Documentation Verification Report

Composition

πŸ“ Source: Mathlib/Combinatorics/Enumerative/Composition.lean

Statistics

MetricCount
Definitionsappend, blocks, blocksFinEquiv, blocksFun, boundaries, boundary, cast, embedding, index, instInhabited, instToString, invEmbedding, length, ones, recOnAppendSingle, recOnSingleAppend, reverse, single, sizeUpTo, toCompositionAsSet, CompositionAsSet, blocks, blocksFun, boundaries, boundary, length, toComposition, splitWrtComposition, splitWrtCompositionAux, compositionAsSetEquiv, compositionAsSetFintype, compositionEquiv, compositionFintype, instDecidableEqComposition, decEq, instDecidableEqCompositionAsSet, decEq, instInhabitedCompositionAsSet
38
Theoremsappend_blocks, blocksFun_congr, blocksFun_le, blocksFun_mem_blocks, blocks_eq_nil, blocks_le, blocks_length, blocks_pos, blocks_pos', blocks_sum, boundary_last, boundary_zero, card_boundaries_eq_succ_length, cast_blocks, cast_eq_cast, cast_heq, cast_rfl, coe_embedding, coe_invEmbedding, disjoint_range, embedding_comp_inv, eq_ones_iff, eq_ones_iff_le_length, eq_ones_iff_length, eq_single_iff_length, ext, ext_iff, index_embedding, index_exists, invEmbedding_comp, length_eq_zero, length_le, length_pos_iff, length_pos_of_pos, lt_sizeUpTo_index_succ, mem_range_embedding, mem_range_embedding_iff, mem_range_embedding_iff', monotone_sizeUpTo, ne_ones_iff, ne_single_iff, ofFn_blocksFun, one_le_blocks, one_le_blocks', one_le_blocksFun, ones_blocks, ones_blocksFun, ones_embedding, ones_length, ones_sizeUpTo, orderEmbOfFin_boundaries, reverse_append, reverse_bijective, reverse_blocks, reverse_eq_ones, reverse_eq_single, reverse_inj, reverse_injective, reverse_involutive, reverse_ones, reverse_reverse, reverse_single, reverse_surjective, sigma_eq_iff_blocks_eq, single_blocks, single_blocksFun, single_embedding, single_length, sizeUpTo_index_le, sizeUpTo_le, sizeUpTo_length, sizeUpTo_ofLength_le, sizeUpTo_strict_mono, sizeUpTo_succ, sizeUpTo_succ', sizeUpTo_zero, sum_blocksFun, toCompositionAsSet_blocks, toCompositionAsSet_boundaries, toCompositionAsSet_length, blocksFun_pos, blocks_length, blocks_partial_sum, blocks_sum, boundaries_nonempty, boundary_length, boundary_zero, card_boundaries_eq_succ_length, card_boundaries_pos, ext, ext_iff, getLast_mem, length_lt_card_boundaries, lt_length, lt_length', mem_boundaries_iff_exists_blocks_sum_take_eq, toComposition_blocks, toComposition_boundaries, toComposition_length, zero_mem, flatten_splitWrtComposition, flatten_splitWrtCompositionAux, getElem_splitWrtComposition, getElem_splitWrtComposition', getElem_splitWrtCompositionAux, length_pos_of_mem_splitWrtComposition, length_splitWrtComposition, length_splitWrtCompositionAux, map_length_splitWrtComposition, map_length_splitWrtCompositionAux, splitWrtCompositionAux_cons, splitWrtComposition_flatten, sum_take_map_length_splitWrtComposition, compositionAsSet_card, composition_card
115
Total153

Composition

Definitions

NameCategoryTheorems
append πŸ“–CompOp
2 mathmath: append_blocks, reverse_append
blocks πŸ“–CompOp
22 mathmath: ofFn_blocksFun, append_blocks, ext_iff, blocks_pos', cast_blocks, Nat.Partition.ofComposition_parts, one_le_blocks', blocksFun_mem_blocks, blocks_sum, ne_ones_iff, sigma_pi_composition_eq_iff, toCompositionAsSet_blocks, sizeUpTo_succ, List.map_length_splitWrtComposition, CompositionAsSet.toComposition_blocks, blocks_eq_nil, sigma_eq_iff_blocks_eq, sigma_composition_eq_iff, ones_blocks, blocks_length, reverse_blocks, single_blocks
blocksFinEquiv πŸ“–CompOpβ€”
blocksFun πŸ“–CompOp
30 mathmath: ofFn_blocksFun, embedding_comp_inv, blocksFun_sigmaCompositionAux, sum_blocksFun, length_sigmaCompositionAux, ones_blocksFun, FormalMultilinearSeries.compAlongComposition_nnnorm, blocksFun_le, index_embedding, FormalMultilinearSeries.compAlongComposition_bound, FormalMultilinearSeries.compChangeOfVariables_blocksFun, blocksFun_mem_blocks, sizeUpTo_succ', FormalMultilinearSeries.compAlongComposition_norm, blocksFun_congr, mem_range_embedding, invEmbedding_comp, mem_range_embedding_iff', sigma_pi_composition_eq_iff, FormalMultilinearSeries.radius_right_inv_pos_of_radius_pos_aux1, disjoint_range, ne_single_iff, FormalMultilinearSeries.applyComposition_update, coe_invEmbedding, single_blocksFun, coe_embedding, FormalMultilinearSeries.mem_compPartialSumTarget_iff, mem_range_embedding_iff, single_embedding, one_le_blocksFun
boundaries πŸ“–CompOp
4 mathmath: orderEmbOfFin_boundaries, card_boundaries_eq_succ_length, CompositionAsSet.toComposition_boundaries, toCompositionAsSet_boundaries
boundary πŸ“–CompOp
3 mathmath: orderEmbOfFin_boundaries, boundary_zero, boundary_last
cast πŸ“–CompOp
5 mathmath: cast_blocks, cast_rfl, cast_heq, reverse_append, cast_eq_cast
embedding πŸ“–CompOp
12 mathmath: embedding_comp_inv, blocksFun_sigmaCompositionAux, index_embedding, mem_range_embedding, invEmbedding_comp, mem_range_embedding_iff', ones_embedding, disjoint_range, FormalMultilinearSeries.applyComposition_update, coe_embedding, mem_range_embedding_iff, single_embedding
index πŸ“–CompOp
9 mathmath: embedding_comp_inv, index_embedding, sizeUpTo_index_le, mem_range_embedding, invEmbedding_comp, mem_range_embedding_iff', lt_sizeUpTo_index_succ, FormalMultilinearSeries.applyComposition_update, coe_invEmbedding
instInhabited πŸ“–CompOpβ€”
instToString πŸ“–CompOpβ€”
invEmbedding πŸ“–CompOp
4 mathmath: embedding_comp_inv, invEmbedding_comp, FormalMultilinearSeries.applyComposition_update, coe_invEmbedding
length πŸ“–CompOp
47 mathmath: orderEmbOfFin_boundaries, FormalMultilinearSeries.comp_rightInv_aux1, ofFn_blocksFun, index_exists, List.length_splitWrtComposition, blocksFun_sigmaCompositionAux, sum_blocksFun, length_sigmaCompositionAux, length_pos_iff, card_boundaries_eq_succ_length, FormalMultilinearSeries.compAlongComposition_nnnorm, ones_length, CompositionAsSet.toComposition_length, FormalMultilinearSeries.compAlongComposition_bound, single_length, length_gather, FormalMultilinearSeries.compChangeOfVariables_blocksFun, boundary_zero, FormalMultilinearSeries.compChangeOfVariables_length, length_eq_zero, eq_ones_iff_length, sizeUpTo_succ', eq_ones_iff_le_length, FormalMultilinearSeries.compAlongComposition_norm, sizeUpTo_index_le, length_pos_of_pos, length_le, sigma_pi_composition_eq_iff, ones_embedding, FormalMultilinearSeries.compAlongComposition_apply, FormalMultilinearSeries.radius_right_inv_pos_of_radius_pos_aux1, toCompositionAsSet_length, ContinuousMultilinearMap.compAlongComposition_apply, lt_sizeUpTo_index_succ, boundary_last, sigma_composition_eq_iff, eq_single_iff_length, FormalMultilinearSeries.applyComposition_update, coe_invEmbedding, FormalMultilinearSeries.rightInv_coeff, FormalMultilinearSeries.comp_rightInv_aux2, sizeUpTo_length, coe_embedding, FormalMultilinearSeries.mem_compPartialSumTarget_iff, blocks_length, mem_range_embedding_iff, FormalMultilinearSeries.applyComposition_ones
ones πŸ“–CompOp
10 mathmath: ones_blocksFun, ones_length, eq_ones_iff, eq_ones_iff_length, ones_sizeUpTo, eq_ones_iff_le_length, ones_blocks, reverse_eq_ones, reverse_ones, FormalMultilinearSeries.applyComposition_ones
recOnAppendSingle πŸ“–CompOpβ€”
recOnSingleAppend πŸ“–CompOpβ€”
reverse πŸ“–CompOp
12 mathmath: reverse_bijective, reverse_eq_single, reverse_surjective, reverse_involutive, reverse_inj, reverse_injective, reverse_reverse, reverse_append, reverse_eq_ones, reverse_ones, reverse_blocks, reverse_single
single πŸ“–CompOp
8 mathmath: reverse_eq_single, single_length, FormalMultilinearSeries.applyComposition_single, eq_single_iff_length, single_blocksFun, reverse_single, single_blocks, single_embedding
sizeUpTo πŸ“–CompOp
19 mathmath: index_exists, sizeUpTo_le, List.sum_take_map_length_splitWrtComposition, ones_sizeUpTo, sizeUpTo_succ', sizeUpTo_index_le, sizeUpTo_sizeUpTo_add, sizeUpTo_strict_mono, sizeUpTo_succ, monotone_sizeUpTo, List.getElem_splitWrtComposition', lt_sizeUpTo_index_succ, sizeUpTo_ofLength_le, coe_invEmbedding, sizeUpTo_zero, sizeUpTo_length, coe_embedding, mem_range_embedding_iff, List.getElem_splitWrtComposition
toCompositionAsSet πŸ“–CompOp
3 mathmath: toCompositionAsSet_blocks, toCompositionAsSet_length, toCompositionAsSet_boundaries

Theorems

NameKindAssumesProvesValidatesDepends On
append_blocks πŸ“–mathematicalβ€”blocks
append
β€”β€”
blocksFun_congr πŸ“–mathematicalblocks
length
blocksFunβ€”ext_iff
blocksFun_le πŸ“–mathematicalβ€”blocksFunβ€”blocks_le
blocksFun_mem_blocks πŸ“–mathematicalβ€”blocks
blocksFun
β€”β€”
blocks_eq_nil πŸ“–mathematicalβ€”blocksβ€”blocks_sum
nonpos_iff_eq_zero
Nat.instCanonicallyOrderedAdd
length_le
blocks_le πŸ“–β€”blocksβ€”β€”blocks_sum
List.le_sum_of_mem
Nat.instCanonicallyOrderedAdd
blocks_length πŸ“–mathematicalβ€”blocks
length
β€”β€”
blocks_pos πŸ“–β€”blocksβ€”β€”β€”
blocks_pos' πŸ“–mathematicallengthblocksβ€”one_le_blocks'
blocks_sum πŸ“–mathematicalβ€”MulZeroClass.toZero
Nat.instMulZeroClass
blocks
β€”β€”
boundary_last πŸ“–mathematicalβ€”DFunLike.coe
OrderEmbedding
length
instFunLikeOrderEmbedding
boundary
β€”sizeUpTo_length
boundary_zero πŸ“–mathematicalβ€”DFunLike.coe
OrderEmbedding
length
instFunLikeOrderEmbedding
boundary
β€”sizeUpTo_zero
card_boundaries_eq_succ_length πŸ“–mathematicalβ€”Finset.card
boundaries
length
β€”Finset.card_map
Fintype.card_fin
cast_blocks πŸ“–mathematicalβ€”blocks
cast
β€”β€”
cast_eq_cast πŸ“–mathematicalβ€”cast
Composition
β€”β€”
cast_heq πŸ“–mathematicalβ€”Composition
cast
β€”β€”
cast_rfl πŸ“–mathematicalβ€”castβ€”β€”
coe_embedding πŸ“–mathematicalβ€”DFunLike.coe
OrderEmbedding
blocksFun
instFunLikeOrderEmbedding
embedding
sizeUpTo
length
β€”β€”
coe_invEmbedding πŸ“–mathematicalβ€”blocksFun
index
invEmbedding
sizeUpTo
length
β€”β€”
disjoint_range πŸ“–mathematicalβ€”Disjoint
Set
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
Set.range
blocksFun
DFunLike.coe
OrderEmbedding
instFunLikeOrderEmbedding
embedding
β€”Set.not_disjoint_iff
lt_irrefl
mem_range_embedding_iff
List.monotone_sum_take
Nat.instCanonicallyOrderedAdd
Disjoint.symm
Ne.lt_or_gt
embedding_comp_inv πŸ“–mathematicalβ€”DFunLike.coe
OrderEmbedding
blocksFun
index
instFunLikeOrderEmbedding
embedding
invEmbedding
β€”add_tsub_cancel_of_le
CanonicallyOrderedAdd.toExistsAddOfLE
Nat.instCanonicallyOrderedAdd
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
Nat.instOrderedSub
sizeUpTo_index_le
eq_ones_iff πŸ“–mathematicalβ€”onesβ€”ext
blocks_sum
List.sum_replicate
mul_one
ones_blocks
eq_ones_iff_le_length πŸ“–mathematicalβ€”ones
length
β€”length_le
eq_ones_iff_length πŸ“–mathematicalβ€”ones
length
β€”ones_length
Mathlib.Tactic.Contrapose.contrapose₁
lt_irrefl
Finset.sum_const
Fintype.card_congr'
Fintype.card_fin
mul_one
ne_ones_iff
Set.mem_range
List.mem_ofFn'
ofFn_blocksFun
Finset.sum_lt_sum
Nat.instIsOrderedCancelAddMonoid
one_le_blocksFun
Finset.mem_univ
sum_blocksFun
eq_single_iff_length πŸ“–mathematicalβ€”single
length
β€”single_length
ext
blocks_length
blocks_sum
List.eq_cons_of_length_one
add_zero
ext πŸ“–β€”blocksβ€”β€”β€”
ext_iff πŸ“–mathematicalβ€”blocksβ€”ext
index_embedding πŸ“–mathematicalβ€”index
DFunLike.coe
OrderEmbedding
blocksFun
instFunLikeOrderEmbedding
embedding
β€”mem_range_embedding_iff'
Set.mem_range_self
index_exists πŸ“–mathematicalβ€”sizeUpTo
length
β€”lt_of_le_of_lt
zero_le
Nat.instCanonicallyOrderedAdd
blocks_sum
List.length_pos_of_sum_pos
sizeUpTo_length
ne_of_gt
invEmbedding_comp πŸ“–mathematicalβ€”blocksFun
index
DFunLike.coe
OrderEmbedding
instFunLikeOrderEmbedding
embedding
invEmbedding
β€”index_embedding
add_tsub_cancel_left
Nat.instOrderedSub
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
length_eq_zero πŸ“–mathematicalβ€”lengthβ€”β€”
length_le πŸ“–mathematicalβ€”lengthβ€”blocks_sum
List.length_le_sum_of_one_le
one_le_blocks
length_pos_iff πŸ“–mathematicalβ€”lengthβ€”Nat.instCanonicallyOrderedAdd
length_pos_of_pos πŸ“–mathematicalβ€”lengthβ€”length_pos_iff
lt_sizeUpTo_index_succ πŸ“–mathematicalβ€”sizeUpTo
length
index
β€”index_exists
Nat.find_spec
mem_range_embedding πŸ“–mathematicalβ€”Set
Set.instMembership
Set.range
blocksFun
index
DFunLike.coe
OrderEmbedding
instFunLikeOrderEmbedding
embedding
β€”Set.mem_range_self
embedding_comp_inv
mem_range_embedding_iff πŸ“–mathematicalβ€”Set
Set.instMembership
Set.range
blocksFun
DFunLike.coe
OrderEmbedding
instFunLikeOrderEmbedding
embedding
sizeUpTo
length
β€”Set.mem_range
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
Nat.instCanonicallyOrderedAdd
sizeUpTo_succ'
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
tsub_lt_iff_left
CanonicallyOrderedAdd.toExistsAddOfLE
Nat.instOrderedSub
add_tsub_cancel_of_le
mem_range_embedding_iff' πŸ“–mathematicalβ€”Set
Set.instMembership
Set.range
blocksFun
DFunLike.coe
OrderEmbedding
instFunLikeOrderEmbedding
embedding
index
β€”not_imp_not
Set.disjoint_right
disjoint_range
mem_range_embedding
monotone_sizeUpTo πŸ“–mathematicalβ€”Monotone
Nat.instPreorder
sizeUpTo
β€”List.monotone_sum_take
Nat.instCanonicallyOrderedAdd
ne_ones_iff πŸ“–mathematicalβ€”blocksβ€”eq_ones_iff
one_le_blocks
ne_single_iff πŸ“–mathematicalβ€”blocksFunβ€”Mathlib.Tactic.Contrapose.contrapose_iffβ‚‚
Mathlib.Tactic.Push.not_forall_eq
single_blocksFun
eq_single_iff_length
lt_irrefl
sum_blocksFun
Finset.single_lt_sum
Nat.instIsOrderedCancelAddMonoid
Finset.mem_univ
one_le_blocksFun
zero_le
Nat.instCanonicallyOrderedAdd
Fintype.card_fin
Fintype.card_eq_one_of_forall_eq
ofFn_blocksFun πŸ“–mathematicalβ€”length
blocksFun
blocks
β€”List.ofFn_get
one_le_blocks πŸ“–β€”blocksβ€”β€”blocks_pos
one_le_blocks' πŸ“–mathematicallengthblocksβ€”one_le_blocks
one_le_blocksFun πŸ“–mathematicalβ€”blocksFunβ€”one_le_blocks
blocksFun_mem_blocks
ones_blocks πŸ“–mathematicalβ€”blocks
ones
β€”β€”
ones_blocksFun πŸ“–mathematicalβ€”blocksFun
ones
β€”β€”
ones_embedding πŸ“–mathematicalblocksFun
ones
DFunLike.coe
OrderEmbedding
instFunLikeOrderEmbedding
embedding
length
lt_of_lt_of_le
Nat.instPreorder
length_le
β€”lt_of_lt_of_le
length_le
ones_sizeUpTo
add_zero
ones_length
LT.lt.le
ones_length πŸ“–mathematicalβ€”length
ones
β€”β€”
ones_sizeUpTo πŸ“–mathematicalβ€”sizeUpTo
ones
β€”List.sum_replicate
mul_one
orderEmbOfFin_boundaries πŸ“–mathematicalβ€”Finset.orderEmbOfFin
Fin.instLinearOrder
boundaries
length
card_boundaries_eq_succ_length
boundary
β€”card_boundaries_eq_succ_length
Finset.orderEmbOfFin_unique'
Finset.mem_map'
Finset.mem_univ
reverse_append πŸ“–mathematicalβ€”reverse
append
cast
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
Nat.instAddCommSemigroup
add_comm
β€”ext
add_comm
reverse_bijective πŸ“–mathematicalβ€”Function.Bijective
Composition
reverse
β€”Function.Involutive.bijective
reverse_involutive
reverse_blocks πŸ“–mathematicalβ€”blocks
reverse
β€”β€”
reverse_eq_ones πŸ“–mathematicalβ€”reverse
ones
β€”reverse_injective
reverse_ones
reverse_eq_single πŸ“–mathematicalβ€”reverse
single
β€”reverse_injective
reverse_single
reverse_inj πŸ“–mathematicalβ€”reverseβ€”reverse_injective
reverse_injective πŸ“–mathematicalβ€”Composition
reverse
β€”Function.Involutive.injective
reverse_involutive
reverse_involutive πŸ“–mathematicalβ€”Function.Involutive
Composition
reverse
β€”reverse_reverse
reverse_ones πŸ“–mathematicalβ€”reverse
ones
β€”ext
reverse_reverse πŸ“–mathematicalβ€”reverseβ€”ext
reverse_single πŸ“–mathematicalβ€”reverse
single
β€”ext
reverse_surjective πŸ“–mathematicalβ€”Composition
reverse
β€”Function.Involutive.surjective
reverse_involutive
sigma_eq_iff_blocks_eq πŸ“–mathematicalβ€”blocks
Composition
β€”blocks_sum
ext
single_blocks πŸ“–mathematicalβ€”blocks
single
β€”β€”
single_blocksFun πŸ“–mathematicalβ€”blocksFun
single
β€”β€”
single_embedding πŸ“–mathematicalβ€”DFunLike.coe
OrderEmbedding
blocksFun
single
instFunLikeOrderEmbedding
embedding
β€”sizeUpTo_zero
zero_add
single_length πŸ“–mathematicalβ€”length
single
β€”β€”
sizeUpTo_index_le πŸ“–mathematicalβ€”sizeUpTo
length
index
β€”nonpos_iff_eq_zero
Nat.instCanonicallyOrderedAdd
sizeUpTo_zero
ne_of_gt
Nat.find_min
index_exists
lt_trans
sizeUpTo_le πŸ“–mathematicalβ€”sizeUpToβ€”blocks_sum
List.sum_take_add_sum_drop
sizeUpTo_length πŸ“–mathematicalβ€”sizeUpTo
length
β€”sizeUpTo_ofLength_le
le_rfl
sizeUpTo_ofLength_le πŸ“–mathematicallengthsizeUpToβ€”blocks_sum
sizeUpTo_strict_mono πŸ“–mathematicallengthsizeUpToβ€”sizeUpTo_succ
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
contravariant_lt_of_covariant_le
sizeUpTo_succ πŸ“–mathematicallengthsizeUpTo
blocks
β€”List.sum_take_succ
sizeUpTo_succ' πŸ“–mathematicalβ€”sizeUpTo
length
blocksFun
β€”sizeUpTo_succ
sizeUpTo_zero πŸ“–mathematicalβ€”sizeUpToβ€”β€”
sum_blocksFun πŸ“–mathematicalβ€”Finset.sum
length
Nat.instAddCommMonoid
Finset.univ
Fin.fintype
blocksFun
β€”blocks_sum
ofFn_blocksFun
List.sum_ofFn
toCompositionAsSet_blocks πŸ“–mathematicalβ€”CompositionAsSet.blocks
toCompositionAsSet
blocks
β€”CompositionAsSet.blocks_length
toCompositionAsSet_length
CompositionAsSet.card_boundaries_eq_succ_length
card_boundaries_eq_succ_length
CompositionAsSet.blocks_partial_sum
CompositionAsSet.boundary.eq_1
sizeUpTo.eq_1
orderEmbOfFin_boundaries
List.eq_of_sum_take_eq
toCompositionAsSet_boundaries πŸ“–mathematicalβ€”CompositionAsSet.boundaries
toCompositionAsSet
boundaries
β€”β€”
toCompositionAsSet_length πŸ“–mathematicalβ€”CompositionAsSet.length
toCompositionAsSet
length
β€”card_boundaries_eq_succ_length
add_tsub_cancel_right
Nat.instOrderedSub
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid

CompositionAsSet

Definitions

NameCategoryTheorems
blocks πŸ“–CompOp
6 mathmath: blocks_partial_sum, Composition.toCompositionAsSet_blocks, blocks_sum, toComposition_blocks, mem_boundaries_iff_exists_blocks_sum_take_eq, blocks_length
blocksFun πŸ“–CompOp
1 mathmath: blocksFun_pos
boundaries πŸ“–CompOp
14 mathmath: card_boundaries_eq_succ_length, card_boundaries_pos, boundaries_nonempty, length_lt_card_boundaries, ext_iff, getLast_mem, lt_length', zero_mem, lt_length, toComposition_boundaries, mem_boundaries_iff_exists_blocks_sum_take_eq, Composition.toCompositionAsSet_boundaries, boundary_length, boundary_zero
boundary πŸ“–CompOp
3 mathmath: blocks_partial_sum, boundary_length, boundary_zero
length πŸ“–CompOp
8 mathmath: card_boundaries_eq_succ_length, length_lt_card_boundaries, toComposition_length, lt_length', lt_length, Composition.toCompositionAsSet_length, boundary_length, blocks_length
toComposition πŸ“–CompOp
3 mathmath: toComposition_length, toComposition_blocks, toComposition_boundaries

Theorems

NameKindAssumesProvesValidatesDepends On
blocksFun_pos πŸ“–mathematicalβ€”blocksFunβ€”lt_length
lt_length'
lt_tsub_iff_left
Nat.instOrderedSub
OrderEmbedding.strictMono
blocks_length πŸ“–mathematicalβ€”blocks
length
β€”β€”
blocks_partial_sum πŸ“–mathematicalFinset.card
boundaries
MulZeroClass.toZero
Nat.instMulZeroClass
blocks
DFunLike.coe
OrderEmbedding
instFunLikeOrderEmbedding
boundary
β€”boundary_zero
card_boundaries_eq_succ_length
lt_of_lt_of_le
Nat.instOrderedSub
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
Nat.instCanonicallyOrderedAdd
List.sum_take_succ
lt_length
lt_length'
add_tsub_cancel_of_le
CanonicallyOrderedAdd.toExistsAddOfLE
blocks_sum πŸ“–mathematicalβ€”MulZeroClass.toZero
Nat.instMulZeroClass
blocks
β€”length_lt_card_boundaries
blocks_partial_sum
boundary_length
boundaries_nonempty πŸ“–mathematicalβ€”Finset.Nonempty
boundaries
β€”zero_mem
boundary_length πŸ“–mathematicalβ€”DFunLike.coe
OrderEmbedding
Finset.card
boundaries
instFunLikeOrderEmbedding
boundary
length
length_lt_card_boundaries
β€”length_lt_card_boundaries
card_boundaries_pos
Finset.card_pos
le_antisymm
Finset.le_max'
getLast_mem
Finset.orderEmbOfFin_last
boundary_zero πŸ“–mathematicalβ€”DFunLike.coe
OrderEmbedding
Finset.card
boundaries
instFunLikeOrderEmbedding
boundary
card_boundaries_pos
β€”card_boundaries_pos
boundary.eq_1
Finset.card_pos
Finset.orderEmbOfFin_zero
le_antisymm
Finset.min'_le
zero_mem
card_boundaries_eq_succ_length πŸ“–mathematicalβ€”Finset.card
boundaries
length
β€”tsub_eq_iff_eq_add_of_le
CanonicallyOrderedAdd.toExistsAddOfLE
Nat.instCanonicallyOrderedAdd
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
Nat.instOrderedSub
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
card_boundaries_pos
card_boundaries_pos πŸ“–mathematicalβ€”Finset.card
boundaries
β€”Finset.card_pos
boundaries_nonempty
ext πŸ“–β€”boundariesβ€”β€”β€”
ext_iff πŸ“–mathematicalβ€”boundariesβ€”ext
getLast_mem πŸ“–mathematicalβ€”Finset
Finset.instMembership
boundaries
β€”β€”
length_lt_card_boundaries πŸ“–mathematicalβ€”length
Finset.card
boundaries
β€”card_boundaries_eq_succ_length
lt_length πŸ“–mathematicalβ€”length
Finset.card
boundaries
β€”lt_tsub_iff_right
Nat.instOrderedSub
lt_length' πŸ“–mathematicalβ€”length
Finset.card
boundaries
β€”lt_of_le_of_lt
lt_length
mem_boundaries_iff_exists_blocks_sum_take_eq πŸ“–mathematicalβ€”Finset
Finset.instMembership
boundaries
Finset.card
MulZeroClass.toZero
Nat.instMulZeroClass
blocks
β€”OrderIso.surjective
blocks_partial_sum
toComposition_blocks πŸ“–mathematicalβ€”Composition.blocks
toComposition
blocks
β€”β€”
toComposition_boundaries πŸ“–mathematicalβ€”Composition.boundaries
toComposition
boundaries
β€”Finset.ext
toComposition_length
mem_boundaries_iff_exists_blocks_sum_take_eq
card_boundaries_eq_succ_length
toComposition_length πŸ“–mathematicalβ€”Composition.length
toComposition
length
β€”blocks_length
zero_mem πŸ“–mathematicalβ€”Finset
Finset.instMembership
boundaries
β€”β€”

List

Definitions

NameCategoryTheorems
splitWrtComposition πŸ“–CompOp
5 mathmath: length_splitWrtComposition, sum_take_map_length_splitWrtComposition, splitWrtComposition_flatten, map_length_splitWrtComposition, flatten_splitWrtComposition
splitWrtCompositionAux πŸ“–CompOp
4 mathmath: length_splitWrtCompositionAux, flatten_splitWrtCompositionAux, splitWrtCompositionAux_cons, map_length_splitWrtCompositionAux

Theorems

NameKindAssumesProvesValidatesDepends On
flatten_splitWrtComposition πŸ“–mathematicalβ€”splitWrtCompositionβ€”flatten_splitWrtCompositionAux
Composition.blocks_sum
flatten_splitWrtCompositionAux πŸ“–mathematicalMulZeroClass.toZero
Nat.instMulZeroClass
splitWrtCompositionAuxβ€”splitWrtCompositionAux_cons
add_tsub_cancel_left
Nat.instOrderedSub
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
getElem_splitWrtComposition πŸ“–mathematicalsplitWrtCompositionComposition.sizeUpToβ€”getElem_splitWrtComposition'
getElem_splitWrtComposition' πŸ“–mathematicalsplitWrtCompositionComposition.sizeUpToβ€”getElem_splitWrtCompositionAux
getElem_splitWrtCompositionAux πŸ“–mathematicalsplitWrtCompositionAuxMulZeroClass.toZero
Nat.instMulZeroClass
β€”splitWrtCompositionAux_cons
zero_add
add_zero
length_pos_of_mem_splitWrtComposition πŸ“–β€”splitWrtCompositionβ€”β€”Composition.blocks_pos
map_length_splitWrtComposition
length_splitWrtComposition πŸ“–mathematicalβ€”splitWrtComposition
Composition.length
β€”length_splitWrtCompositionAux
length_splitWrtCompositionAux πŸ“–mathematicalβ€”splitWrtCompositionAuxβ€”splitWrtCompositionAux_cons
map_length_splitWrtComposition πŸ“–mathematicalβ€”splitWrtComposition
Composition.blocks
β€”map_length_splitWrtCompositionAux
le_of_eq
Composition.blocks_sum
map_length_splitWrtCompositionAux πŸ“–mathematicalMulZeroClass.toZero
Nat.instMulZeroClass
splitWrtCompositionAuxβ€”Nat.instCanonicallyOrderedAdd
splitWrtCompositionAux_cons πŸ“–mathematicalβ€”splitWrtCompositionAuxβ€”β€”
splitWrtComposition_flatten πŸ“–mathematicalComposition.blockssplitWrtCompositionβ€”flatten_splitWrtComposition
map_length_splitWrtComposition
sum_take_map_length_splitWrtComposition πŸ“–mathematicalβ€”MulZeroClass.toZero
Nat.instMulZeroClass
splitWrtComposition
Composition.sizeUpTo
β€”map_length_splitWrtComposition

(root)

Definitions

NameCategoryTheorems
CompositionAsSet πŸ“–CompData
1 mathmath: compositionAsSet_card
compositionAsSetEquiv πŸ“–CompOpβ€”
compositionAsSetFintype πŸ“–CompOp
1 mathmath: compositionAsSet_card
compositionEquiv πŸ“–CompOpβ€”
compositionFintype πŸ“–CompOp
5 mathmath: FormalMultilinearSeries.comp_rightInv_aux1, composition_card, FormalMultilinearSeries.radius_right_inv_pos_of_radius_pos_aux1, FormalMultilinearSeries.rightInv_coeff, FormalMultilinearSeries.comp_rightInv_aux2
instDecidableEqComposition πŸ“–CompOpβ€”
instDecidableEqCompositionAsSet πŸ“–CompOpβ€”
instInhabitedCompositionAsSet πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
compositionAsSet_card πŸ“–mathematicalβ€”Fintype.card
CompositionAsSet
compositionAsSetFintype
Monoid.toNatPow
Nat.instMonoid
β€”Fintype.card_finset
Fintype.card_fin
Fintype.card_congr
composition_card πŸ“–mathematicalβ€”Fintype.card
Composition
compositionFintype
Monoid.toNatPow
Nat.instMonoid
β€”compositionAsSet_card
Fintype.card_congr

instDecidableEqComposition

Definitions

NameCategoryTheorems
decEq πŸ“–CompOpβ€”

instDecidableEqCompositionAsSet

Definitions

NameCategoryTheorems
decEq πŸ“–CompOpβ€”

---

← Back to Index