Documentation Verification Report

Glaisher

πŸ“ Source: Mathlib/Combinatorics/Enumerative/Partition/Glaisher.lean

Statistics

MetricCount
Definitions0
Theoremscard_odds_eq_card_distincts, card_restricted_eq_card_countRestricted, hasProd_powerSeriesMk_card_countRestricted, hasProd_powerSeriesMk_card_restricted, multipliable_powerSeriesMk_card_countRestricted, multipliable_powerSeriesMk_card_restricted, powerSeriesMk_card_countRestricted_eq_tprod, powerSeriesMk_card_restricted_eq_powerSeriesMk_card_countRestricted, powerSeriesMk_card_restricted_eq_tprod
9
Total9

Nat.Partition

Theorems

NameKindAssumesProvesValidatesDepends On
card_odds_eq_card_distincts πŸ“–mathematicalβ€”Finset.card
Nat.Partition
odds
distincts
β€”Nat.instAtLeastTwoHAddOfNat
restricted.congr_simp
card_restricted_eq_card_countRestricted
Mathlib.Meta.NormNum.isNat_lt_true
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
Nat.instCharZero
Mathlib.Meta.NormNum.isNat_ofNat
card_restricted_eq_card_countRestricted πŸ“–mathematicalβ€”Finset.card
Nat.Partition
restricted
countRestricted
β€”Int.instCharZero
PowerSeries.ext_iff
powerSeriesMk_card_restricted_eq_powerSeriesMk_card_countRestricted
IsStrictOrderedRing.noZeroDivisors
Int.instIsStrictOrderedRing
AddGroup.existsAddOfLE
hasProd_powerSeriesMk_card_countRestricted πŸ“–mathematicalβ€”HasProd
PowerSeries
CommSemiring.toCommMonoid
PowerSeries.instCommSemiring
PowerSeries.WithPiTopology.instTopologicalSpace
Finset.sum
PowerSeries.instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Finset.range
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
PowerSeries.instSemiring
PowerSeries.X
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Finset.card
Nat.Partition
countRestricted
SummationFilter.unconditional
β€”Mathlib.Tactic.Nontriviality.subsingleton_or_nontrivial_elim
Finset.sum_congr
Subsingleton.eq_one
PowerSeries.instSubsingleton
one_pow
Finset.sum_range_eq_add_Ico
Finset.sum_Ico_eq_sum_range
MulZeroClass.mul_zero
pow_zero
add_comm
one_smul
tsum_eq_sum
SummationFilter.instLeAtTopUnconditional
smul_eq_zero_of_left
NeZero.one
Nat.instOrderedSub
Finset.card_filter
Finset.prod_congr
Finset.prod_boole
Finset.sum_boole
hasProd_genFun
hasProd_powerSeriesMk_card_restricted πŸ“–mathematicalβ€”HasProd
PowerSeries
CommSemiring.toCommMonoid
PowerSeries.instCommSemiring
PowerSeries.WithPiTopology.instTopologicalSpace
tsum
PowerSeries.instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
PowerSeries.instSemiring
PowerSeries.X
SummationFilter.unconditional
MvPowerSeries.instOne
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Finset.card
Nat.Partition
restricted
β€”tsum_eq_zero_add'
PowerSeries.WithPiTopology.instT2Space
IsTopologicalSemiring.toContinuousAdd
PowerSeries.WithPiTopology.instIsTopologicalSemiring
pow_mul
pow_add
Summable.mul_right
PowerSeries.WithPiTopology.summable_pow_of_constantCoeff_eq_zero
pow_one
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
RingHom.instRingHomClass
map_pow
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
PowerSeries.constantCoeff_X
MulZeroClass.mul_zero
pow_zero
one_smul
zero_smul
tsum_zero
add_zero
Finset.card_filter
Finset.sum_congr
Finset.prod_congr
Finset.prod_boole
Finset.sum_boole
hasProd_genFun
multipliable_powerSeriesMk_card_countRestricted πŸ“–mathematicalβ€”Multipliable
PowerSeries
CommSemiring.toCommMonoid
PowerSeries.instCommSemiring
PowerSeries.WithPiTopology.instTopologicalSpace
Finset.sum
PowerSeries.instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Finset.range
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
PowerSeries.instSemiring
PowerSeries.X
SummationFilter.unconditional
β€”multipliable_of_exists_eq_zero
SummationFilter.instLeAtTopUnconditional
HasProd.multipliable
hasProd_powerSeriesMk_card_countRestricted
multipliable_powerSeriesMk_card_restricted πŸ“–mathematicalβ€”Multipliable
PowerSeries
CommSemiring.toCommMonoid
PowerSeries.instCommSemiring
PowerSeries.WithPiTopology.instTopologicalSpace
tsum
PowerSeries.instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
PowerSeries.instSemiring
PowerSeries.X
SummationFilter.unconditional
MvPowerSeries.instOne
β€”HasProd.multipliable
hasProd_powerSeriesMk_card_restricted
powerSeriesMk_card_countRestricted_eq_tprod πŸ“–mathematicalβ€”AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Finset.card
Nat.Partition
countRestricted
tprod
PowerSeries
CommSemiring.toCommMonoid
PowerSeries.instCommSemiring
PowerSeries.WithPiTopology.instTopologicalSpace
Finset.sum
PowerSeries.instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Finset.range
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
PowerSeries.instSemiring
PowerSeries.X
SummationFilter.unconditional
β€”HasProd.tprod_eq
PowerSeries.WithPiTopology.instT2Space
SummationFilter.instNeBotUnconditional
hasProd_powerSeriesMk_card_countRestricted
powerSeriesMk_card_restricted_eq_powerSeriesMk_card_countRestricted πŸ“–mathematicalβ€”AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
Finset.card
Nat.Partition
restricted
countRestricted
β€”Mathlib.Tactic.Nontriviality.subsingleton_or_nontrivial_elim
PowerSeries.instSubsingleton
powerSeriesMk_card_restricted_eq_tprod
T25Space.t2Space
T3Space.t25Space
instT3Space
T1Space.t0Space
instT1SpaceOfDiscreteTopology
IsTopologicalAddGroup.regularSpace
IsTopologicalRing.to_topologicalAddGroup
DiscreteTopology.topologicalRing
IsTopologicalRing.toIsTopologicalSemiring
powerSeriesMk_card_countRestricted_eq_tprod
mul_right_cancelβ‚€
IsCancelMulZero.toIsRightCancelMulZero
NoZeroDivisors.to_isCancelMulZero
PowerSeries.instNoZeroDivisors
PowerSeries.WithPiTopology.tprod_one_sub_X_pow_ne_zero
Multipliable.tprod_mul
PowerSeries.WithPiTopology.instT2Space
IsTopologicalSemiring.toContinuousMul
PowerSeries.WithPiTopology.instIsTopologicalSemiring
SummationFilter.instNeBotUnconditional
multipliable_powerSeriesMk_card_countRestricted
PowerSeries.WithPiTopology.multipliable_one_sub_X_pow
tprod_congr
pow_mul
Finset.sum_congr
geom_sum_mul_neg
powerSeriesMk_card_restricted_eq_tprod πŸ“–mathematicalβ€”AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Finset.card
Nat.Partition
restricted
tprod
PowerSeries
CommSemiring.toCommMonoid
PowerSeries.instCommSemiring
PowerSeries.WithPiTopology.instTopologicalSpace
tsum
PowerSeries.instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
PowerSeries.instSemiring
PowerSeries.X
SummationFilter.unconditional
MvPowerSeries.instOne
β€”HasProd.tprod_eq
PowerSeries.WithPiTopology.instT2Space
SummationFilter.instNeBotUnconditional
hasProd_powerSeriesMk_card_restricted

---

← Back to Index