Documentation Verification Report

FreimanHom

📁 Source: Mathlib/Combinatorics/Additive/FreimanHom.lean

Statistics

MetricCount
DefinitionsIsAddFreimanHom, IsAddFreimanIso, IsMulFreimanHom, IsMulFreimanIso
4
TheoremsisAddFreimanIso, isAddFreimanHom, isAddFreimanIso_Iic, isAddFreimanIso_Iio, add, add_eq_add, comp, map_sum_eq_map_sum, mapsTo, mono, neg, prodMap, sub, subset, subtypeVal, superset, add_eq_add, bijOn, comp, isAddFreimanHom, map_sum_eq_map_sum, mono, prodMap, subset, comp, div, inv, map_prod_eq_map_prod, mapsTo, mono, mul, mul_eq_mul, prodMap, subset, subtypeVal, superset, bijOn, comp, isMulFreimanHom, map_prod_eq_map_prod, mono, mul_eq_mul, prodMap, subset, isMulFreimanHom, isMulFreimanIso, isAddFreimanHom_const, isAddFreimanHom_empty, isAddFreimanHom_id, isAddFreimanHom_one_iff, isAddFreimanHom_two, isAddFreimanHom_zero_iff, isAddFreimanIso_empty, isAddFreimanIso_id, isAddFreimanIso_one_iff, isAddFreimanIso_two, isAddFreimanIso_zero_iff, isMulFreimanHom_const, isMulFreimanHom_empty, isMulFreimanHom_id, isMulFreimanHom_one_iff, isMulFreimanHom_two, isMulFreimanHom_zero_iff, isMulFreimanIso_empty, isMulFreimanIso_id, isMulFreimanIso_one_iff, isMulFreimanIso_two, isMulFreimanIso_zero_iff
68
Total72

AddEquivClass

Theorems

NameKindAssumesProvesValidatesDepends On
isAddFreimanIso 📖mathematicalSet.BijOn
DFunLike.coe
EquivLike.toFunLike
IsAddFreimanIsomap_multiset_sum
instAddMonoidHomClass
EquivLike.apply_eq_iff_eq

AddMonoidHomClass

Theorems

NameKindAssumesProvesValidatesDepends On
isAddFreimanHom 📖mathematicalSet.MapsTo
DFunLike.coe
IsAddFreimanHommap_multiset_sum

Fin

Theorems

NameKindAssumesProvesValidatesDepends On
isAddFreimanIso_Iic 📖mathematicalIsAddFreimanIso
addCommMonoid
Nat.instAddCommMonoid
Set.Iic
PartialOrder.toPreorder
instPartialOrder
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
instCommRing
Nat.instPreorder
Function.Injective.injOn
val_injective
LE.le.trans_lt
eq_natCast
RingHom.instRingHomClass
Nat.cast_multiset_sum
Multiset.map_map
Multiset.map_congr
cast_val_eq_self
Multiset.map_id'
LE.le.trans'
Multiset.card_map
Multiset.sum_le_card_nsmul
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
CharP.natCast_injOn_Iio
charP
AddRightCancelSemigroup.toIsRightCancelAdd
isAddFreimanIso_Iio 📖mathematicalIsAddFreimanIso
addCommMonoid
Nat.instAddCommMonoid
Set.Iio
PartialOrder.toPreorder
instPartialOrder
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
instCommRing
Nat.instPreorder
Nat.cast_zero
IsMin.Iio_eq
LE.le.trans
Set.ext
Nat.cast_add
Nat.cast_one
val_cast_of_lt
isAddFreimanIso_Iic

IsAddFreimanHom

Theorems

NameKindAssumesProvesValidatesDepends On
add 📖mathematicalIsAddFreimanHomSet
Set.add
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
Pi.instAdd
Set.MapsTo.add
mapsTo
Pi.add_def
Multiset.sum_map_add
map_sum_eq_map_sum
add_eq_add 📖IsAddFreimanHom
Set
Set.instMembership
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
Multiset.sum_pair
map_sum_eq_map_sum
Multiset.mem_cons
Multiset.mem_singleton
Multiset.card_pair
comp 📖IsAddFreimanHomSet.MapsTo.comp
mapsTo
Multiset.map_map
map_sum_eq_map_sum
Multiset.mem_map
Multiset.card_map
map_sum_eq_map_sum 📖mathematicalIsAddFreimanHom
Set
Set.instMembership
Multiset.card
Multiset.sum
Multiset.map
mapsTo 📖mathematicalIsAddFreimanHomSet.MapsTo
mono 📖IsAddFreimanHom
AddCancelCommMonoid.toAddCommMonoid
mapsTo
Multiset.card_eq_zero
Multiset.card_pos_iff_exists_mem
map_sum_eq_map_sum
Multiset.mem_add
Multiset.eq_of_mem_replicate
Multiset.card_add
Multiset.card_replicate
Multiset.sum_add
add_right_cancel
AddRightCancelSemigroup.toIsRightCancelAdd
Multiset.map_add
neg 📖mathematicalIsAddFreimanHom
SubtractionCommMonoid.toAddCommMonoid
Set
Set.neg
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
Pi.instNeg
Set.MapsTo.neg
mapsTo
Pi.neg_def
Multiset.sum_map_neg
map_sum_eq_map_sum
prodMap 📖mathematicalIsAddFreimanHomProd.instAddCommMonoid
SProd.sprod
Set
Set.instSProd
Set.MapsTo.prodMap
mapsTo
Multiset.fst_sum
Multiset.map_map
Multiset.map_congr
Multiset.snd_sum
map_sum_eq_map_sum
Multiset.mem_map
Set.mem_prod
Multiset.card_map
forall_swap
sub 📖mathematicalIsAddFreimanHom
SubtractionCommMonoid.toAddCommMonoid
Set
Set.sub
SubNegMonoid.toSub
SubtractionMonoid.toSubNegMonoid
SubtractionCommMonoid.toSubtractionMonoid
Pi.instSub
Set.MapsTo.sub
mapsTo
Pi.sub_def
Multiset.sum_map_sub
map_sum_eq_map_sum
subset 📖Set
Set.instHasSubset
IsAddFreimanHom
Set.MapsTo
comp
isAddFreimanHom_id
map_sum_eq_map_sum
subtypeVal 📖mathematicalIsAddFreimanHom
SetLike.instMembership
AddSubmonoidClass.toAddCommMonoid
Set.univ
AddMonoidHomClass.isAddFreimanHom
AddMonoidHom.instAddMonoidHomClass
Set.mapsTo_univ
superset 📖Set
Set.instHasSubset
IsAddFreimanHom
comp
isAddFreimanHom_id

IsAddFreimanIso

Theorems

NameKindAssumesProvesValidatesDepends On
add_eq_add 📖mathematicalIsAddFreimanIso
Set
Set.instMembership
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
Multiset.sum_pair
map_sum_eq_map_sum
Multiset.mem_cons
Multiset.mem_singleton
Multiset.card_pair
bijOn 📖mathematicalIsAddFreimanIsoSet.BijOn
comp 📖IsAddFreimanIsoSet.BijOn.comp
bijOn
Multiset.map_map
map_sum_eq_map_sum
Multiset.mem_map
Set.BijOn.mapsTo
Multiset.card_map
isAddFreimanHom 📖mathematicalIsAddFreimanIsoIsAddFreimanHomSet.BijOn.mapsTo
bijOn
map_sum_eq_map_sum
map_sum_eq_map_sum 📖mathematicalIsAddFreimanIso
Set
Set.instMembership
Multiset.card
Multiset.sum
Multiset.map
mono 📖IsAddFreimanIso
AddCancelCommMonoid.toAddCommMonoid
bijOn
Multiset.map_congr
Multiset.card_eq_zero
Multiset.card_pos_iff_exists_mem
map_sum_eq_map_sum
Multiset.mem_add
Multiset.eq_of_mem_replicate
Multiset.card_add
Multiset.card_replicate
Multiset.map_add
Multiset.sum_add
add_right_cancel_iff
AddRightCancelSemigroup.toIsRightCancelAdd
prodMap 📖mathematicalIsAddFreimanIsoProd.instAddCommMonoid
SProd.sprod
Set
Set.instSProd
Set.BijOn.prodMap
bijOn
Multiset.fst_sum
Multiset.map_map
Multiset.map_congr
Multiset.snd_sum
map_sum_eq_map_sum
Multiset.mem_map
Set.mem_prod
Multiset.card_map
forall_swap
subset 📖Set
Set.instHasSubset
IsAddFreimanIso
Set.BijOn
map_sum_eq_map_sum

IsMulFreimanHom

Theorems

NameKindAssumesProvesValidatesDepends On
comp 📖IsMulFreimanHomSet.MapsTo.comp
mapsTo
Multiset.map_map
map_prod_eq_map_prod
Multiset.card_map
div 📖mathematicalIsMulFreimanHom
DivisionCommMonoid.toCommMonoid
Set
Set.div
DivInvMonoid.toDiv
DivisionMonoid.toDivInvMonoid
DivisionCommMonoid.toDivisionMonoid
Pi.instDiv
Set.MapsTo.div
mapsTo
Pi.div_def
Multiset.prod_map_div
map_prod_eq_map_prod
inv 📖mathematicalIsMulFreimanHom
DivisionCommMonoid.toCommMonoid
Set
Set.inv
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
Pi.instInv
Set.MapsTo.inv
mapsTo
Pi.inv_def
Multiset.prod_map_inv
map_prod_eq_map_prod
map_prod_eq_map_prod 📖mathematicalIsMulFreimanHom
Set
Set.instMembership
Multiset.card
Multiset.prod
Multiset.map
mapsTo 📖mathematicalIsMulFreimanHomSet.MapsTo
mono 📖IsMulFreimanHom
CancelCommMonoid.toCommMonoid
mapsTo
Multiset.card_eq_zero
map_prod_eq_map_prod
Multiset.mem_add
Multiset.eq_of_mem_replicate
Multiset.card_add
Multiset.card_replicate
Multiset.prod_add
mul_right_cancel
RightCancelSemigroup.toIsRightCancelMul
Multiset.map_add
mul 📖mathematicalIsMulFreimanHomSet
Set.mul
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
Pi.instMul
Set.MapsTo.mul
mapsTo
Pi.mul_def
Multiset.prod_map_mul
map_prod_eq_map_prod
mul_eq_mul 📖IsMulFreimanHom
Set
Set.instMembership
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
map_prod_eq_map_prod
Multiset.card_pair
prodMap 📖mathematicalIsMulFreimanHomProd.instCommMonoid
SProd.sprod
Set
Set.instSProd
Set.MapsTo.prodMap
mapsTo
Multiset.fst_prod
Multiset.map_map
Multiset.map_congr
Multiset.snd_prod
map_prod_eq_map_prod
Multiset.card_map
forall_swap
subset 📖Set
Set.instHasSubset
IsMulFreimanHom
Set.MapsTo
comp
isMulFreimanHom_id
map_prod_eq_map_prod
subtypeVal 📖mathematicalIsMulFreimanHom
SetLike.instMembership
SubmonoidClass.toCommMonoid
Set.univ
MonoidHomClass.isMulFreimanHom
MonoidHom.instMonoidHomClass
Set.mapsTo_univ
superset 📖Set
Set.instHasSubset
IsMulFreimanHom
comp
isMulFreimanHom_id

IsMulFreimanIso

Theorems

NameKindAssumesProvesValidatesDepends On
bijOn 📖mathematicalIsMulFreimanIsoSet.BijOn
comp 📖IsMulFreimanIsoSet.BijOn.comp
bijOn
Multiset.map_map
map_prod_eq_map_prod
Set.BijOn.mapsTo
Multiset.card_map
isMulFreimanHom 📖mathematicalIsMulFreimanIsoIsMulFreimanHomSet.BijOn.mapsTo
bijOn
map_prod_eq_map_prod
map_prod_eq_map_prod 📖mathematicalIsMulFreimanIso
Set
Set.instMembership
Multiset.card
Multiset.prod
Multiset.map
mono 📖IsMulFreimanIso
CancelCommMonoid.toCommMonoid
bijOn
Multiset.map_congr
Multiset.card_eq_zero
map_prod_eq_map_prod
Multiset.mem_add
Multiset.eq_of_mem_replicate
Multiset.card_add
Multiset.card_replicate
Multiset.map_add
Multiset.prod_add
RightCancelSemigroup.toIsRightCancelMul
mul_eq_mul 📖mathematicalIsMulFreimanIso
Set
Set.instMembership
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
map_prod_eq_map_prod
Multiset.card_pair
prodMap 📖mathematicalIsMulFreimanIsoProd.instCommMonoid
SProd.sprod
Set
Set.instSProd
Set.BijOn.prodMap
bijOn
Multiset.fst_prod
Multiset.map_map
Multiset.map_congr
Multiset.snd_prod
map_prod_eq_map_prod
Multiset.card_map
forall_swap
subset 📖Set
Set.instHasSubset
IsMulFreimanIso
Set.BijOn
map_prod_eq_map_prod

MonoidHomClass

Theorems

NameKindAssumesProvesValidatesDepends On
isMulFreimanHom 📖mathematicalSet.MapsTo
DFunLike.coe
IsMulFreimanHommap_multiset_prod

MulEquivClass

Theorems

NameKindAssumesProvesValidatesDepends On
isMulFreimanIso 📖mathematicalSet.BijOn
DFunLike.coe
EquivLike.toFunLike
IsMulFreimanIsomap_multiset_prod
instMonoidHomClass
EquivLike.apply_eq_iff_eq

(root)

Definitions

NameCategoryTheorems
IsAddFreimanHom 📖CompData
9 mathmath: IsAddFreimanHom.subtypeVal, isAddFreimanHom_empty, isAddFreimanHom_two, AddMonoidHomClass.isAddFreimanHom, isAddFreimanHom_const, IsAddFreimanIso.isAddFreimanHom, isAddFreimanHom_id, isAddFreimanHom_zero_iff, isAddFreimanHom_one_iff
IsAddFreimanIso 📖CompData
8 mathmath: Fin.isAddFreimanIso_Iio, isAddFreimanIso_zero_iff, isAddFreimanIso_empty, Fin.isAddFreimanIso_Iic, isAddFreimanIso_one_iff, isAddFreimanIso_two, isAddFreimanIso_id, AddEquivClass.isAddFreimanIso
IsMulFreimanHom 📖CompData
9 mathmath: MonoidHomClass.isMulFreimanHom, isMulFreimanHom_one_iff, isMulFreimanHom_zero_iff, isMulFreimanHom_two, IsMulFreimanHom.subtypeVal, isMulFreimanHom_empty, isMulFreimanHom_id, isMulFreimanHom_const, IsMulFreimanIso.isMulFreimanHom
IsMulFreimanIso 📖CompData
6 mathmath: isMulFreimanIso_zero_iff, MulEquivClass.isMulFreimanIso, isMulFreimanIso_one_iff, isMulFreimanIso_two, isMulFreimanIso_empty, isMulFreimanIso_id

Theorems

NameKindAssumesProvesValidatesDepends On
isAddFreimanHom_const 📖mathematicalSet
Set.instMembership
IsAddFreimanHomMultiset.map_const'
Multiset.sum_replicate
isAddFreimanHom_empty 📖mathematicalIsAddFreimanHom
Set
Set.instEmptyCollection
Set.mapsTo_empty
Multiset.map_congr
Multiset.eq_zero_of_forall_notMem
Set.mem_empty_iff_false
Multiset.notMem_zero
isAddFreimanHom_id 📖mathematicalSet
Set.instHasSubset
IsAddFreimanHomMultiset.map_congr
Multiset.map_id'
isAddFreimanHom_one_iff 📖mathematicalIsAddFreimanHom
Set.MapsTo
IsAddFreimanHom.mapsTo
Multiset.card_eq_one
Multiset.map_congr
Multiset.sum_singleton
isAddFreimanHom_two 📖mathematicalIsAddFreimanHom
Set.MapsTo
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
IsAddFreimanHom.mapsTo
IsAddFreimanHom.add_eq_add
Multiset.card_eq_two
Multiset.map_cons
Multiset.sum_cons
Multiset.sum_singleton
Multiset.mem_cons
Multiset.mem_singleton
isAddFreimanHom_zero_iff 📖mathematicalIsAddFreimanHom
Set.MapsTo
IsAddFreimanHom.mapsTo
Multiset.card_eq_zero
Multiset.map_congr
isAddFreimanIso_empty 📖mathematicalIsAddFreimanIso
Set
Set.instEmptyCollection
Set.bijOn_empty
Multiset.eq_zero_of_forall_notMem
Multiset.map_congr
isAddFreimanIso_id 📖mathematicalIsAddFreimanIsoSet.bijOn_id
Multiset.map_congr
Multiset.map_id'
isAddFreimanIso_one_iff 📖mathematicalIsAddFreimanIso
Set.BijOn
IsAddFreimanIso.bijOn
Multiset.card_eq_one
Multiset.sum_singleton
Multiset.mem_singleton
isAddFreimanIso_two 📖mathematicalIsAddFreimanIso
Set.BijOn
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
IsAddFreimanIso.bijOn
IsAddFreimanIso.add_eq_add
Multiset.card_eq_two
Multiset.map_cons
Multiset.sum_cons
Multiset.sum_singleton
Multiset.mem_cons
Multiset.mem_singleton
isAddFreimanIso_zero_iff 📖mathematicalIsAddFreimanIso
Set.BijOn
IsAddFreimanIso.bijOn
Multiset.card_eq_zero
Multiset.map_congr
isMulFreimanHom_const 📖mathematicalSet
Set.instMembership
IsMulFreimanHomMultiset.map_const'
Multiset.prod_replicate
isMulFreimanHom_empty 📖mathematicalIsMulFreimanHom
Set
Set.instEmptyCollection
Set.mapsTo_empty
Multiset.map_congr
Multiset.eq_zero_of_forall_notMem
isMulFreimanHom_id 📖mathematicalSet
Set.instHasSubset
IsMulFreimanHomMultiset.map_congr
Multiset.map_id'
isMulFreimanHom_one_iff 📖mathematicalIsMulFreimanHom
Set.MapsTo
IsMulFreimanHom.mapsTo
Multiset.map_congr
Multiset.prod_singleton
isMulFreimanHom_two 📖mathematicalIsMulFreimanHom
Set.MapsTo
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
IsMulFreimanHom.mapsTo
IsMulFreimanHom.mul_eq_mul
Multiset.map_cons
Multiset.prod_cons
Multiset.prod_singleton
isMulFreimanHom_zero_iff 📖mathematicalIsMulFreimanHom
Set.MapsTo
IsMulFreimanHom.mapsTo
Multiset.map_congr
isMulFreimanIso_empty 📖mathematicalIsMulFreimanIso
Set
Set.instEmptyCollection
Set.bijOn_empty
Multiset.eq_zero_of_forall_notMem
Multiset.map_congr
isMulFreimanIso_id 📖mathematicalIsMulFreimanIsoSet.bijOn_id
Multiset.map_congr
Multiset.map_id'
isMulFreimanIso_one_iff 📖mathematicalIsMulFreimanIso
Set.BijOn
IsMulFreimanIso.bijOn
Multiset.prod_singleton
isMulFreimanIso_two 📖mathematicalIsMulFreimanIso
Set.BijOn
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
IsMulFreimanIso.bijOn
IsMulFreimanIso.mul_eq_mul
Multiset.map_cons
Multiset.prod_cons
Multiset.prod_singleton
isMulFreimanIso_zero_iff 📖mathematicalIsMulFreimanIso
Set.BijOn
IsMulFreimanIso.bijOn
Multiset.map_congr

---

← Back to Index