Documentation Verification Report

ErdosGinzburgZiv

📁 Source: Mathlib/Combinatorics/Additive/ErdosGinzburgZiv.lean

Statistics

MetricCount
Definitions0
Theoremserdos_ginzburg_ziv, erdos_ginzburg_ziv_multiset, erdos_ginzburg_ziv, erdos_ginzburg_ziv_multiset
4
Total4

Int

Theorems

NameKindAssumesProvesValidatesDepends On
erdos_ginzburg_ziv 📖mathematicalFinset.cardFinset
Finset.instHasSubset
Finset.sum
instAddCommMonoid
Nat.prime_composite_induction
CharP.cast_eq_zero
CharP.ofCharZero
instCharZero
Nat.cast_one
mul_one
Finset.exists_subset_card_eq
HasSubset.Subset.trans
Finset.instIsTransSubset
Finset.coe_empty
instIsEmptyFalse
mul_le_mul_left
covariant_swap_mul_of_covariant_mul
Nat.instMulLeftMono
tsub_mul
Nat.instCanonicallyOrderedAdd
Nat.instOrderedSub
LE.total
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
mul_assoc
tsub_right_comm
Finset.sum_const_nat
tsub_le_tsub
Finset.card_biUnion_le
Finset.le_card_sdiff
Disjoint.mono
Finset.subset_biUnion_of_mem
Finset.sdiff_disjoint
Finset.card_cons
Finset.cons_eq_insert
Finset.coe_insert
Set.pairwise_insert_of_symmetric
symmetric_disjoint
Finset.sdiff_subset
le_rfl
Eq.ge
Finset.biUnion_subset
Finset.card_biUnion
Set.Pairwise.mono
Finset.sum_biUnion
mul_comm
dvd_div_iff_mul_dvd
Finset.dvd_sum
sum_div
erdos_ginzburg_ziv_multiset 📖mathematicalMultiset.cardMultiset
Preorder.toLE
PartialOrder.toPreorder
Multiset.instPartialOrder
Multiset.sum
instAddCommMonoid
erdos_ginzburg_ziv
Multiset.card_toEnumFinset
Nat.instOrderedSub
Multiset.map_fst_le_of_subset_toEnumFinset
Multiset.card_map

ZMod

Theorems

NameKindAssumesProvesValidatesDepends On
erdos_ginzburg_ziv 📖mathematicalFinset.cardFinset
Finset.instHasSubset
Finset.sum
ZMod
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
commRing
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
Finset.sum_congr
Int.cast_sum
intCast_cast
cast_id'
Int.erdos_ginzburg_ziv
erdos_ginzburg_ziv_multiset 📖mathematicalMultiset.card
ZMod
Multiset
Preorder.toLE
PartialOrder.toPreorder
Multiset.instPartialOrder
Multiset.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
commRing
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
erdos_ginzburg_ziv
Multiset.card_toEnumFinset
Nat.instOrderedSub
Multiset.map_fst_le_of_subset_toEnumFinset
Multiset.card_map

---

← Back to Index