Documentation Verification Report

CovBySMul

📁 Source: Mathlib/Combinatorics/Additive/CovBySMul.lean

Statistics

MetricCount
DefinitionsCovBySMul, CovByVAdd
2
Theoremsmono, nonneg, of_subset, rfl, subset, subset_left, subset_right, trans, mono, nonneg, of_subset, rfl, subset, subset_left, subset_right, trans, covBySMul_zero, covByVAdd_zero
18
Total20

CovBySMul

Theorems

NameKindAssumesProvesValidatesDepends On
mono 📖Real
Real.instLE
CovBySMul
LE.le.trans
nonneg 📖mathematicalCovBySMulReal
Real.instLE
Real.instZero
LE.le.trans
Nat.cast_nonneg
Real.instIsOrderedRing
of_subset 📖mathematicalSet
Set.instHasSubset
CovBySMul
Real
Real.instOne
Finset.card_one
Nat.cast_one
Finset.coe_one
one_smul
rfl 📖mathematicalCovBySMul
Real
Real.instOne
Finset.card_one
Nat.cast_one
Finset.coe_one
one_smul
Set.instReflSubset
subset 📖Set
Set.instHasSubset
CovBySMul
subset_right
subset_left
subset_left 📖Set
Set.instHasSubset
CovBySMul
one_mul
trans
IsScalarTower.left
of_subset
subset_right 📖Set
Set.instHasSubset
CovBySMul
mul_one
trans
IsScalarTower.left
of_subset
trans 📖mathematicalCovBySMulReal
Real.instMul
nonneg
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.instZeroLEOneClass
IsStrictOrderedRing.toCharZero
Real.instIsStrictOrderedRing
Finset.card_smul_le
mul_le_mul
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
IsOrderedRing.toMulPosMono
Nat.cast_nonneg'
Set.smul_subset_smul
subset_refl
Set.instReflSubset
Finset.coe_smul
smul_assoc
Set.isScalarTower''

CovByVAdd

Theorems

NameKindAssumesProvesValidatesDepends On
mono 📖Real
Real.instLE
CovByVAdd
LE.le.trans
nonneg 📖mathematicalCovByVAddReal
Real.instLE
Real.instZero
LE.le.trans
Nat.cast_nonneg
Real.instIsOrderedRing
of_subset 📖mathematicalSet
Set.instHasSubset
CovByVAdd
Real
Real.instOne
Finset.card_zero
Nat.cast_one
le_refl
Finset.coe_zero
zero_vadd
rfl 📖mathematicalCovByVAdd
Real
Real.instOne
Finset.card_zero
Nat.cast_one
le_refl
Finset.coe_zero
zero_vadd
subset_refl
Set.instReflSubset
subset 📖Set
Set.instHasSubset
CovByVAdd
subset_right
subset_left
subset_left 📖Set
Set.instHasSubset
CovByVAdd
one_mul
trans
VAddAssocClass.left
of_subset
subset_right 📖Set
Set.instHasSubset
CovByVAdd
mul_one
trans
VAddAssocClass.left
of_subset
trans 📖mathematicalCovByVAddReal
Real.instMul
nonneg
Nat.cast_mul
Nat.cast_le
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.instZeroLEOneClass
IsStrictOrderedRing.toCharZero
Real.instIsStrictOrderedRing
Finset.card_vadd_le
mul_le_mul
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
IsOrderedRing.toMulPosMono
Nat.cast_nonneg'
Set.vadd_subset_vadd
subset_refl
Set.instReflSubset
Finset.coe_vadd
vadd_assoc
Set.vaddAssocClass''

(root)

Definitions

NameCategoryTheorems
CovBySMul 📖MathDef
5 mathmath: covBySMul_zero, CovBySMul.rfl, IsApproximateSubgroup.sq_covBySMul, IsApproximateSubgroup.pow_inter_pow_covBySMul_sq_inter_sq, CovBySMul.of_subset
CovByVAdd 📖MathDef
5 mathmath: covByVAdd_zero, CovByVAdd.of_subset, IsApproximateAddSubgroup.two_nsmul_covByVAdd, CovByVAdd.rfl, IsApproximateAddSubgroup.nsmul_inter_nsmul_covByVAdd_sq_inter_sq

Theorems

NameKindAssumesProvesValidatesDepends On
covBySMul_zero 📖mathematicalCovBySMul
Real
Real.instZero
Set
Set.instEmptyCollection
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.instZeroLEOneClass
IsStrictOrderedRing.toCharZero
Real.instIsStrictOrderedRing
Finset.coe_empty
Set.empty_smul
covByVAdd_zero 📖mathematicalCovByVAdd
Real
Real.instZero
Set
Set.instEmptyCollection
Nat.cast_nonpos
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.instZeroLEOneClass
IsStrictOrderedRing.toCharZero
Real.instIsStrictOrderedRing
Finset.card_eq_zero
Finset.coe_empty
Set.empty_vadd
Set.subset_empty_iff

---

← Back to Index