Documentation Verification Report

DyckWord

πŸ“ Source: Mathlib/Combinatorics/Enumerative/DyckWord.lean

Statistics

MetricCount
DefinitionsDyckStep, DyckWord, IsNested, denest, drop, equivTree, equivTreesOfNumNodesEq, firstReturn, insidePart, instFintypeSubtypeEqNatSemilength, instPartialOrder, instPreorder, instUniqueAddUnits, nest, ofTree, outsidePart, semilength, take, toList, toTree, evalDyckWordFirstReturn, instAddCancelMonoidDyckWord, instAddDyckWord, instCoeDyckWordListDyckStep, instDecidableEqDyckStep, instDecidableEqDyckWord, decEq, instInhabitedDyckStep, default, instZeroDyckWord
30
Theoremsdichotomy, nest, card_dyckWord_semilength_eq_catalan, cons_tail_dropLast_concat, count_D_le_count_U, count_D_lt_count_U_of_lt_firstReturn, count_U_eq_count_D, count_take_firstReturn_add_one, denest_nest, equivTree_apply, equivTree_symm_apply, equivTreesOfNumNodesEq_apply_coe, equivTreesOfNumNodesEq_symm_apply_coe, ext, ext_iff, firstReturn_add, firstReturn_lt_length, firstReturn_nest, firstReturn_pos, firstReturn_zero, getLast_eq_D, head_eq_U, infix_of_le, insidePart_add, insidePart_nest, insidePart_zero, le_add_self, le_of_suffix, monotone_semilength, nest_denest, nest_insidePart_add_outsidePart, nest_ne_zero, numNodes_toTree, ofTree_toTree, outsidePart_add, outsidePart_nest, outsidePart_zero, pos_iff_ne_zero, semilength_add, semilength_eq_count_D, semilength_eq_numNodes_equivTree, semilength_insidePart_add_semilength_outsidePart_add_one, semilength_insidePart_lt, semilength_nest, semilength_outsidePart_lt, semilength_zero, strictMono_semilength, toList_eq_nil, toList_ne_nil, toTree_ofTree, two_mul_semilength_eq_length, zero_le
52
Total82

DyckStep

Theorems

NameKindAssumesProvesValidatesDepends On
dichotomy πŸ“–mathematicalβ€”U
D
β€”β€”

DyckWord

Definitions

NameCategoryTheorems
IsNested πŸ“–MathDef
1 mathmath: IsNested.nest
denest πŸ“–CompOp
2 mathmath: nest_denest, denest_nest
drop πŸ“–CompOpβ€”
equivTree πŸ“–CompOp
2 mathmath: equivTree_symm_apply, equivTree_apply
equivTreesOfNumNodesEq πŸ“–CompOp
2 mathmath: equivTreesOfNumNodesEq_symm_apply_coe, equivTreesOfNumNodesEq_apply_coe
firstReturn πŸ“–CompOp
6 mathmath: firstReturn_pos, firstReturn_lt_length, firstReturn_nest, count_take_firstReturn_add_one, firstReturn_add, firstReturn_zero
insidePart πŸ“–CompOp
6 mathmath: insidePart_zero, nest_insidePart_add_outsidePart, insidePart_nest, semilength_insidePart_add_semilength_outsidePart_add_one, insidePart_add, semilength_insidePart_lt
instFintypeSubtypeEqNatSemilength πŸ“–CompOp
1 mathmath: card_dyckWord_semilength_eq_catalan
instPartialOrder πŸ“–CompOpβ€”
instPreorder πŸ“–CompOp
6 mathmath: pos_iff_ne_zero, monotone_semilength, strictMono_semilength, le_of_suffix, zero_le, le_add_self
instUniqueAddUnits πŸ“–CompOpβ€”
nest πŸ“–CompOp
8 mathmath: nest_denest, nest_insidePart_add_outsidePart, firstReturn_nest, IsNested.nest, insidePart_nest, semilength_nest, outsidePart_nest, denest_nest
ofTree πŸ“–CompOp
4 mathmath: ofTree_toTree, equivTreesOfNumNodesEq_symm_apply_coe, equivTree_symm_apply, toTree_ofTree
outsidePart πŸ“–CompOp
6 mathmath: semilength_outsidePart_lt, nest_insidePart_add_outsidePart, outsidePart_add, semilength_insidePart_add_semilength_outsidePart_add_one, outsidePart_zero, outsidePart_nest
semilength πŸ“–CompOp
15 mathmath: semilength_outsidePart_lt, semilength_zero, semilength_add, two_mul_semilength_eq_length, equivTreesOfNumNodesEq_symm_apply_coe, equivTreesOfNumNodesEq_apply_coe, monotone_semilength, semilength_insidePart_add_semilength_outsidePart_add_one, semilength_nest, semilength_eq_count_D, strictMono_semilength, semilength_eq_numNodes_equivTree, card_dyckWord_semilength_eq_catalan, numNodes_toTree, semilength_insidePart_lt
take πŸ“–CompOpβ€”
toList πŸ“–CompOp
14 mathmath: count_U_eq_count_D, getLast_eq_D, two_mul_semilength_eq_length, cons_tail_dropLast_concat, head_eq_U, count_D_lt_count_U_of_lt_firstReturn, toList_eq_nil, count_D_le_count_U, firstReturn_lt_length, firstReturn_nest, count_take_firstReturn_add_one, ext_iff, semilength_eq_count_D, infix_of_le
toTree πŸ“–CompOp
6 mathmath: ofTree_toTree, equivTreesOfNumNodesEq_apply_coe, toTree_ofTree, semilength_eq_numNodes_equivTree, numNodes_toTree, equivTree_apply

Theorems

NameKindAssumesProvesValidatesDepends On
card_dyckWord_semilength_eq_catalan πŸ“–mathematicalβ€”Fintype.card
DyckWord
semilength
instFintypeSubtypeEqNatSemilength
catalan
β€”Fintype.ofEquiv_card
Tree.treesOfNumNodesEq_card_eq_catalan
Fintype.card_congr'
Fintype.card_coe
cons_tail_dropLast_concat πŸ“–mathematicalβ€”DyckStep
DyckStep.U
toList
DyckStep.D
β€”toList_ne_nil
List.count_eq_one_of_mem
List.dropLast_append_getLast
getLast_eq_D
head_eq_U
count_D_le_count_U πŸ“–mathematicalβ€”DyckStep
instDecidableEqDyckStep
DyckStep.D
toList
DyckStep.U
β€”β€”
count_D_lt_count_U_of_lt_firstReturn πŸ“–mathematicalfirstReturnDyckStep
instDecidableEqDyckStep
DyckStep.D
toList
DyckStep.U
β€”lt_of_le_of_ne
count_D_le_count_U
count_U_eq_count_D πŸ“–mathematicalβ€”DyckStep
instDecidableEqDyckStep
DyckStep.U
toList
DyckStep.D
β€”β€”
count_take_firstReturn_add_one πŸ“–mathematicalβ€”DyckStep
instDecidableEqDyckStep
DyckStep.U
firstReturn
toList
DyckStep.D
β€”firstReturn_lt_length
denest_nest πŸ“–mathematicalβ€”denest
nest
IsNested.nest
β€”IsNested.nest
equivTree_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
DyckWord
Tree
EquivLike.toFunLike
Equiv.instEquivLike
equivTree
toTree
β€”β€”
equivTree_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Tree
DyckWord
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
equivTree
ofTree
β€”β€”
equivTreesOfNumNodesEq_apply_coe πŸ“–mathematicalβ€”Tree
Finset
SetLike.instMembership
Finset.instSetLike
Tree.treesOfNumNodesEq
DFunLike.coe
Equiv
DyckWord
semilength
EquivLike.toFunLike
Equiv.instEquivLike
equivTreesOfNumNodesEq
toTree
β€”β€”
equivTreesOfNumNodesEq_symm_apply_coe πŸ“–mathematicalβ€”DyckWord
DFunLike.coe
Equiv
Tree
Finset
SetLike.instMembership
Finset.instSetLike
Tree.treesOfNumNodesEq
semilength
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
equivTreesOfNumNodesEq
ofTree
β€”β€”
ext πŸ“–β€”toListβ€”β€”β€”
ext_iff πŸ“–mathematicalβ€”toListβ€”ext
firstReturn_add πŸ“–mathematicalβ€”firstReturn
DyckWord
instAddDyckWord
instZeroDyckWord
instDecidableEqDyckWord
β€”zero_add
firstReturn.eq_1
firstReturn_lt_length
count_take_firstReturn_add_one
LT.lt.ne'
count_D_lt_count_U_of_lt_firstReturn
firstReturn_lt_length πŸ“–mathematicalβ€”firstReturn
DyckStep
toList
β€”List.length_pos_of_ne_nil
toList_ne_nil
le_refl
count_U_eq_count_D
firstReturn_nest πŸ“–mathematicalβ€”firstReturn
nest
DyckStep
toList
β€”firstReturn.eq_1
zero_add
count_U_eq_count_D
count_D_le_count_U
add_zero
firstReturn_pos πŸ“–mathematicalβ€”firstReturnβ€”not_le
firstReturn.eq_1
toList_ne_nil
instIsEmptyFalse
cons_tail_dropLast_concat
zero_add
List.count_eq_one_of_mem
firstReturn_zero πŸ“–mathematicalβ€”firstReturn
DyckWord
instZeroDyckWord
β€”β€”
getLast_eq_D πŸ“–mathematicalβ€”DyckStep
toList
DyckStep.D
β€”count_U_eq_count_D
count_D_le_count_U
DyckStep.dichotomy
List.dropLast_append_getLast
head_eq_U πŸ“–mathematicalβ€”DyckStep
toList
DyckStep.U
β€”DyckStep.dichotomy
List.count_eq_one_of_mem
Nat.instCanonicallyOrderedAdd
infix_of_le πŸ“–mathematicalDyckWord
Preorder.toLE
instPreorder
DyckStep
toList
β€”eq_or_ne
outsidePart_zero
insidePart_zero
ext_iff
nest_insidePart_add_outsidePart
insidePart_add πŸ“–mathematicalβ€”insidePart
DyckWord
instAddDyckWord
β€”count_take_firstReturn_add_one
firstReturn_add
take.congr_simp
denest.congr_simp
Unique.instSubsingleton
firstReturn_lt_length
insidePart_nest πŸ“–mathematicalβ€”insidePart
nest
β€”count_take_firstReturn_add_one
firstReturn_nest
take.congr_simp
denest.congr_simp
IsNested.nest
ext_iff
denest_nest
insidePart_zero πŸ“–mathematicalβ€”insidePart
DyckWord
instZeroDyckWord
β€”count_take_firstReturn_add_one
le_add_self πŸ“–mathematicalβ€”DyckWord
Preorder.toLE
instPreorder
instAddDyckWord
β€”β€”
le_of_suffix πŸ“–mathematicalDyckStep
toList
DyckWord
Preorder.toLE
instPreorder
β€”count_U_eq_count_D
add_tsub_cancel_right
Nat.instOrderedSub
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
ext
le_add_self
monotone_semilength πŸ“–mathematicalβ€”Monotone
DyckWord
instPreorder
Nat.instPreorder
semilength
β€”le_refl
eq_or_ne
outsidePart_zero
insidePart_zero
LE.le.trans
LT.lt.le
semilength_insidePart_lt
semilength_outsidePart_lt
nest_denest πŸ“–mathematicalIsNestednest
denest
β€”cons_tail_dropLast_concat
nest_insidePart_add_outsidePart πŸ“–mathematicalβ€”DyckWord
instAddDyckWord
nest
insidePart
outsidePart
β€”count_take_firstReturn_add_one
nest_denest
nest_ne_zero πŸ“–β€”β€”β€”β€”β€”
numNodes_toTree πŸ“–mathematicalβ€”Tree.numNodes
toTree
semilength
β€”toTree.eq_1
semilength_insidePart_add_semilength_outsidePart_add_one
semilength_insidePart_lt
semilength_outsidePart_lt
ofTree_toTree πŸ“–mathematicalβ€”ofTree
toTree
β€”toTree.eq_1
semilength_insidePart_lt
semilength_outsidePart_lt
nest_insidePart_add_outsidePart
outsidePart_add πŸ“–mathematicalβ€”outsidePart
DyckWord
instAddDyckWord
β€”count_take_firstReturn_add_one
firstReturn_add
drop.congr_simp
Unique.instSubsingleton
firstReturn_lt_length
outsidePart_nest πŸ“–mathematicalβ€”outsidePart
nest
DyckWord
instZeroDyckWord
β€”count_take_firstReturn_add_one
firstReturn_nest
drop.congr_simp
ext_iff
outsidePart_zero πŸ“–mathematicalβ€”outsidePart
DyckWord
instZeroDyckWord
β€”count_take_firstReturn_add_one
pos_iff_ne_zero πŸ“–mathematicalβ€”DyckWord
Preorder.toLT
instPreorder
instZeroDyckWord
β€”ne_iff_lt_iff_le
zero_le
semilength_add πŸ“–mathematicalβ€”semilength
DyckWord
instAddDyckWord
β€”β€”
semilength_eq_count_D πŸ“–mathematicalβ€”semilength
DyckStep
instDecidableEqDyckStep
DyckStep.D
toList
β€”count_U_eq_count_D
semilength_eq_numNodes_equivTree πŸ“–mathematicalβ€”Tree.numNodes
toTree
semilength
β€”numNodes_toTree
semilength_insidePart_add_semilength_outsidePart_add_one πŸ“–mathematicalβ€”semilength
insidePart
outsidePart
β€”nest_insidePart_add_outsidePart
semilength_add
semilength_nest
add_right_comm
semilength_insidePart_lt πŸ“–mathematicalβ€”semilength
insidePart
β€”semilength_insidePart_add_semilength_outsidePart_add_one
semilength_nest πŸ“–mathematicalβ€”semilength
nest
β€”add_zero
semilength_outsidePart_lt πŸ“–mathematicalβ€”semilength
outsidePart
β€”semilength_insidePart_add_semilength_outsidePart_add_one
semilength_zero πŸ“–mathematicalβ€”semilength
DyckWord
instZeroDyckWord
β€”β€”
strictMono_semilength πŸ“–mathematicalβ€”StrictMono
DyckWord
instPreorder
Nat.instPreorder
semilength
β€”lt_iff_le_and_ne
lt_of_le_of_ne
monotone_semilength
Mathlib.Tactic.Contrapose.contraposeβ‚„
ext
infix_of_le
two_mul_semilength_eq_length
toList_eq_nil πŸ“–mathematicalβ€”toList
DyckStep
DyckWord
instZeroDyckWord
β€”ext_iff
toList_ne_nil πŸ“–β€”β€”β€”β€”Iff.ne
toList_eq_nil
toTree_ofTree πŸ“–mathematicalβ€”toTree
ofTree
β€”toTree.eq_1
Unique.instSubsingleton
insidePart_add
insidePart_nest
outsidePart_add
outsidePart_nest
zero_add
two_mul_semilength_eq_length πŸ“–mathematicalβ€”semilength
DyckStep
toList
β€”Nat.instAtLeastTwoHAddOfNat
two_mul
semilength.eq_1
count_U_eq_count_D
zero_le πŸ“–mathematicalβ€”DyckWord
Preorder.toLE
instPreorder
instZeroDyckWord
β€”le_add_self
add_zero

DyckWord.IsNested

Theorems

NameKindAssumesProvesValidatesDepends On
nest πŸ“–mathematicalβ€”DyckWord.IsNested
DyckWord.nest
β€”DyckWord.nest_ne_zero
DyckWord.count_D_le_count_U

Mathlib.Meta.Positivity

Definitions

NameCategoryTheorems
evalDyckWordFirstReturn πŸ“–CompOpβ€”

(root)

Definitions

NameCategoryTheorems
DyckStep πŸ“–CompData
13 mathmath: DyckWord.count_U_eq_count_D, DyckWord.getLast_eq_D, DyckWord.two_mul_semilength_eq_length, DyckWord.cons_tail_dropLast_concat, DyckWord.head_eq_U, DyckWord.count_D_lt_count_U_of_lt_firstReturn, DyckWord.toList_eq_nil, DyckWord.count_D_le_count_U, DyckWord.firstReturn_lt_length, DyckWord.firstReturn_nest, DyckWord.count_take_firstReturn_add_one, DyckWord.semilength_eq_count_D, DyckWord.infix_of_le
DyckWord πŸ“–CompData
22 mathmath: DyckWord.insidePart_zero, DyckWord.semilength_zero, DyckWord.semilength_add, DyckWord.nest_insidePart_add_outsidePart, DyckWord.pos_iff_ne_zero, DyckWord.outsidePart_add, DyckWord.toList_eq_nil, DyckWord.equivTreesOfNumNodesEq_symm_apply_coe, DyckWord.firstReturn_add, DyckWord.equivTreesOfNumNodesEq_apply_coe, DyckWord.monotone_semilength, DyckWord.equivTree_symm_apply, DyckWord.firstReturn_zero, DyckWord.insidePart_add, DyckWord.strictMono_semilength, DyckWord.outsidePart_zero, DyckWord.outsidePart_nest, DyckWord.le_of_suffix, DyckWord.card_dyckWord_semilength_eq_catalan, DyckWord.zero_le, DyckWord.equivTree_apply, DyckWord.le_add_self
instAddCancelMonoidDyckWord πŸ“–CompOpβ€”
instAddDyckWord πŸ“–CompOp
6 mathmath: DyckWord.semilength_add, DyckWord.nest_insidePart_add_outsidePart, DyckWord.outsidePart_add, DyckWord.firstReturn_add, DyckWord.insidePart_add, DyckWord.le_add_self
instCoeDyckWordListDyckStep πŸ“–CompOpβ€”
instDecidableEqDyckStep πŸ“–CompOp
5 mathmath: DyckWord.count_U_eq_count_D, DyckWord.count_D_lt_count_U_of_lt_firstReturn, DyckWord.count_D_le_count_U, DyckWord.count_take_firstReturn_add_one, DyckWord.semilength_eq_count_D
instDecidableEqDyckWord πŸ“–CompOp
1 mathmath: DyckWord.firstReturn_add
instInhabitedDyckStep πŸ“–CompOpβ€”
instZeroDyckWord πŸ“–CompOp
9 mathmath: DyckWord.insidePart_zero, DyckWord.semilength_zero, DyckWord.pos_iff_ne_zero, DyckWord.toList_eq_nil, DyckWord.firstReturn_add, DyckWord.firstReturn_zero, DyckWord.outsidePart_zero, DyckWord.outsidePart_nest, DyckWord.zero_le

instDecidableEqDyckWord

Definitions

NameCategoryTheorems
decEq πŸ“–CompOpβ€”

instInhabitedDyckStep

Definitions

NameCategoryTheorems
default πŸ“–CompOpβ€”

---

← Back to Index