Documentation Verification Report

VerySmallDoubling

📁 Source: Mathlib/Combinatorics/Additive/VerySmallDoubling.lean

Statistics

MetricCount
DefinitionsinstFintypeSubtypeMemSubgroupInvMulSubgroup, invMulSubgroup
2
Theoremscard_inv_mul_of_doubling_lt_three_halves, card_mul_finset_lt_two, doubling_lt_golden_ratio, doubling_lt_three_halves, doubling_lt_two, invMulSubgroup_eq_inv_mul, invMulSubgroup_eq_mul_inv, mul_inv_eq_inv_mul_of_doubling_lt_two, op_smul_stabilizer_of_no_doubling, op_vadd_stabilizer_of_no_doubling, smul_inv_mul_eq_inv_mul_opSMul, smul_inv_mul_opSMul_eq_mul_of_doubling_lt_three_halves, smul_stabilizer_of_no_doubling, vadd_stabilizer_of_no_doubling
14
Total16

Finset

Definitions

NameCategoryTheorems
instFintypeSubtypeMemSubgroupInvMulSubgroup 📖CompOp
invMulSubgroup 📖CompOp
2 mathmath: invMulSubgroup_eq_mul_inv, invMulSubgroup_eq_inv_mul

Theorems

NameKindAssumesProvesValidatesDepends On
card_inv_mul_of_doubling_lt_three_halves 📖mathematicalcard
Finset
mul
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
inv
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
smul_inv_mul_opSMul_eq_mul_of_doubling_lt_three_halves
card_smul_finset
card_mul_finset_lt_two 📖mathematicalReal
Real.instLT
Real.instZero
Real.instLE
Real.instOne
Nonempty
card
Real.instNatCast
Finset
mul
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Real.instMul
Real.instSub
instOfNatAtLeastTwo
Nat.instAtLeastTwoHAddOfNat
Fintype.card
Subgroup
SetLike.instMembership
Subgroup.instSetLike
DivInvMonoid.toDiv
Real.instDivInvMonoid
Set
Set.instHasSubset
SetLike.coe
instSetLike
Set.mul
Nat.instAtLeastTwoHAddOfNat
lt_of_not_ge
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.cast_zero
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_zero
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Nat.cast_one
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
Real.instIsStrictOrderedRing
Mathlib.Tactic.Linarith.sub_neg_of_lt
Real.instIsOrderedRing
CancelDenoms.sub_subst
CancelDenoms.div_subst
Mathlib.Meta.NormNum.isNat_eq_true
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNNRat_div
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.isNNRat_inv_pos
IsStrictOrderedRing.toCharZero
Mathlib.Meta.NormNum.isNat_mul
Mathlib.Tactic.Linarith.mul_nonpos
Mathlib.Tactic.Linarith.sub_nonpos_of_le
Mathlib.Meta.NormNum.isNat_lt_true
LT.lt.le
card_pos
LT.lt.trans_le
Nonempty.card_pos
sub_le_sub
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
mul_le_mul_of_nonneg_left
IsOrderedRing.toPosMulMono
Nat.mono_cast
Real.instZeroLEOneClass
le_of_not_gt
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Linarith.add_neg
neg_neg_of_pos
Mathlib.Tactic.Linarith.zero_lt_one
Mathlib.Tactic.Linarith.mul_neg
Mathlib.Tactic.Linarith.eq_of_not_lt_of_not_gt
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.add_overlap_pf
CancelDenoms.mul_subst
mul_le_mul_iff_right₀
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
div_pos
PosMulReflectLE.toPosMulReflectLT
Mathlib.Meta.Positivity.pos_of_isNat
Real.instNontrivial
Set.toFinset_card
Mathlib.Tactic.Ring.div_congr
Mathlib.Tactic.Ring.div_pf
Mathlib.Tactic.Ring.inv_single
Mathlib.Meta.NormNum.IsNNRat.to_raw_eq
Mathlib.Meta.NormNum.IsRat.to_raw_eq
Mathlib.Meta.NormNum.isRat_mul
Mathlib.Meta.NormNum.IsInt.to_isRat
Mathlib.Meta.NormNum.IsNNRat.to_isRat
Mathlib.Meta.NormNum.IsNNRat.of_raw
Mathlib.Meta.NormNum.IsNNRat.den_nz
Mathlib.Meta.NormNum.IsRat.to_isNNRat
Mathlib.Meta.NormNum.IsRat.of_raw
Mathlib.Meta.NormNum.IsRat.den_nz
Mathlib.Tactic.FieldSimp.eq_eq_cancel_eq
IsCancelMulZero.toIsLeftCancelMulZero
instIsCancelMulZero
Mathlib.Tactic.FieldSimp.eq_mul_of_eq_eq_eq_mul
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval
Mathlib.Tactic.FieldSimp.subst_sub
Mathlib.Tactic.FieldSimp.NF.one_eq_eval
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval_cons_neg
Mathlib.Meta.NormNum.isNat_eq_false
one_mul
Mathlib.Tactic.FieldSimp.eq_div_of_eq_one_of_subst
Mathlib.Tactic.FieldSimp.NF.cons_eq_div_of_eq_div
div_one
Mathlib.Tactic.FieldSimp.NF.eval_cons
Mathlib.Tactic.FieldSimp.zpow'_one
Mathlib.Tactic.FieldSimp.NF.div_eq_eval
Mathlib.Tactic.FieldSimp.NF.atom_eq_eval
Mathlib.Tactic.FieldSimp.NF.div_eq_eval₃
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₃
mul_one
Mathlib.Tactic.FieldSimp.NF.div_eq_eval₁
Mathlib.Tactic.FieldSimp.NF.one_div_eq_eval
ne_of_gt
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₁
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₂
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons_zero
Mathlib.Tactic.FieldSimp.NF.eval_cons_of_pow_eq_zero
Mathlib.Tactic.FieldSimp.NF.cons_ne_zero
Nat.cast_pos'
NeZero.one
one_ne_zero
GroupWithZero.toNontrivial
Mathlib.Tactic.FieldSimp.NF.div_eq_eval₂
One.instNonempty
mul_div_cancel_left₀
EuclideanDomain.toMulDivCancelClass
Nat.cast_mul
Set.toFinset_mul
toFinset_coe
Fintype.subsingleton
div_le_div_of_nonneg_right
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
Mathlib.Meta.NormNum.IsRat.to_isInt
Mathlib.Meta.NormNum.isRat_add
sub_mul
sub_le_iff_le_add
covariant_swap_add_of_covariant_add
le_imp_le_of_le_of_le
add_le_add_right
le_refl
card_le_card
Subgroup.one_mem
sub_sub_cancel
Fintype.card_pos
Nat.cast_nonneg'
Set.subset_mul_right
doubling_lt_golden_ratio 📖mathematicalReal
Real.instLT
Real.instOne
Real.goldenRatio
Real.instLE
Real.instNatCast
card
Finset
mul
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
inv
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
Real.instMul
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instSub
instOfNatAtLeastTwo
Nat.instAtLeastTwoHAddOfNat
Real.goldenConj
Set
Set.mul
SetLike.coe
Subgroup
Subgroup.instSetLike
instSetLike
lt_trans
Mathlib.Meta.Positivity.pos_of_isNat
Real.instIsOrderedRing
Real.instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
lt_of_not_ge
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.div_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.div_pf
Mathlib.Tactic.Ring.inv_single
Mathlib.Meta.NormNum.IsNNRat.to_raw_eq
Mathlib.Meta.NormNum.isNNRat_inv_pos
IsStrictOrderedRing.toCharZero
Real.instIsStrictOrderedRing
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsRat.to_raw_eq
Mathlib.Meta.NormNum.isRat_mul
Mathlib.Meta.NormNum.IsInt.to_isRat
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNNRat.to_isRat
Mathlib.Meta.NormNum.IsNNRat.of_raw
Mathlib.Meta.NormNum.IsNNRat.den_nz
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.IsRat.to_isInt
Mathlib.Meta.NormNum.isRat_add
Mathlib.Meta.NormNum.IsRat.of_raw
Mathlib.Meta.NormNum.IsRat.den_nz
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
Mathlib.Tactic.Linarith.sub_neg_of_lt
Mathlib.Tactic.Linarith.sub_nonpos_of_le
Mathlib.Tactic.Ring.neg_congr
Mathlib.Meta.NormNum.IsRat.to_isNNRat
Mathlib.Tactic.Linarith.add_neg
neg_neg_of_pos
Real.instIsOrderedAddMonoid
Mathlib.Tactic.Linarith.zero_lt_one
Real.goldenConj_neg
Nat.instAtLeastTwoHAddOfNat
Mathlib.Tactic.Ring.add_pf_add_overlap
Real.goldenRatio_lt_two
div_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
mul_pos
eq_empty_or_nonempty
CharP.cast_eq_zero
CharP.ofCharZero
coe_empty
Set.mul_empty
le_of_lt
MulAction.stabilizer_coe_finset
MulAction.stabilizer_finite
finite_toSet
nonempty_fintype
MulAction.stabilizer_mul_self
coe_mul
Set.coe_toFinset
convolution_inv
convolution.congr_simp
inv_inv
card_inv
card_product
Nat.cast_mul
card_eq_sum_card_fiberwise
mul_mem_mul
mem_product
sum_congr
filter.congr_simp
sum_filter_add_sum_filter_not
add_le_add
IsOrderedAddMonoid.toAddLeftMono
covariant_swap_add_of_covariant_add
sum_le_sum
Nat.mono_cast
Real.instZeroLEOneClass
convolution_le_card_left
sum_const
nsmul_eq_mul
card_filter_add_card_filter_not
Nat.cast_add
add_sub_cancel_left
mul_assoc
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.isNat_add
Nonempty.card_pos
mul_le_mul_of_nonneg_left
IsOrderedRing.toPosMulMono
le_of_mul_le_mul_right
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
Nat.cast_pos'
NeZero.one
Mathlib.Tactic.Ring.mul_pp_pf_overlap
div_mul_eq_mul_div
Real.goldenRatio_mul_goldenConj
Real.goldenRatio_add_goldenConj
div_le_div_of_nonneg_right
MulPosReflectLE.toMulPosReflectLT
le_of_not_gt
Mathlib.Tactic.Linarith.add_lt_of_le_of_neg
Mathlib.Tactic.FieldSimp.eq_eq_cancel_eq
IsCancelMulZero.toIsLeftCancelMulZero
instIsCancelMulZero
Mathlib.Tactic.FieldSimp.eq_mul_of_eq_eq_eq_mul
Mathlib.Tactic.FieldSimp.NF.div_eq_eval
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval
Mathlib.Tactic.FieldSimp.subst_sub
Mathlib.Tactic.FieldSimp.NF.atom_eq_eval
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons
one_mul
Mathlib.Tactic.FieldSimp.eq_div_of_eq_one_of_subst
Mathlib.Tactic.FieldSimp.NF.cons_eq_div_of_eq_div
div_one
Mathlib.Tactic.FieldSimp.NF.eval_cons
Mathlib.Tactic.FieldSimp.zpow'_one
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₁
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₃
mul_one
Mathlib.Tactic.FieldSimp.NF.div_eq_eval₁
Mathlib.Tactic.FieldSimp.NF.div_eq_eval₂
Mathlib.Tactic.FieldSimp.NF.one_div_eq_eval
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons_zero
Mathlib.Tactic.FieldSimp.NF.eval_cons_of_pow_eq_zero
ne_of_gt
one_ne_zero
GroupWithZero.toNontrivial
card_le_card
MulAction.mem_stabilizer_finset'
card_mul_inv_eq_convolution_inv
inter_subset_inter
inter_subset_right
union_subset
inter_subset_left
card_inter_add_card_union
Mathlib.Tactic.Linarith.lt_of_lt_of_eq
Mathlib.Tactic.Linarith.without_one_mul
CancelDenoms.sub_subst
CancelDenoms.mul_subst
Mathlib.Meta.NormNum.isNat_eq_true
Mathlib.Meta.NormNum.isNat_mul
neg_eq_zero
CancelDenoms.add_subst
sub_eq_zero_of_eq
card_smul_inter_smul
Set.toFinset_card
inv_div
mul_div_cancel_left₀
EuclideanDomain.toMulDivCancelClass
One.instNonempty
inv_anti₀
IsUnit.mul_div_cancel_right
doubling_lt_three_halves 📖mathematicalcard
Finset
mul
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Fintype.card
Subgroup
SetLike.instMembership
Subgroup.instSetLike
Set
Set.instHasSubset
SetLike.coe
instSetLike
Set.smulSet
SemigroupAction.toSMul
Monoid.toSemigroup
MulAction.toSemigroupAction
Monoid.toMulAction
MulOpposite
MulOpposite.instMonoid
Monoid.toOppositeMulAction
MulOpposite.op
Fintype.card_congr'
Nat.card_eq_finsetCard
card_inv_mul_of_doubling_lt_three_halves
invMulSubgroup_eq_inv_mul
instIsConcreteLE
smul_inv_mul_eq_inv_mul_opSMul
doubling_lt_two 📖mathematicalReal
Real.instLT
Real.instZero
Real.instLE
Real.instOne
Nonempty
Real.instNatCast
card
Finset
mul
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Real.instMul
Real.instSub
instOfNatAtLeastTwo
Nat.instAtLeastTwoHAddOfNat
Fintype.card
Subgroup
SetLike.instMembership
Subgroup.instSetLike
DivInvMonoid.toDiv
Real.instDivInvMonoid
Set
Set.instHasSubset
SetLike.coe
instSetLike
Set.mul
Nat.instAtLeastTwoHAddOfNat
card_mul_finset_lt_two
le_refl
invMulSubgroup_eq_inv_mul 📖mathematicalcard
Finset
mul
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
SetLike.coe
Subgroup
Subgroup.instSetLike
invMulSubgroup
Set
Set.mul
instSetLike
inv
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
invMulSubgroup_eq_mul_inv 📖mathematicalcard
Finset
mul
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
SetLike.coe
Subgroup
Subgroup.instSetLike
invMulSubgroup
Set
Set.mul
instSetLike
inv
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
invMulSubgroup_eq_inv_mul
mul_inv_eq_inv_mul_of_doubling_lt_two
Nat.instAtLeastTwoHAddOfNat
Nat.cast_mul
Int.cast_natCast
Int.cast_mul
Int.cast_ofNat
lt_of_not_ge
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.cast_zero
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_mul
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
Rat.instIsStrictOrderedRing
Mathlib.Tactic.Linarith.add_lt_of_le_of_neg
Mathlib.Tactic.Linarith.sub_nonpos_of_le
IsStrictOrderedRing.toIsOrderedRing
Mathlib.Tactic.Linarith.natCast_nonneg
Mathlib.Tactic.Linarith.mul_neg
CancelDenoms.derive_trans
Mathlib.Meta.NormNum.IsNNRat.to_eq
Mathlib.Meta.NormNum.isNNRat_div
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.isNNRat_inv_pos
Rat.instCharZero
CancelDenoms.sub_subst
CancelDenoms.mul_subst
CancelDenoms.div_subst
Mathlib.Meta.NormNum.isNat_eq_true
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Tactic.Linarith.sub_neg_of_lt
Mathlib.Meta.NormNum.isNat_lt_true
Mathlib.Tactic.Linarith.mul_nonpos
mul_inv_eq_inv_mul_of_doubling_lt_two 📖mathematicalcard
Finset
mul
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
inv
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
Subset.antisymm
inv_inv
card_inv
op_smul_stabilizer_of_no_doubling 📖mathematicalcard
Finset
mul
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
instMembership
MulOpposite
Set
Set.smulSet
SemigroupAction.toSMul
Monoid.toSemigroup
MulOpposite.instMonoid
MulAction.toSemigroupAction
Monoid.toOppositeMulAction
MulOpposite.op
SetLike.coe
Subgroup
Subgroup.instSetLike
MulAction.stabilizer
mulActionFinset
Monoid.toMulAction
instSetLike
op_vadd_stabilizer_of_no_doubling 📖mathematicalcard
Finset
add
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
instMembership
HVAdd.hVAdd
AddOpposite
Set
instHVAdd
Set.vaddSet
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
AddOpposite.instAddMonoid
AddAction.toAddSemigroupAction
AddMonoid.toOppositeAddAction
AddOpposite.op
SetLike.coe
AddSubgroup
AddSubgroup.instSetLike
AddAction.stabilizer
addActionFinset
AddMonoid.toAddAction
instSetLike
smul_inv_mul_eq_inv_mul_opSMul 📖mathematicalcard
Finset
mul
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
instMembership
smulFinset
SemigroupAction.toSMul
Monoid.toSemigroup
MulAction.toSemigroupAction
Monoid.toMulAction
inv
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
MulOpposite
MulOpposite.instMonoid
Monoid.toOppositeMulAction
MulOpposite.op
subset_antisymm
instAntisymmSubset
subset_smul_finset_iff
MulOpposite.op_inv
instIsTransSubset
op_smul_finset_subset_mul
inv_inv
Mathlib.Tactic.GCongr.rel_imp_rel
mul_subset_mul
smul_finset_subset_mul
subset_refl
instReflSubset
coe_mul
mul_assoc
invMulSubgroup_eq_mul_inv
coe_mul_coe
SubgroupClass.toSubmonoidClass
Subgroup.instSubgroupClass
invMulSubgroup_eq_inv_mul
mul_inv_eq_inv_mul_of_doubling_lt_two
smul_inv_mul_opSMul_eq_mul_of_doubling_lt_three_halves 📖mathematicalcard
Finset
mul
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
instMembership
smulFinset
SemigroupAction.toSMul
Monoid.toSemigroup
MulAction.toSemigroupAction
Monoid.toMulAction
MulOpposite
MulOpposite.instMonoid
Monoid.toOppositeMulAction
MulOpposite.op
inv
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
HasSubset.Subset.antisymm
instAntisymmSubset
smul_stabilizer_of_no_doubling 📖mathematicalcard
Finset
mul
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
instMembership
Set
Set.smulSet
SemigroupAction.toSMul
Monoid.toSemigroup
MulAction.toSemigroupAction
Monoid.toMulAction
SetLike.coe
Subgroup
Subgroup.instSetLike
MulAction.stabilizer
mulActionFinset
instSetLike
vadd_stabilizer_of_no_doubling 📖mathematicalcard
Finset
add
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
instMembership
HVAdd.hVAdd
Set
instHVAdd
Set.vaddSet
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
AddAction.toAddSemigroupAction
AddMonoid.toAddAction
SetLike.coe
AddSubgroup
AddSubgroup.instSetLike
AddAction.stabilizer
addActionFinset
instSetLike

---

← Back to Index