Documentation Verification Report

RuzsaCovering

📁 Source: Mathlib/Combinatorics/Additive/RuzsaCovering.lean

Statistics

MetricCount
Definitions0
Theoremsruzsa_covering_add, ruzsa_covering_mul, ruzsa_covering_add, ruzsa_covering_mul
4
Total4

Finset

Theorems

NameKindAssumesProvesValidatesDepends On
ruzsa_covering_add 📖mathematicalNonempty
Real
Real.instLE
Real.instNatCast
card
Finset
add
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
Real.instMul
instHasSubset
sub
SubNegMonoid.toSub
exists_maximal
instIsTransLe
filter_nonempty_iff
empty_mem_powerset
coe_empty
Set.pairwiseDisjoint_empty
mem_filter
mem_powerset
le_of_mul_le_mul_right
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
Real.instIsStrictOrderedRing
card_add_iff
pairwiseDisjoint_vadd_iff
AddLeftCancelSemigroup.toIsLeftCancelAdd
Nat.cast_mul
Nat.mono_cast
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.instZeroLEOneClass
card_le_card
add_subset_add
subset_refl
instReflSubset
Nat.cast_pos'
NeZero.one
Real.instNontrivial
Nonempty.card_pos
subset_add_left
Nonempty.zero_mem_sub
Maximal.not_gt
insert_subset_iff
coe_insert
Set.PairwiseDisjoint.insert
ssubset_insert
neg_vadd_mem_iff
not_disjoint_iff
Mathlib.Tactic.Push.not_forall_eq
mem_add
mem_sub
add_sub_add_right_eq_sub
sub_neg_eq_add
add_neg_cancel_left
ruzsa_covering_mul 📖mathematicalNonempty
Real
Real.instLE
Real.instNatCast
card
Finset
mul
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Real.instMul
instHasSubset
div
DivInvMonoid.toDiv
exists_maximal
instIsTransLe
filter_nonempty_iff
empty_mem_powerset
coe_empty
le_of_mul_le_mul_right
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
Real.instIsStrictOrderedRing
card_mul_iff
pairwiseDisjoint_smul_iff
LeftCancelSemigroup.toIsLeftCancelMul
Nat.cast_mul
Nat.mono_cast
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.instZeroLEOneClass
card_le_card
mul_subset_mul
subset_refl
instReflSubset
Nat.cast_pos'
NeZero.one
Real.instNontrivial
Nonempty.card_pos
subset_mul_left
Nonempty.one_mem_div
Maximal.not_gt
insert_subset_iff
coe_insert
Set.PairwiseDisjoint.insert
ssubset_insert
Mathlib.Tactic.Push.not_forall_eq
mem_mul
mem_div
mul_div_mul_right_eq_div
div_inv_eq_mul
mul_inv_cancel_left

Set

Theorems

NameKindAssumesProvesValidatesDepends On
ruzsa_covering_add 📖mathematicalNonempty
Real
Real.instLE
Real.instNatCast
Nat.card
Elem
Set
add
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
Real.instMul
instHasSubset
sub
SubNegMonoid.toSub
Finite
CanLift.prf
instCanLiftFinsetCoeFinite
Finset.ruzsa_covering_add
Finset.coe_add
Nat.card_eq_fintype_card
Fintype.card_coe
SetLike.coe_subset_coe
instIsConcreteLE
Finset.coe_sub
Finset.finite_toSet
ruzsa_covering_mul 📖mathematicalNonempty
Real
Real.instLE
Real.instNatCast
Nat.card
Elem
Set
mul
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Real.instMul
instHasSubset
div
DivInvMonoid.toDiv
Finite
CanLift.prf
instCanLiftFinsetCoeFinite
Finset.ruzsa_covering_mul
Nat.card_eq_fintype_card
Fintype.card_coe
instIsConcreteLE

---

← Back to Index