Documentation Verification Report

SmallTripling

📁 Source: Mathlib/Combinatorics/Additive/SmallTripling.lean

Statistics

MetricCount
Definitions0
Theoremssmall_alternating_nsmul_of_small_tripling, small_alternating_pow_of_small_tripling, small_nsmul_of_small_tripling, small_pow_of_small_tripling
4
Total4

Finset

Theorems

NameKindAssumesProvesValidatesDepends On
small_alternating_nsmul_of_small_tripling 📖mathematicalReal
Real.instLE
Real.instNatCast
card
Finset
AddMonoid.toNatSMul
addMonoid
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
Real.instMul
abs
instLatticeInt
Int.instAddGroup
add
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
zero
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
zsmul
NegZeroClass.toNeg
Monoid.toNatPow
Real.instMonoid
ne_of_gt
lt_of_lt_of_le
Mathlib.Meta.Positivity.pos_of_isNat
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
Nat.instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
abs_zero
Int.instAddLeftMono
zero_ne_one
eq_empty_or_nonempty
zsmul_empty
List.sum_replicate
nsmul_empty
Nat.cast_zero
MulZeroClass.mul_zero
le_refl
one_le_of_le_mul_right₀
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
Real.instIsStrictOrderedRing
Nat.cast_pos'
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.instZeroLEOneClass
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
Nonempty.card_pos
LE.le.trans'
Nat.cast_le
card_le_card_nsmul
Nat.instAtLeastTwoHAddOfNat
OfNat.ofNat_ne_zero
Nat.instCharZero
pow_mul
add_zero
add_assoc
le_self_pow₀
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
pow_le_pow_right₀
abs_eq
Int.instIsOrderedAddMonoid
zero_le_one
Int.instZeroLEOneClass
Fin.forall_iff_succ
IsEmpty.forall_iff
Fin.isEmpty'
one_zsmul
le_of_not_gt
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.cast_zero
Mathlib.Tactic.Ring.mul_one
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
Mathlib.Tactic.Linarith.add_lt_of_le_of_neg
Mathlib.Tactic.Linarith.sub_nonpos_of_le
succ_nsmul
zero_nsmul
zero_add
Mathlib.Tactic.Linarith.sub_neg_of_lt
mul_nonneg_of_nonpos_of_nonpos
AddGroup.existsAddOfLE
IsOrderedRing.toMulPosMono
covariant_swap_add_of_covariant_add
IsRightCancelAdd.addRightReflectLE_of_addRightReflectLT
AddRightCancelSemigroup.toIsRightCancelAdd
contravariant_swap_add_of_contravariant_add
contravariant_lt_of_covariant_le
Mathlib.Tactic.Linarith.natCast_nonneg
neg_zsmul
Nat.cast_one
Mathlib.Tactic.Linarith.without_one_mul
CancelDenoms.sub_subst
CancelDenoms.mul_subst
CancelDenoms.pow_subst
Mathlib.Meta.NormNum.isNat_eq_true
Mathlib.Meta.NormNum.isNat_mul
Mathlib.Meta.NormNum.isNat_pow
Mathlib.Meta.NormNum.one_natPow
neg_add_rev
card_neg
pow_succ'
pow_zero
mul_one
Mathlib.Tactic.Ring.mul_pp_pf_overlap
Mathlib.Meta.NormNum.isNat_add
succ_nsmul'
small_alternating_pow_of_small_tripling 📖mathematicalReal
Real.instLE
Real.instNatCast
card
Finset
Monoid.toNatPow
monoid
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Real.instMul
abs
instLatticeInt
Int.instAddGroup
mul
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
one
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
zpow
InvOneClass.toInv
Real.instMonoid
ne_of_gt
lt_of_lt_of_le
Mathlib.Meta.Positivity.pos_of_isNat
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
Nat.instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
abs_zero
Int.instAddLeftMono
eq_empty_or_nonempty
empty_zpow
List.prod_replicate
empty_pow
Nat.cast_zero
MulZeroClass.mul_zero
one_le_of_le_mul_right₀
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
Real.instIsStrictOrderedRing
Nat.cast_pos'
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.instZeroLEOneClass
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
Nonempty.card_pos
LE.le.trans'
card_le_card_pow
Nat.instCharZero
Nat.instAtLeastTwoHAddOfNat
pow_mul
mul_one
le_self_pow₀
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
pow_le_pow_right₀
Int.instIsOrderedAddMonoid
Int.instZeroLEOneClass
Fin.isEmpty'
zpow_one
le_of_not_gt
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.cast_zero
Mathlib.Tactic.Ring.mul_one
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
Mathlib.Tactic.Linarith.add_lt_of_le_of_neg
Mathlib.Tactic.Linarith.sub_nonpos_of_le
pow_succ
pow_zero
one_mul
Mathlib.Tactic.Linarith.sub_neg_of_lt
mul_nonneg_of_nonpos_of_nonpos
AddGroup.existsAddOfLE
IsOrderedRing.toMulPosMono
covariant_swap_add_of_covariant_add
IsRightCancelAdd.addRightReflectLE_of_addRightReflectLT
AddRightCancelSemigroup.toIsRightCancelAdd
contravariant_swap_add_of_contravariant_add
contravariant_lt_of_covariant_le
Mathlib.Tactic.Linarith.natCast_nonneg
zpow_neg
Nat.cast_one
Mathlib.Tactic.Linarith.without_one_mul
CancelDenoms.sub_subst
CancelDenoms.mul_subst
CancelDenoms.pow_subst
Mathlib.Meta.NormNum.isNat_eq_true
Mathlib.Meta.NormNum.isNat_mul
Mathlib.Meta.NormNum.isNat_pow
Mathlib.Meta.NormNum.one_natPow
card_inv
pow_succ'
Mathlib.Tactic.Ring.mul_pp_pf_overlap
Mathlib.Meta.NormNum.isNat_add
small_nsmul_of_small_tripling 📖mathematicalReal
Real.instLE
Real.instNatCast
card
Finset
AddMonoid.toNatSMul
addMonoid
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
Real.instMul
neg
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
nsmul
NegZeroClass.toZero
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
Monoid.toNatPow
Real.instMonoid
eq_or_eq_neg_of_abs_eq
one_zsmul
neg_zsmul
List.sum_replicate
add_zero
succ_nsmul'
zero_nsmul
abs_one
IsStrictOrderedRing.toIsOrderedRing
Int.instIsStrictOrderedRing
small_pow_of_small_tripling 📖mathematicalReal
Real.instLE
Real.instNatCast
card
Finset
Monoid.toNatPow
monoid
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Real.instMul
inv
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
npow
InvOneClass.toOne
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
Real.instMonoid
eq_or_eq_neg_of_abs_eq
zpow_one
zpow_neg
List.prod_replicate
mul_one
pow_succ'
pow_zero
abs_one
IsStrictOrderedRing.toIsOrderedRing
Int.instIsStrictOrderedRing

---

← Back to Index