Documentation Verification Report

Roth

πŸ“ Source: Mathlib/Combinatorics/Additive/Corner/Roth.lean

Statistics

MetricCount
DefinitionscornersTheoremBound
1
Theoremscorners_theorem, corners_theorem_nat, rothNumberNat_isLittleO_id, roth_3ap_theorem, roth_3ap_theorem_nat
5
Total6

(root)

Definitions

NameCategoryTheorems
cornersTheoremBound πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
corners_theorem πŸ“–mathematicalReal
Real.instLT
Real.instZero
cornersTheoremBound
Fintype.card
Real.instLE
Real.instMul
Monoid.toNatPow
Real.instMonoid
Real.instNatCast
Finset.card
IsCornerFree
AddCommGroup.toAddCommMonoid
SetLike.coe
Finset
Finset.instSetLike
β€”LE.le.trans
Nat.cast_le
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.instZeroLEOneClass
RCLike.charZero_rclike
Finset.card_le_univ
mul_le_iff_le_one_left
IsOrderedRing.toMulPosMono
Real.instIsOrderedRing
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
Real.instIsStrictOrderedRing
mul_pos
IsStrictOrderedRing.toPosMulStrictMono
Nat.cast_pos'
NeZero.charZero_one
Fintype.card_pos
AddTorsor.nonempty
sq
Fintype.card_prod
Nat.cast_mul
LT.lt.not_ge
inv_lt_iff_one_lt_mulβ‚€'
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
SimpleGraph.triangleRemovalBound_pos
div_pos
Mathlib.Meta.Positivity.pos_of_isNat
Real.instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Nat.floor_lt'
ne_of_gt
cornersTheoremBound.eq_1
le_of_mul_le_mul_right
Nat.instAtLeastTwoHAddOfNat
SimpleGraph.FarFromTriangleFree.le_card_cliqueFinset
Fintype.card_sum
Nat.cast_add
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.cast_pos
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.mul_pp_pf_overlap
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Meta.NormNum.isNat_pow
Mathlib.Meta.NormNum.IsNatPowT.run
Mathlib.Meta.NormNum.IsNatPowT.bit1
one_mul
SimpleGraph.TripartiteFromTriangles.card_triangles
pow_pos
IsStrictOrderedRing.toZeroLEOneClass
corners_theorem_nat πŸ“–mathematicalReal
Real.instLT
Real.instZero
cornersTheoremBound
DivInvMonoid.toDiv
Real.instDivInvMonoid
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Finset
Finset.instHasSubset
SProd.sprod
Finset.instSProd
Finset.range
Real.instLE
Real.instMul
Monoid.toNatPow
Real.instMonoid
Finset.card
IsCornerFree
Nat.instAddCommMonoid
SetLike.coe
Finset.instSetLike
β€”Nat.instAtLeastTwoHAddOfNat
Set.image_image
Set.image_congr
Finset.coe_product
Finset.coe_subset
Finset.coe_range
Set.image_id
Fin.isAddFreimanIso_Iio
two_ne_zero
le_refl
IsCornerFree.of_image
IsAddFreimanIso.isAddFreimanHom
Function.Injective.injOn
Fin.val_injective
Set.image_subset_iff
HasSubset.Subset.trans
Set.instIsTransSubset
Fin.natCast_strictMono
corners_theorem
div_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
Mathlib.Meta.Positivity.pos_of_isNat
Real.instIsOrderedRing
Real.instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Fintype.card_fin
Nat.cast_add
Nat.cast_mul
Nat.cast_one
mul_le_mul_of_nonneg_left
IsOrderedRing.toPosMulMono
pow_le_pow_leftβ‚€
IsOrderedRing.toMulPosMono
le_of_lt
Right.add_pos_of_nonneg_of_pos
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
mul_nonneg
Nat.cast_nonneg'
Real.instZeroLEOneClass
add_le_add_right
RCLike.charZero_rclike
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.div_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.cast_pos
Mathlib.Tactic.Ring.div_pf
Mathlib.Tactic.Ring.inv_single
Mathlib.Meta.NormNum.IsNNRat.to_raw_eq
Mathlib.Meta.NormNum.isNNRat_inv_pos
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Meta.NormNum.isNat_pow
Mathlib.Meta.NormNum.IsNatPowT.run
Mathlib.Meta.NormNum.IsNatPowT.bit0
Mathlib.Tactic.Ring.pow_zero
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.IsNNRat.of_raw
Mathlib.Meta.NormNum.IsNNRat.den_nz
Mathlib.Tactic.Ring.one_pow
Finset.card_image_of_injOn
Set.InjOn.mono
CharP.natCast_injOn_Iio
Fin.charP
AddRightCancelSemigroup.toIsRightCancelAdd
Set.InjOn.prodMap
Finset.coe_image
rothNumberNat_isLittleO_id πŸ“–mathematicalβ€”Asymptotics.IsLittleO
Real
Real.norm
Filter.atTop
Nat.instPreorder
Real.instNatCast
DFunLike.coe
OrderHom
OrderHom.instFunLike
rothNumberNat
β€”RCLike.norm_natCast
instIsDirectedOrder
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
instArchimedeanNat
Nat.instAtLeastTwoHAddOfNat
rothNumberNat_spec
not_lt
roth_3ap_theorem_nat
LT.lt.le
roth_3ap_theorem πŸ“–mathematicalReal
Real.instLT
Real.instZero
cornersTheoremBound
Fintype.card
Real.instLE
Real.instMul
Real.instNatCast
Finset.card
ThreeAPFree
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
SetLike.coe
Finset
Finset.instSetLike
β€”Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_pp_pf_overlap
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Meta.NormNum.IsNat.of_raw
mul_le_mul_of_nonneg_left
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
le_of_lt
Nat.cast_pos'
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
Fintype.card_pos
AddTorsor.nonempty
Finset.card_univ
Finset.card_product
Finset.card_equiv
add_sub_cancel_left
Finset.coe_filter
corners_theorem
sub_add_sub_comm
add_comm
add_sub_add_comm
add_right_cancel_iff
AddRightCancelSemigroup.toIsRightCancelAdd
sub_eq_sub_iff_add_eq_add
roth_3ap_theorem_nat πŸ“–mathematicalReal
Real.instLT
Real.instZero
cornersTheoremBound
DivInvMonoid.toDiv
Real.instDivInvMonoid
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Finset
Finset.instHasSubset
Finset.range
Real.instLE
Real.instMul
Finset.card
ThreeAPFree
Nat.instAddMonoid
SetLike.coe
Finset.instSetLike
β€”Nat.instAtLeastTwoHAddOfNat
Set.image_image
Set.image_congr
Finset.coe_range
Finset.coe_subset
Set.image_id
Fin.isAddFreimanIso_Iio
two_ne_zero
le_refl
ThreeAPFree.of_image
IsAddFreimanIso.isAddFreimanHom
Function.Injective.injOn
Fin.val_injective
Set.image_subset_iff
HasSubset.Subset.trans
Set.instIsTransSubset
Fin.natCast_strictMono
roth_3ap_theorem
div_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
Mathlib.Meta.Positivity.pos_of_isNat
Real.instIsOrderedRing
Real.instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Fintype.card_fin
Nat.cast_add
Nat.cast_mul
Nat.cast_one
mul_le_mul_of_nonneg_left
IsOrderedRing.toPosMulMono
add_le_add_right
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.instZeroLEOneClass
RCLike.charZero_rclike
le_of_lt
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.div_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.cast_pos
Mathlib.Tactic.Ring.div_pf
Mathlib.Tactic.Ring.inv_single
Mathlib.Meta.NormNum.IsNNRat.to_raw_eq
Mathlib.Meta.NormNum.isNNRat_inv_pos
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.IsNNRat.of_raw
Mathlib.Meta.NormNum.IsNNRat.den_nz
Finset.card_image_of_injOn
Set.InjOn.mono
CharP.natCast_injOn_Iio
Fin.charP
AddRightCancelSemigroup.toIsRightCancelAdd
Finset.coe_image

---

← Back to Index