| Name | Category | Theorems |
UniquePartitionOne 📖 | CompOp | — |
UniquePartitionZero 📖 | CompOp | — |
countRestricted 📖 | CompOp | 5 mathmath: card_restricted_eq_card_countRestricted, hasProd_powerSeriesMk_card_countRestricted, countRestricted_two, powerSeriesMk_card_restricted_eq_powerSeriesMk_card_countRestricted, powerSeriesMk_card_countRestricted_eq_tprod
|
distincts 📖 | CompOp | 2 mathmath: countRestricted_two, card_odds_eq_card_distincts
|
indiscrete 📖 | CompOp | 10 mathmath: indiscrete_parts, MvPolynomial.hsymmPart_indiscrete, MvPolynomial.psumPart_indiscrete, MvPolynomial.psumPart_zero, MvPolynomial.msymm_zero, MvPolynomial.hsymmPart_zero, MvPolynomial.esymmPart_zero, MvPolynomial.msymm_one, ofSym_one, MvPolynomial.esymmPart_indiscrete
|
instFintype 📖 | CompOp | 1 mathmath: coeff_genFun
|
instInhabited 📖 | CompOp | — |
oddDistincts 📖 | CompOp | — |
odds 📖 | CompOp | 1 mathmath: card_odds_eq_card_distincts
|
ofComposition 📖 | CompOp | 2 mathmath: ofComposition_parts, ofComposition_surj
|
ofMultiset 📖 | CompOp | 1 mathmath: ofMultiset_parts
|
ofSums 📖 | CompOp | 3 mathmath: ofSums_parts, count_ofSums_zero, count_ofSums_of_ne_zero
|
ofSym 📖 | CompOp | 2 mathmath: ofSym_map, ofSym_one
|
ofSymShapeEquiv 📖 | CompOp | — |
parts 📖 | CompOp | 13 mathmath: indiscrete_parts, ofMultiset_parts, ofComposition_parts, partition_zero_parts, partition_one_parts, ofSums_parts, count_ofSums_zero, Equiv.Perm.filter_parts_partition_eq_cycleType, count_ofSums_of_ne_zero, Equiv.Perm.parts_partition, ext_iff, parts_sum, coeff_genFun
|
restricted 📖 | CompOp | 4 mathmath: card_restricted_eq_card_countRestricted, powerSeriesMk_card_restricted_eq_tprod, powerSeriesMk_card_restricted_eq_powerSeriesMk_card_countRestricted, hasProd_powerSeriesMk_card_restricted
|
toFinsuppAntidiag 📖 | CompOp | 2 mathmath: toFinsuppAntidiag_mem_finsuppAntidiag, toFinsuppAntidiag_injective
|