Documentation Verification Report

Basic

📁 Source: Mathlib/Combinatorics/Enumerative/Partition/Basic.lean

Statistics

MetricCount
DefinitionsUniquePartitionOne, UniquePartitionZero, countRestricted, distincts, indiscrete, instFintype, instInhabited, oddDistincts, odds, ofComposition, ofMultiset, ofSums, ofSym, ofSymShapeEquiv, parts, restricted, toFinsuppAntidiag, instDecidableEqPartition, decEq
19
TheoremscountRestricted_two, count_ofSums_of_ne_zero, count_ofSums_zero, ext, ext_iff, indiscrete_parts, le_of_mem_parts, ofComposition_parts, ofComposition_surj, ofMultiset_parts, ofSums_parts, ofSym_map, ofSym_one, partition_one_parts, partition_zero_parts, parts_pos, parts_sum, toFinsuppAntidiag_injective, toFinsuppAntidiag_mem_finsuppAntidiag
19
Total38

Nat

Definitions

NameCategoryTheorems
instDecidableEqPartition 📖CompOp

Nat.Partition

Definitions

NameCategoryTheorems
UniquePartitionOne 📖CompOp
UniquePartitionZero 📖CompOp
countRestricted 📖CompOp
5 mathmath: card_restricted_eq_card_countRestricted, hasProd_powerSeriesMk_card_countRestricted, countRestricted_two, powerSeriesMk_card_restricted_eq_powerSeriesMk_card_countRestricted, powerSeriesMk_card_countRestricted_eq_tprod
distincts 📖CompOp
2 mathmath: countRestricted_two, card_odds_eq_card_distincts
indiscrete 📖CompOp
10 mathmath: indiscrete_parts, MvPolynomial.hsymmPart_indiscrete, MvPolynomial.psumPart_indiscrete, MvPolynomial.psumPart_zero, MvPolynomial.msymm_zero, MvPolynomial.hsymmPart_zero, MvPolynomial.esymmPart_zero, MvPolynomial.msymm_one, ofSym_one, MvPolynomial.esymmPart_indiscrete
instFintype 📖CompOp
1 mathmath: coeff_genFun
instInhabited 📖CompOp
oddDistincts 📖CompOp
odds 📖CompOp
1 mathmath: card_odds_eq_card_distincts
ofComposition 📖CompOp
2 mathmath: ofComposition_parts, ofComposition_surj
ofMultiset 📖CompOp
1 mathmath: ofMultiset_parts
ofSums 📖CompOp
3 mathmath: ofSums_parts, count_ofSums_zero, count_ofSums_of_ne_zero
ofSym 📖CompOp
2 mathmath: ofSym_map, ofSym_one
ofSymShapeEquiv 📖CompOp
parts 📖CompOp
13 mathmath: indiscrete_parts, ofMultiset_parts, ofComposition_parts, partition_zero_parts, partition_one_parts, ofSums_parts, count_ofSums_zero, Equiv.Perm.filter_parts_partition_eq_cycleType, count_ofSums_of_ne_zero, Equiv.Perm.parts_partition, ext_iff, parts_sum, coeff_genFun
restricted 📖CompOp
4 mathmath: card_restricted_eq_card_countRestricted, powerSeriesMk_card_restricted_eq_tprod, powerSeriesMk_card_restricted_eq_powerSeriesMk_card_countRestricted, hasProd_powerSeriesMk_card_restricted
toFinsuppAntidiag 📖CompOp
2 mathmath: toFinsuppAntidiag_mem_finsuppAntidiag, toFinsuppAntidiag_injective

Theorems

NameKindAssumesProvesValidatesDepends On
countRestricted_two 📖mathematicalcountRestricted
distincts
Multiset.nodup_iff_count_le_one
count_ofSums_of_ne_zero 📖mathematicalMultiset.sum
Nat.instAddCommMonoid
Multiset.count
parts
ofSums
Multiset.count_filter_of_pos
count_ofSums_zero 📖mathematicalMultiset.sum
Nat.instAddCommMonoid
Multiset.count
parts
ofSums
Multiset.count_filter_of_neg
ext 📖parts
ext_iff 📖mathematicalpartsext
indiscrete_parts 📖mathematicalparts
indiscrete
Multiset
Multiset.instSingleton
Multiset.filter_congr
le_of_mem_parts 📖Multiset
Multiset.instMembership
parts
parts_sum
Multiset.le_sum_of_mem
Nat.instCanonicallyOrderedAdd
ofComposition_parts 📖mathematicalparts
ofComposition
Multiset.ofList
Composition.blocks
ofComposition_surj 📖mathematicalComposition
Nat.Partition
ofComposition
ext
ofMultiset_parts 📖mathematicalparts
Multiset.sum
Nat.instAddCommMonoid
ofMultiset
Multiset.filter
ofSums_parts 📖mathematicalMultiset.sum
Nat.instAddCommMonoid
parts
ofSums
Multiset.filter
ofSym_map 📖mathematicalofSym
Sym.map
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Multiset.map_congr
Multiset.dedup_map_of_injective
Equiv.injective
Multiset.map_map
Multiset.count_map_eq_count'
ofSym_one 📖mathematicalofSym
indiscrete
ext
Multiset.ext'
Multiset.count.congr_simp
partition_one_parts
partition_one_parts 📖mathematicalparts
Multiset
Multiset.instSingleton
Multiset.eq_replicate_card
LE.le.antisymm
LE.le.trans_eq
Multiset.le_sum_of_mem
Nat.instCanonicallyOrderedAdd
parts_sum
parts_pos
Multiset.sum_replicate
mul_one
Multiset.replicate_one
partition_zero_parts 📖mathematicalparts
Multiset
Multiset.instZero
Multiset.eq_zero_of_forall_notMem
LT.lt.ne'
parts_pos
Multiset.sum_eq_zero_iff
Nat.instCanonicallyOrderedAdd
Nat.instIsOrderedAddMonoid
parts_sum
parts_pos 📖Multiset
Multiset.instMembership
parts
parts_sum 📖mathematicalMultiset.sum
Nat.instAddCommMonoid
parts
toFinsuppAntidiag_injective 📖mathematicalNat.Partition
Finsupp
MulZeroClass.toZero
Nat.instMulZeroClass
toFinsuppAntidiag
ext_iff
Multiset.ext
toFinsuppAntidiag_mem_finsuppAntidiag 📖mathematicalFinsupp
MulZeroClass.toZero
Nat.instMulZeroClass
Finset
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
Nat.instAddCommMonoid
Finset.instMembership
Finset.finsuppAntidiag
Finset.Nat.instHasAntidiagonal
Finset.Icc
Nat.instPreorder
Nat.instLocallyFiniteOrder
toFinsuppAntidiag
Finset.sum_multiset_count
Finset.sum_subset
IsDomain.to_noZeroDivisors
Nat.instIsDomain
parts_sum
Finset.sum_congr

Nat.instDecidableEqPartition

Definitions

NameCategoryTheorems
decEq 📖CompOp

---

← Back to Index