Documentation Verification Report

InclusionExclusion

πŸ“ Source: Mathlib/Combinatorics/Enumerative/InclusionExclusion.lean

Statistics

MetricCount
Definitions0
Theoremsinclusion_exclusion_card_biUnion, inclusion_exclusion_card_inf_compl, inclusion_exclusion_sum_biUnion, inclusion_exclusion_sum_inf_compl, indicator_biUnion_eq_sum_powerset, prod_indicator_biUnion_finset_sub_indicator, prod_indicator_biUnion_sub_indicator
7
Total7

Finset

Theorems

NameKindAssumesProvesValidatesDepends On
inclusion_exclusion_card_biUnion πŸ“–mathematicalβ€”card
biUnion
sum
Finset
SetLike.instMembership
instSetLike
filter
Nonempty
decidableNonempty
powerset
Int.instAddCommMonoid
univ
Subtype.fintype
Monoid.toNatPow
Int.instMonoid
inf'
Lattice.toSemilatticeInf
instLattice
instMembership
mem_filter
β€”mem_filter
sum_congr
sum_const
mul_one
inclusion_exclusion_sum_biUnion
inclusion_exclusion_card_inf_compl πŸ“–mathematicalβ€”card
inf
Finset
Lattice.toSemilatticeInf
instLattice
CoheytingAlgebra.toOrderTop
BiheytingAlgebra.toCoheytingAlgebra
BooleanAlgebra.toBiheytingAlgebra
booleanAlgebra
Compl.compl
BooleanAlgebra.toCompl
sum
Int.instAddCommMonoid
powerset
Monoid.toNatPow
Int.instMonoid
β€”sum_congr
sum_const
mul_one
inclusion_exclusion_sum_inf_compl
inclusion_exclusion_sum_biUnion πŸ“–mathematicalβ€”sum
AddCommGroup.toAddCommMonoid
biUnion
Finset
SetLike.instMembership
instSetLike
filter
Nonempty
decidableNonempty
powerset
univ
Subtype.fintype
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
Monoid.toNatPow
Int.instMonoid
card
inf'
Lattice.toSemilatticeInf
instLattice
instMembership
mem_filter
β€”mem_filter
sub_eq_zero
sum_congr
pow_succ
mul_neg
mul_one
neg_smul
sub_eq_neg_add
neg_neg
filter.congr_simp
filter_eq'
sum_singleton
pow_zero
one_smul
sum_attach
smul_dite
sum_dite
prod_sub
mul_assoc
sum_smul
sum_comm
prod_const_one
prod_indicator_apply
smul_sum
mul_ite
MulZeroClass.mul_zero
ite_smul
zero_smul
sum_ite
sum_const_zero
add_zero
ext
prod_congr
sdiff_empty
not_nonempty_iff_eq_empty
Set.indicator_of_mem
Pi.one_apply
eq_empty_or_nonempty
coe_empty
Set.indicator_of_notMem
zero_sub
prod_indicator_biUnion_finset_sub_indicator
inclusion_exclusion_sum_inf_compl πŸ“–mathematicalβ€”sum
AddCommGroup.toAddCommMonoid
inf
Finset
Lattice.toSemilatticeInf
instLattice
CoheytingAlgebra.toOrderTop
BiheytingAlgebra.toCoheytingAlgebra
BooleanAlgebra.toBiheytingAlgebra
booleanAlgebra
Compl.compl
BooleanAlgebra.toCompl
powerset
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
Monoid.toNatPow
Int.instMonoid
card
β€”compl_sup
sup_eq_biUnion
eq_sub_iff_add_eq
sum_compl_add_sum
mem_filter
inclusion_exclusion_sum_biUnion
sum_congr
pow_succ
mul_neg
mul_one
inf'_eq_inf
neg_smul
sum_neg_distrib
sub_eq_add_neg
neg_neg
filter.congr_simp
filter_eq'
sum_singleton
pow_zero
one_smul
sum_attach
sum_filter_not_add_sum_filter
indicator_biUnion_eq_sum_powerset πŸ“–mathematicalβ€”Set.indicator
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Set.iUnion
Finset
instMembership
sum
AddCommGroup.toAddCommMonoid
filter
Nonempty
decidableNonempty
powerset
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
Monoid.toNatPow
Int.instMonoid
card
Set.iInter
β€”sub_eq_zero
Set.indicator_of_mem
sum_congr
pow_succ
mul_neg
mul_one
neg_smul
sub_eq_neg_add
neg_neg
filter.congr_simp
filter_eq'
sum_singleton
pow_zero
Set.iInter_congr_Prop
Set.iInter_of_empty
instIsEmptyFalse
Set.iInter_univ
one_smul
sum_filter_add_sum_filter_not
prod_sub
prod_const_one
sum_smul
prod_indicator_apply
smul_ite
smul_zero
mul_ite
MulZeroClass.mul_zero
ite_smul
zero_smul
prod_indicator_biUnion_sub_indicator
Set.indicator_of_notMem
sum_eq_zero
Mathlib.Tactic.Contrapose.contraposeβ‚„
prod_indicator_biUnion_finset_sub_indicator πŸ“–mathematicalNonemptyprod
Int.instCommMonoid
Set.indicator
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Int.instCommRing
SetLike.coe
Finset
instSetLike
biUnion
Pi.instOne
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
β€”prod_congr
coe_biUnion
Set.iUnion_congr_Prop
prod_indicator_biUnion_sub_indicator
prod_indicator_biUnion_sub_indicator πŸ“–mathematicalNonemptyprod
Int.instCommMonoid
Set.indicator
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Int.instCommRing
Set.iUnion
Finset
instMembership
Pi.instOne
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
β€”prod_eq_zero
Set.indicator_of_mem
sub_self
Set.indicator_of_notMem

---

← Back to Index