| Name | Category | Theorems |
algebraRight 📖 | CompOp | — |
eulerChar 📖 | CompOp | 2 mathmath: eulerChar_prod, eulerChar_orderDual
|
instAdd 📖 | CompOp | 2 mathmath: add_apply, coe_add
|
instAddCommGroup 📖 | CompOp | — |
instAddCommMonoid 📖 | CompOp | — |
instAddGroup 📖 | CompOp | — |
instAddMonoid 📖 | CompOp | — |
instFunLike 📖 | CompOp | 37 mathmath: prod_mk, constSMul_apply, coe_constSMul, zeta_mul_kappa, moebius_inversion_top, coe_sub, one_apply, zeta_of_le, zeta_mul_zeta, neg_apply, mul_apply, coe_zero, moebius_inversion_bot, apply_eq_zero_of_not_le, add_apply, mu_apply, mu_ofDual, smul_apply, coe_inj, coe_add, prod_apply, coe_neg, sum_Icc_mu_left, zero_apply, zeta_prod_apply, sum_Icc_mu_right, mu_eq_neg_sum_Ioc_of_ne, zeta_apply, toFun_eq_coe, lambda_apply, sub_apply, mu_eq_neg_sum_Ico_of_ne, coe_mk, mu_toDual, ext_iff, mu_self, zeta_prod_mk
|
instInhabited 📖 | CompOp | — |
instModule 📖 | CompOp | — |
instMul 📖 | CompOp | 7 mathmath: zeta_mul_kappa, zeta_mul_zeta, mul_apply, mu_mul_zeta, zeta_mul_mu, prod_mul_prod', prod_mul_prod
|
instNeg 📖 | CompOp | 2 mathmath: neg_apply, coe_neg
|
instNonAssocSemiring 📖 | CompOp | — |
instNonUnitalNonAssocSemiring 📖 | CompOp | — |
instOne 📖 | CompOp | 4 mathmath: one_apply, one_prod_one, mu_mul_zeta, zeta_mul_mu
|
instRing 📖 | CompOp | — |
instSMul 📖 | CompOp | 2 mathmath: instIsScalarTower, smul_apply
|
instSemiring 📖 | CompOp | — |
instSmulZeroClassRight 📖 | CompOp | 2 mathmath: constSMul_apply, coe_constSMul
|
instSub 📖 | CompOp | 2 mathmath: coe_sub, sub_apply
|
instZero 📖 | CompOp | 4 mathmath: constSMul_apply, coe_constSMul, coe_zero, zero_apply
|
lambda 📖 | CompOp | 1 mathmath: lambda_apply
|
moduleRight 📖 | CompOp | — |
mu 📖 | CompOp | 13 mathmath: moebius_inversion_top, moebius_inversion_bot, mu_apply, mu_ofDual, sum_Icc_mu_left, sum_Icc_mu_right, mu_eq_neg_sum_Ioc_of_ne, mu_mul_zeta, zeta_mul_mu, mu_eq_neg_sum_Ico_of_ne, mu_prod_mu, mu_toDual, mu_self
|
prod 📖 | CompOp | 7 mathmath: prod_mk, prod_apply, one_prod_one, prod_mul_prod', mu_prod_mu, prod_mul_prod, zeta_prod_zeta
|
smulWithZeroRight 📖 | CompOp | — |
toFun 📖 | CompOp | 2 mathmath: eq_zero_of_not_le', toFun_eq_coe
|
zeta 📖 | CompOp | 9 mathmath: zeta_mul_kappa, zeta_of_le, zeta_mul_zeta, zeta_prod_apply, mu_mul_zeta, zeta_mul_mu, zeta_apply, zeta_prod_mk, zeta_prod_zeta
|