Documentation Verification Report

Randomisation

📁 Source: Mathlib/Combinatorics/Additive/Randomisation.lean

Statistics

MetricCount
Definitions0
Theoremsrandomisation
1
Total1

AddDissociated

Theorems

NameKindAssumesProvesValidatesDepends On
randomisation 📖mathematicalAddDissociated
AddChar
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
Complex
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Complex.instSemiring
AddChar.instAddCommGroup
CommRing.toCommMonoid
Complex.commRing
setOf
Complex.instZero
Finset.expect
Real
Real.instAddCommMonoid
Algebra.toModule
NNRat
instCommSemiringNNRat
Real.semiring
DivisionSemiring.toNNRatAlgebra
Semifield.toDivisionSemiring
Field.toSemifield
Real.instField
RCLike.charZero_rclike
Real.instRCLike
Finset.univ
Finset.prod
Real.instCommMonoid
AddChar.instFintype
Complex.instRCLike
Finite.of_fintype
Real.instAdd
Complex.re
Complex.instMul
DFunLike.coe
AddChar.instFunLike
Complex.ofReal_injective
RCLike.charZero_rclike
Finite.of_fintype
Complex.instCharZero
IsStrictOrderedRing.toCharZero
Real.instIsStrictOrderedRing
Complex.ofReal_expect
Finset.expect_congr
Complex.ofReal_prod
Finset.prod_congr
Complex.ofReal_add
Nat.instAtLeastTwoHAddOfNat
Finset.sum_congr
Finset.expect_mul
IsScalarTower.right
add_comm
Complex.re_eq_add_conj
Fintype.sum_eq_single
mul_eq_zero_of_left
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
RingHom.instRingHomClass
Finset.prod_div_distrib
Finset.prod_add
Finset.prod_const
Finset.expect_sum_comm
isReduced_of_noZeroDivisors
NormMulClass.toNoZeroDivisors
NormedDivisionRing.toNormMulClass
Complex.instNontrivial
Finset.sum_eq_zero
Finset.mul_expect
Algebra.to_smulCommClass
AddChar.sum_apply
mul_mul_mul_comm
AddChar.map_neg_eq_conj
mul_eq_zero
AddChar.expect_eq_zero_iff_ne_zero
instIsDomain
sub_ne_zero
mul_ne_zero_iff
Finset.prod_ne_zero_iff
Set.InjOn.ne
RingHomClass.toMonoidWithZeroHomClass
sdiff_ne_right
pow_zero
div_self
NeZero.charZero_one
Finset.expect_const
AddTorsor.nonempty
Finset.compl_empty
one_mul

---

← Back to Index