Documentation Verification Report

Bell

📁 Source: Mathlib/Combinatorics/Enumerative/Bell.lean

Statistics

MetricCount
Definitionsbell, bell, uniformBell
3
Theoremsbell_eq, bell_mul_eq, bell_zero, bell_one, bell_succ, bell_succ', bell_two, bell_zero, uniformBell_eq, uniformBell_eq_div, uniformBell_mul_eq, uniformBell_one_left, uniformBell_one_right, uniformBell_succ_left, uniformBell_zero_left, uniformBell_zero_right
16
Total19

Multiset

Definitions

NameCategoryTheorems
bell 📖CompOp
3 mathmath: bell_zero, bell_mul_eq, bell_eq

Theorems

NameKindAssumesProvesValidatesDepends On
bell_eq 📖mathematicalbell
Nat.factorial
sum
Nat.instAddCommMonoid
prod
Nat.instCommMonoid
map
Finset.prod
Finset.erase
toFinset
count
Nat.instCanonicallyOrderedAdd
IsStrictOrderedRing.noZeroDivisors
Nat.instIsStrictOrderedRing
CanonicallyOrderedAdd.toExistsAddOfLE
Nat.instNontrivial
Nat.factorial_pos
Finset.prod_pos
Nat.instZeroLEOneClass
LinearOrderedCommMonoidWithZero.toPosMulStrictMono
bell_mul_eq
mul_assoc
bell_mul_eq 📖mathematicalbell
prod
Nat.instCommMonoid
map
Nat.factorial
Finset.prod
Finset.erase
toFinset
count
sum
Nat.instAddCommMonoid
ne_of_gt
Finset.prod_pos
Nat.instZeroLEOneClass
LinearOrderedCommMonoidWithZero.toPosMulStrictMono
Nat.instNontrivial
Nat.factorial_pos
Nat.multinomial_spec
mul_assoc
mul_comm
Finset.prod_mul_distrib
Finset.prod_multiset_map_count
Finset.prod_congr
Finset.prod_erase_mul
one_pow
mul_one
MulZeroClass.zero_mul
Finset.erase_eq_of_notMem
Finset.sum_multiset_count
Finset.sum_congr
bell_zero 📖mathematicalbell
Multiset
instZero

Nat

Definitions

NameCategoryTheorems
bell 📖CompOp
5 mathmath: bell_zero, bell_succ', bell_two, bell_succ, bell_one
uniformBell 📖CompOp
11 mathmath: uniformBell_eq_div, DividedPowers.OfInvertibleFactorial.dpow_comp, uniformBell_mul_eq, DividedPowers.dpow_comp, uniformBell_one_right, uniformBell_eq, DividedPowers.OfInvertibleFactorial.dpow_comp_of_mul_lt, uniformBell_one_left, uniformBell_zero_right, uniformBell_zero_left, uniformBell_succ_left

Theorems

NameKindAssumesProvesValidatesDepends On
bell_one 📖mathematicalbellbell.eq_2
Finset.sum_congr
Finset.univ_unique
choose_self
tsub_self
instCanonicallyOrderedAdd
instOrderedSub
bell_zero
mul_one
Finset.sum_const
Finset.card_singleton
bell_succ 📖mathematicalbell
Finset.sum
instAddCommMonoid
Finset.univ
Fin.fintype
choose
bell.eq_2
bell_succ' 📖mathematicalbell
Finset.sum
instAddCommMonoid
Finset.HasAntidiagonal.antidiagonal
instAddMonoid
Finset.Nat.instHasAntidiagonal
choose
bell_succ
Finset.Nat.sum_antidiagonal_eq_sum_range_succ
Finset.sum_range
bell_two 📖mathematicalbellbell.eq_2
Finset.sum_congr
Fin.sum_univ_two
choose_succ_self_right
zero_add
tsub_zero
instOrderedSub
bell_one
mul_one
choose_self
tsub_self
instCanonicallyOrderedAdd
bell_zero
bell_zero 📖mathematicalbell
uniformBell_eq 📖mathematicaluniformBell
Finset.prod
instCommMonoid
Finset.range
choose
Multiset.toFinset_replicate
Finset.prod_congr
Multiset.count.congr_simp
Multiset.count_eq_zero_of_notMem
MulZeroClass.mul_zero
multinomial_empty
Finset.erase_eq_of_notMem
Finset.prod_const_one
mul_one
multinomial_singleton
Finset.erase_singleton
add_zero
zero_tsub
instCanonicallyOrderedAdd
instOrderedSub
choose_self
Multiset.count_replicate
mul_ite
Finset.prod_singleton
one_mul
uniformBell_eq_div 📖mathematicaluniformBell
factorial
Monoid.toNatPow
instMonoid
factorial_pos
mul_assoc
uniformBell_mul_eq
uniformBell_mul_eq 📖mathematicaluniformBell
Monoid.toNatPow
instMonoid
factorial
Multiset.map_replicate
Multiset.prod_replicate
Finset.prod_congr
Multiset.toFinset_replicate
factorial_zero
Finset.prod_empty
Finset.erase_eq_of_notMem
Finset.prod_singleton
Multiset.count_replicate_self
Multiset.sum_replicate
Multiset.bell_mul_eq
uniformBell_one_left 📖mathematicaluniformBelluniformBell_eq
Finset.prod_singleton
MulZeroClass.zero_mul
zero_add
choose_self
uniformBell_one_right 📖mathematicaluniformBelluniformBell_eq
Finset.prod_congr
mul_one
add_tsub_cancel_right
instOrderedSub
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
tsub_eq_zero_of_le
instCanonicallyOrderedAdd
choose_zero_right
Finset.prod_const_one
uniformBell_succ_left 📖mathematicaluniformBell
choose
uniformBell_eq
Finset.prod_congr
mul_comm
Finset.prod_range_succ
uniformBell_zero_left 📖mathematicaluniformBelluniformBell_eq
uniformBell_zero_right 📖mathematicaluniformBelluniformBell_eq
Finset.prod_congr
MulZeroClass.mul_zero
add_zero
zero_tsub
instCanonicallyOrderedAdd
instOrderedSub
choose_self
Finset.prod_const_one

---

← Back to Index