📁 Source: Mathlib/Combinatorics/Additive/PluenneckeRuzsa.lean
card_div_mul_le_card_div_mul_card_mul
card_sub_add_le_card_sub_add_card_add
pluennecke_petridis_inequality_add
pluennecke_petridis_inequality_mul
pluennecke_ruzsa_inequality_nsmul_add
pluennecke_ruzsa_inequality_nsmul_sub
pluennecke_ruzsa_inequality_nsmul_sub_nsmul_add
pluennecke_ruzsa_inequality_nsmul_sub_nsmul_sub
pluennecke_ruzsa_inequality_pow_div
pluennecke_ruzsa_inequality_pow_div_pow_div
pluennecke_ruzsa_inequality_pow_div_pow_mul
pluennecke_ruzsa_inequality_pow_mul
ruzsa_triangle_inequality_addNeg_addNeg_addNeg
ruzsa_triangle_inequality_addNeg_add_add
ruzsa_triangle_inequality_add_addNeg_add
ruzsa_triangle_inequality_add_add_add
ruzsa_triangle_inequality_add_add_negAdd
ruzsa_triangle_inequality_add_sub_add
ruzsa_triangle_inequality_add_sub_sub
ruzsa_triangle_inequality_div_div_div
ruzsa_triangle_inequality_div_mul_div
ruzsa_triangle_inequality_div_mul_mul
ruzsa_triangle_inequality_invMul_invMul_invMul
ruzsa_triangle_inequality_invMul_mul_mul
ruzsa_triangle_inequality_mulInv_mulInv_mulInv
ruzsa_triangle_inequality_mulInv_mul_mul
ruzsa_triangle_inequality_mul_div_div
ruzsa_triangle_inequality_mul_div_mul
ruzsa_triangle_inequality_mul_mulInv_mul
ruzsa_triangle_inequality_mul_mul_invMul
ruzsa_triangle_inequality_mul_mul_mul
ruzsa_triangle_inequality_negAdd_add_add
ruzsa_triangle_inequality_negAdd_negAdd_negAdd
ruzsa_triangle_inequality_sub_add_add
ruzsa_triangle_inequality_sub_add_sub
ruzsa_triangle_inequality_sub_sub_sub
card
Finset
div
DivInvMonoid.toDiv
Group.toDivInvMonoid
CommGroup.toGroup
mul
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
div_inv_eq_mul
div_eq_mul_inv
sub
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
add
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
sub_neg_eq_add
sub_eq_add_neg
induction_on
empty_add
MulZeroClass.zero_mul
MulZeroClass.mul_zero
le_refl
add_assoc
singleton_add_inter
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsAddUnit.add_neg_cancel_left
isAddUnit_singleton
insert_eq
union_comm
union_add
sup_sdiff_eq_sup
add_le_add_left
instAddRightMono
inter_subset_right
add_subset_add
subset_refl
instReflSubset
inter_subset_left
mul_le_mul_left
covariant_swap_mul_of_covariant_mul
Nat.instMulLeftMono
LE.le.trans_eq
card_union_le
card_sdiff_of_subset
add_tsub_assoc_of_le
CanonicallyOrderedAdd.toExistsAddOfLE
Nat.instCanonicallyOrderedAdd
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
Nat.instOrderedSub
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
contravariant_lt_of_covariant_le
card_le_card
card_singleton_add
tsub_mul
LE.total
add_mul
Distrib.rightDistribClass
tsub_le_tsub
covariant_swap_add_of_covariant_add
mul_add
Distrib.leftDistribClass
mul_tsub
add_comm
eq_tsub_of_add_eq
card_union_add_card_inter
empty_mul
mul_assoc
singleton_mul_inter
LeftCancelSemigroup.toIsLeftCancelMul
IsUnit.mul_inv_cancel_left
isUnit_singleton
union_mul
instMulRightMono
mul_subset_mul
card_singleton_mul
Nonempty
NNRat
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderNNRat
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
NNRat.instSemifield
nsmul
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
NNRat.instDiv
zero_nsmul
sub_zero
mem_erase_of_ne_of_mem
Nonempty.ne_empty
mem_powerset_self
exists_min_image
nonempty_iff_ne_empty
mem_powerset
mem_erase
le_of_mul_le_mul_right
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
instIsStrictOrderedRingNNRat
Nat.cast_mul
Nat.cast_le
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
IsStrictOrderedRing.toZeroLEOneClass
NNRat.instCharZero
mul_le_mul'
IsOrderedMonoid.toMulLeftMono
LinearOrderedCommMonoidWithZero.toIsOrderedMonoid
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.div_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.div_pf
Mathlib.Tactic.Ring.inv_single
Mathlib.Tactic.Ring.inv_mul
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNNRat_inv_pos
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.mul_pp_pf_overlap
Mathlib.Meta.NormNum.isNat_add
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
pow_le_pow_left'
Nat.mono_cast
Nat.cast_pos'
NeZero.charZero_one
Nonempty.card_pos
card_neg
neg_sub'
neg_nsmul
npow
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroup.toDivisionCommMonoid
pow_zero
div_one
card_inv
inv_div'
inv_pow
mul_comm
neg
NegZeroClass.toNeg
AddGroup.toSubtractionMonoid
neg_neg
eq_empty_or_nonempty
add_empty
le_div_iff₀
MulPosReflectLE.toMulPosReflectLT
Nat.cast_pos
NNRat.instNontrivial
mul_div_right_comm
LE.le.trans
card_le_card_add_left
le_trans
Rat.instIsStrictOrderedRing
Nonneg.coe_inv
Nonneg.coe_div
Nonneg.coe_zpow
mul_le_mul
IsOrderedRing.toPosMulMono
IsOrderedRing.toMulPosMono
add_subset_add_right
zero_le
NNRat.instCanonicallyOrderedAdd
card_product
mul_one
card_mul_le_card_mul
mem_div
card_le_card_of_injOn
mem_coe
mem_bipartiteAbove
mk_mem_product
div_mem_div
div_div_div_cancel_right
div_right_injective
card_le_one_iff
mem_bipartiteBelow
inv
InvOneClass.toInv
Group.toDivisionMonoid
card_map
inv_inv
mul_empty
card_le_card_mul_left
mul_subset_mul_right
map_op_neg
map_op_add
mem_sub
sub_mem_sub
sub_sub_sub_cancel_right
sub_right_injective
---
← Back to Index