroup.zmultiples_ne_bot
Set.Finite.subset
Set.Finite.vadd_set
Finset.finite_toSet
WithTop.coe_le_coe
LE.le.trans_eq
Nat.card_mono
Nat.card_eq_fintype_card
Fintype.card_coe
Finset.card_vadd_finset
Finset.card_le_card_add_right
AddRightCancelSemigroup.toIsRightCancelAdd
Finset.card_lt_card
Finset.inter_subset_left
Finset.eq_of_superset_of_card_ge
HasSubset.Subset.trans
Finset.instIsTransSubset
Finset.inter_subset_right
Eq.le
Finset.card_mono
Finset.addETransformLeft.fst_add_snd_subset
Finset.addETransformRight.fst_add_snd_subset
Finset.disjoint_or_nonempty_inter
le_imp_le_of_le_of_le
add_le_add_left
covariant_swap_add_of_covariant_add
Nat.instIsOrderedAddMonoid
Finset.card_union_of_disjoint
Finset.card_le_card_add_left
le_add_of_le_left
Nat.instCanonicallyOrderedAdd
le_or_lt_of_add_le_add
IsRightCancelAdd.addRightStrictMono_of_addRightMono
Eq.ge
Finset.AddETransform.card
LE.le.trans'
Finset.Nonempty.mono
Finset.inter_subset_union
LT.lt.le
cauchy_davenport_minOrder_mul 📖mathematicalFinset.NonemptyENat
Preorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
SemilatticeInf.toMin
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
Monoid.minOrder
DivInvMonoid.toMonoid
Group.toDivInvMonoid
ENat.instNatCast
Finset.card
Finset
Finset.mul
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
Set.WellFoundedOn.induction
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsOrderedRing.toZeroLEOneClass
Nat.instOrderedSub
lt_or_ge
Finset.card_inv
add_comm
Finset.Nonempty.inv
Finset.Nonempty.exists_eq_singleton_or_nontrivial
Finset.card_singleton_mul
LeftCancelSemigroup.toIsLeftCancelMul
Finset.card_singleton
Iff.not
inv_mul_eq_one
Finset.mem_inter
Finset.mem_smul_finset
mul_inv_cancel_left
eq_or_ne
Subgroup.forall_mem_zpowers
zpow_induction_right
inv_mul_cancel
Finset.coe_smul_finset
SMulCommClass.smul_comm
Set.smulCommClass_set
SMulCommClass.opposite_mid
IsScalarTower.left
Set.smul_mem_smul_set
op_smul_eq_mul
MulOpposite.op_inv
Set.mem_smul_set_iff_inv_smul_mem
Semigroup.opposite_smulCommClass
LE.le.trans
Monoid.minOrder_le_natCard
Subgroup.zpowers_ne_bot
Set.Finite.subset
Set.Finite.smul_set
Finset.finite_toSet
WithTop.coe_le_coe
LE.le.trans_eq
Nat.card_mono
Nat.card_eq_fintype_card
Fintype.card_coe
Finset.card_smul_finset
Finset.card_le_card_mul_right
RightCancelSemigroup.toIsRightCancelMul
Finset.card_lt_card
Finset.inter_subset_left
Finset.eq_of_superset_of_card_ge
HasSubset.Subset.trans
Finset.instIsTransSubset
Finset.inter_subset_right
Eq.le
Finset.card_mono
Finset.mulETransformLeft.fst_mul_snd_subset
Finset.mulETransformRight.fst_mul_snd_subset
Finset.disjoint_or_nonempty_inter
le_imp_le_of_le_of_le
add_le_add_left
covariant_swap_add_of_covariant_add
Nat.instIsOrderedAddMonoid
le_refl
Finset.card_union_of_disjoint
Finset.card_le_card_mul_left
le_add_of_le_left
Nat.instCanonicallyOrderedAdd
le_or_lt_of_add_le_add
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
Eq.ge
Finset.MulETransform.card
LE.le.trans'
Finset.Nonempty.mono
Finset.inter_subset_union
LT.lt.le
cauchy_davenport_mul_of_linearOrder_isCancelMul 📖mathematicalFinset.NonemptyFinset.card
Finset
Finset.mul
LinearOrder.toDecidableEq
Finset.eq_singleton_iff_unique_mem
Finset.mem_inter
Finset.mul_mem_mul
Finset.max'_mem
Finset.mem_singleton_self
Finset.min'_mem
IsCancelMul.toIsRightCancelMul
LE.le.eq_of_not_lt
Finset.le_max'
LT.lt.not_ge
mul_lt_mul_left
IsRightCancelMul.mulRightStrictMono_of_mulRightMono
mul_le_mul_right
Finset.min'_le
Finset.card_singleton_mul
IsCancelMul.toIsLeftCancelMul
Finset.card_mul_singleton
Finset.card_union_add_card_inter
Finset.card_singleton
Finset.card_mono
Finset.union_subset
Finset.mul_subset_mul_left
Finset.singleton_subset_iff
Finset.mul_subset_mul_right
cauchy_davenport_of_isAddTorsionFree 📖mathematicalFinset.NonemptyFinset.card
Finset
Finset.add
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddMonoid.minOrder_eq_top
min_eq_right
le_top
Nat.cast_le
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsOrderedRing.toZeroLEOneClass
cauchy_davenport_minOrder_add
cauchy_davenport_of_isMulTorsionFree 📖mathematicalFinset.NonemptyFinset.card
Finset
Finset.mul
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Monoid.minOrder_eq_top
min_eq_right
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsOrderedRing.toZeroLEOneClass
cauchy_davenport_minOrder_mul

---

← Back to Index