Documentation Verification Report

Energy

πŸ“ Source: Mathlib/Combinatorics/Additive/Energy.lean

Statistics

MetricCount
DefinitionsΒ«termE[_,_]Β», Β«termE[_]Β», Β«termEβ‚˜[_,_]Β», Β«termEβ‚˜[_]Β», addEnergy, mulEnergy
6
TheoremsaddEnergy_comm, addEnergy_empty_left, addEnergy_empty_right, addEnergy_eq_card_filter, addEnergy_eq_sum_sq, addEnergy_eq_sum_sq', addEnergy_eq_zero_iff, addEnergy_mono, addEnergy_mono_left, addEnergy_mono_right, addEnergy_pos, addEnergy_pos_iff, addEnergy_self_eq_zero_iff, addEnergy_self_pos, addEnergy_self_pos_iff, addEnergy_univ_left, addEnergy_univ_right, card_sq_le_card_mul_addEnergy, card_sq_le_card_mul_mulEnergy, le_addEnergy, le_addEnergy_self, le_card_add_mul_addEnergy, le_card_mul_mul_mulEnergy, le_mulEnergy, le_mulEnergy_self, mulEnergy_comm, mulEnergy_empty_left, mulEnergy_empty_right, mulEnergy_eq_card_filter, mulEnergy_eq_sum_sq, mulEnergy_eq_sum_sq', mulEnergy_eq_zero_iff, mulEnergy_mono, mulEnergy_mono_left, mulEnergy_mono_right, mulEnergy_pos, mulEnergy_pos_iff, mulEnergy_self_eq_zero_iff, mulEnergy_self_pos, mulEnergy_self_pos_iff, mulEnergy_univ_left, mulEnergy_univ_right
42
Total48

Combinatorics.Additive

Definitions

NameCategoryTheorems
Β«termE[_,_]Β» πŸ“–CompOpβ€”
Β«termE[_]Β» πŸ“–CompOpβ€”
Β«termEβ‚˜[_,_]Β» πŸ“–CompOpβ€”
Β«termEβ‚˜[_]Β» πŸ“–CompOpβ€”

Finset

Definitions

NameCategoryTheorems
addEnergy πŸ“–CompOp
21 mathmath: addEnergy_eq_sum_sq', addEnergy_mono_left, addEnergy_comm, addEnergy_mono, addEnergy_univ_left, addEnergy_eq_sum_sq, addEnergy_self_pos, addEnergy_empty_left, le_addEnergy, le_card_add_mul_addEnergy, card_sq_le_card_mul_addEnergy, addEnergy_pos, addEnergy_self_eq_zero_iff, addEnergy_mono_right, addEnergy_empty_right, addEnergy_self_pos_iff, addEnergy_pos_iff, addEnergy_eq_card_filter, addEnergy_eq_zero_iff, addEnergy_univ_right, le_addEnergy_self
mulEnergy πŸ“–CompOp
21 mathmath: mulEnergy_self_eq_zero_iff, mulEnergy_mono_left, mulEnergy_univ_left, mulEnergy_univ_right, mulEnergy_eq_sum_sq', mulEnergy_pos_iff, le_card_mul_mul_mulEnergy, mulEnergy_empty_right, mulEnergy_pos, card_sq_le_card_mul_mulEnergy, mulEnergy_self_pos_iff, mulEnergy_mono_right, le_mulEnergy, mulEnergy_eq_zero_iff, mulEnergy_eq_sum_sq, le_mulEnergy_self, mulEnergy_self_pos, mulEnergy_mono, mulEnergy_empty_left, mulEnergy_comm, mulEnergy_eq_card_filter

Theorems

NameKindAssumesProvesValidatesDepends On
addEnergy_comm πŸ“–mathematicalβ€”addEnergy
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
β€”addEnergy.eq_1
card_map
map_filter
filter.congr_simp
add_comm
map_eq_image
image_swap_product
addEnergy_empty_left πŸ“–mathematicalβ€”addEnergy
Finset
instEmptyCollection
β€”filter.congr_simp
product_empty
filter_empty
addEnergy_empty_right πŸ“–mathematicalβ€”addEnergy
Finset
instEmptyCollection
β€”filter.congr_simp
product_empty
filter_empty
addEnergy_eq_card_filter πŸ“–mathematicalβ€”addEnergy
card
filter
SProd.sprod
Finset
instSProd
β€”card_equiv
mem_filter
mem_product
addEnergy_eq_sum_sq πŸ“–mathematicalβ€”addEnergy
sum
Nat.instAddCommMonoid
univ
Monoid.toNatPow
Nat.instMonoid
card
filter
SProd.sprod
Finset
instSProd
β€”addEnergy_eq_sum_sq'
Fintype.sum_subset
card_eq_zero
filter_eq_empty_iff
mem_product
Nat.instAtLeastTwoHAddOfNat
OfNat.ofNat_ne_zero
Nat.instCharZero
add_mem_add
addEnergy_eq_sum_sq' πŸ“–mathematicalβ€”addEnergy
sum
Nat.instAddCommMonoid
Finset
add
Monoid.toNatPow
Nat.instMonoid
card
filter
SProd.sprod
instSProd
β€”addEnergy_eq_card_filter
sum_congr
sq
card_product
coe_add
disjoint_left
mem_product
mem_filter
card_disjiUnion
disjiUnion_eq_biUnion
ext
mem_biUnion
add_mem_add
addEnergy_eq_zero_iff πŸ“–mathematicalβ€”addEnergy
Finset
instEmptyCollection
β€”LE.le.not_lt_iff_eq'
addEnergy_pos_iff
not_nonempty_iff_eq_empty
imp_iff_or_not
addEnergy_mono πŸ“–mathematicalFinset
instHasSubset
addEnergyβ€”card_le_card
filter_subset_filter
product_subset_product
addEnergy_mono_left πŸ“–mathematicalFinset
instHasSubset
addEnergyβ€”addEnergy_mono
Subset.rfl
addEnergy_mono_right πŸ“–mathematicalFinset
instHasSubset
addEnergyβ€”addEnergy_mono
Subset.rfl
addEnergy_pos πŸ“–mathematicalNonemptyaddEnergyβ€”LT.lt.trans_le
mul_pos
LinearOrderedCommMonoidWithZero.toPosMulStrictMono
Nonempty.card_pos
le_addEnergy
addEnergy_pos_iff πŸ“–mathematicalβ€”addEnergy
Nonempty
β€”Mathlib.Tactic.Push.not_and_or_eq
not_nonempty_iff_eq_empty
addEnergy_empty_left
lt_self_iff_false
addEnergy_empty_right
addEnergy_pos
addEnergy_self_eq_zero_iff πŸ“–mathematicalβ€”addEnergy
Finset
instEmptyCollection
β€”addEnergy_eq_zero_iff
addEnergy_self_pos πŸ“–mathematicalNonemptyaddEnergyβ€”addEnergy_pos
addEnergy_self_pos_iff πŸ“–mathematicalβ€”addEnergy
Nonempty
β€”addEnergy_pos_iff
addEnergy_univ_left πŸ“–mathematicalβ€”addEnergy
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
univ
Fintype.card
Monoid.toNatPow
Nat.instMonoid
card
β€”sq
card_product
add_right_cancel
AddRightCancelSemigroup.toIsRightCancelAdd
card_image_of_injOn
ext
mem_filter
mem_product
mem_univ
mem_image
add_right_comm
add_neg_cancel_right
addEnergy_univ_right πŸ“–mathematicalβ€”addEnergy
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
univ
Fintype.card
Monoid.toNatPow
Nat.instMonoid
card
β€”addEnergy_comm
addEnergy_univ_left
card_sq_le_card_mul_addEnergy πŸ“–mathematicalβ€”Monoid.toNatPow
Nat.instMonoid
card
filter
Finset
instMembership
decidableMem
SProd.sprod
instSProd
addEnergy
β€”sum_card_fiberwise_eq_card_filter
sum_congr
one_mul
one_pow
sum_const
nsmul_eq_mul
mul_one
sum_mul_sq_le_sq_mul_sq
Nat.instIsStrictOrderedRing
CanonicallyOrderedAdd.toExistsAddOfLE
Nat.instCanonicallyOrderedAdd
mul_le_mul_right
Nat.instMulLeftMono
sum_le_sum_of_ne_zero
card_eq_zero
filter_eq_empty_iff
mem_product
Nat.instAtLeastTwoHAddOfNat
OfNat.ofNat_ne_zero
Nat.instCharZero
add_mem_add
addEnergy_eq_sum_sq'
card_sq_le_card_mul_mulEnergy πŸ“–mathematicalβ€”Monoid.toNatPow
Nat.instMonoid
card
filter
Finset
instMembership
decidableMem
SProd.sprod
instSProd
mulEnergy
β€”sum_card_fiberwise_eq_card_filter
sum_congr
one_mul
one_pow
sum_const
nsmul_eq_mul
mul_one
sum_mul_sq_le_sq_mul_sq
Nat.instIsStrictOrderedRing
CanonicallyOrderedAdd.toExistsAddOfLE
Nat.instCanonicallyOrderedAdd
mul_le_mul_right
Nat.instMulLeftMono
sum_le_sum_of_ne_zero
Nat.instCharZero
Nat.instAtLeastTwoHAddOfNat
mul_mem_mul
mulEnergy_eq_sum_sq'
le_addEnergy πŸ“–mathematicalβ€”card
addEnergy
β€”card_product
card_le_card_of_injOn
coe_product
Set.mem_prod
SetLike.mem_coe
coe_filter
mem_product
Set.injOn_of_eq_iff_eq
le_addEnergy_self πŸ“–mathematicalβ€”Monoid.toNatPow
Nat.instMonoid
card
addEnergy
β€”le_addEnergy
sq
le_card_add_mul_addEnergy πŸ“–mathematicalβ€”Monoid.toNatPow
Nat.instMonoid
card
Finset
add
addEnergy
β€”filter_eq_self
add_mem_add
mem_product
card_product
mul_pow
card_sq_le_card_mul_addEnergy
le_card_mul_mul_mulEnergy πŸ“–mathematicalβ€”Monoid.toNatPow
Nat.instMonoid
card
Finset
mul
mulEnergy
β€”filter_eq_self
mul_mem_mul
card_product
mul_pow
card_sq_le_card_mul_mulEnergy
le_mulEnergy πŸ“–mathematicalβ€”card
mulEnergy
β€”card_product
card_le_card_of_injOn
coe_product
coe_filter
le_mulEnergy_self πŸ“–mathematicalβ€”Monoid.toNatPow
Nat.instMonoid
card
mulEnergy
β€”le_mulEnergy
sq
mulEnergy_comm πŸ“–mathematicalβ€”mulEnergy
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
β€”mulEnergy.eq_1
card_map
map_filter
filter.congr_simp
mul_comm
map_eq_image
image_swap_product
mulEnergy_empty_left πŸ“–mathematicalβ€”mulEnergy
Finset
instEmptyCollection
β€”filter.congr_simp
product_empty
filter_empty
mulEnergy_empty_right πŸ“–mathematicalβ€”mulEnergy
Finset
instEmptyCollection
β€”filter.congr_simp
product_empty
filter_empty
mulEnergy_eq_card_filter πŸ“–mathematicalβ€”mulEnergy
card
filter
SProd.sprod
Finset
instSProd
β€”card_equiv
mulEnergy_eq_sum_sq πŸ“–mathematicalβ€”mulEnergy
sum
Nat.instAddCommMonoid
univ
Monoid.toNatPow
Nat.instMonoid
card
filter
SProd.sprod
Finset
instSProd
β€”mulEnergy_eq_sum_sq'
Fintype.sum_subset
Nat.instCharZero
Nat.instAtLeastTwoHAddOfNat
mulEnergy_eq_sum_sq' πŸ“–mathematicalβ€”mulEnergy
sum
Nat.instAddCommMonoid
Finset
mul
Monoid.toNatPow
Nat.instMonoid
card
filter
SProd.sprod
instSProd
β€”mulEnergy_eq_card_filter
sum_congr
sq
coe_mul
card_disjiUnion
disjiUnion_eq_biUnion
ext
mul_mem_mul
mulEnergy_eq_zero_iff πŸ“–mathematicalβ€”mulEnergy
Finset
instEmptyCollection
β€”LE.le.not_lt_iff_eq'
mulEnergy_mono πŸ“–mathematicalFinset
instHasSubset
mulEnergyβ€”card_le_card
filter_subset_filter
product_subset_product
mulEnergy_mono_left πŸ“–mathematicalFinset
instHasSubset
mulEnergyβ€”mulEnergy_mono
Subset.rfl
mulEnergy_mono_right πŸ“–mathematicalFinset
instHasSubset
mulEnergyβ€”mulEnergy_mono
Subset.rfl
mulEnergy_pos πŸ“–mathematicalNonemptymulEnergyβ€”LT.lt.trans_le
mul_pos
LinearOrderedCommMonoidWithZero.toPosMulStrictMono
Nonempty.card_pos
le_mulEnergy
mulEnergy_pos_iff πŸ“–mathematicalβ€”mulEnergy
Nonempty
β€”Mathlib.Tactic.Push.not_and_or_eq
mulEnergy_empty_left
mulEnergy_empty_right
mulEnergy_pos
mulEnergy_self_eq_zero_iff πŸ“–mathematicalβ€”mulEnergy
Finset
instEmptyCollection
β€”mulEnergy_eq_zero_iff
mulEnergy_self_pos πŸ“–mathematicalNonemptymulEnergyβ€”mulEnergy_pos
mulEnergy_self_pos_iff πŸ“–mathematicalβ€”mulEnergy
Nonempty
β€”mulEnergy_pos_iff
mulEnergy_univ_left πŸ“–mathematicalβ€”mulEnergy
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CommGroup.toGroup
univ
Fintype.card
Monoid.toNatPow
Nat.instMonoid
card
β€”sq
mul_right_cancel
RightCancelSemigroup.toIsRightCancelMul
card_image_of_injOn
ext
mul_right_comm
mul_inv_cancel_right
mulEnergy_univ_right πŸ“–mathematicalβ€”mulEnergy
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CommGroup.toGroup
univ
Fintype.card
Monoid.toNatPow
Nat.instMonoid
card
β€”mulEnergy_comm
mulEnergy_univ_left

---

← Back to Index