π Source: Mathlib/Combinatorics/Enumerative/Partition/Glaisher.lean
card_odds_eq_card_distincts
card_restricted_eq_card_countRestricted
hasProd_powerSeriesMk_card_countRestricted
hasProd_powerSeriesMk_card_restricted
multipliable_powerSeriesMk_card_countRestricted
multipliable_powerSeriesMk_card_restricted
powerSeriesMk_card_countRestricted_eq_tprod
powerSeriesMk_card_restricted_eq_powerSeriesMk_card_countRestricted
powerSeriesMk_card_restricted_eq_tprod
Finset.card
Nat.Partition
odds
distincts
Nat.instAtLeastTwoHAddOfNat
restricted.congr_simp
Mathlib.Meta.NormNum.isNat_lt_true
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
Nat.instCharZero
Mathlib.Meta.NormNum.isNat_ofNat
restricted
countRestricted
Int.instCharZero
PowerSeries.ext_iff
IsStrictOrderedRing.noZeroDivisors
Int.instIsStrictOrderedRing
AddGroup.existsAddOfLE
HasProd
PowerSeries
CommSemiring.toCommMonoid
PowerSeries.instCommSemiring
PowerSeries.WithPiTopology.instTopologicalSpace
Finset.sum
PowerSeries.instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Finset.range
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
PowerSeries.instSemiring
PowerSeries.X
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
SummationFilter.unconditional
Mathlib.Tactic.Nontriviality.subsingleton_or_nontrivial_elim
Finset.sum_congr
Subsingleton.eq_one
PowerSeries.instSubsingleton
one_pow
Finset.sum_range_eq_add_Ico
Finset.sum_Ico_eq_sum_range
MulZeroClass.mul_zero
pow_zero
add_comm
one_smul
tsum_eq_sum
SummationFilter.instLeAtTopUnconditional
smul_eq_zero_of_left
NeZero.one
Nat.instOrderedSub
Finset.card_filter
Finset.prod_congr
Finset.prod_boole
Finset.sum_boole
hasProd_genFun
tsum
MvPowerSeries.instOne
tsum_eq_zero_add'
PowerSeries.WithPiTopology.instT2Space
IsTopologicalSemiring.toContinuousAdd
PowerSeries.WithPiTopology.instIsTopologicalSemiring
pow_mul
pow_add
Summable.mul_right
PowerSeries.WithPiTopology.summable_pow_of_constantCoeff_eq_zero
pow_one
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
RingHom.instRingHomClass
map_pow
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
PowerSeries.constantCoeff_X
zero_smul
tsum_zero
add_zero
Multipliable
multipliable_of_exists_eq_zero
HasProd.multipliable
tprod
HasProd.tprod_eq
SummationFilter.instNeBotUnconditional
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
T25Space.t2Space
T3Space.t25Space
instT3Space
T1Space.t0Space
instT1SpaceOfDiscreteTopology
IsTopologicalAddGroup.regularSpace
IsTopologicalRing.to_topologicalAddGroup
DiscreteTopology.topologicalRing
IsTopologicalRing.toIsTopologicalSemiring
mul_right_cancelβ
IsCancelMulZero.toIsRightCancelMulZero
NoZeroDivisors.to_isCancelMulZero
PowerSeries.instNoZeroDivisors
PowerSeries.WithPiTopology.tprod_one_sub_X_pow_ne_zero
Multipliable.tprod_mul
IsTopologicalSemiring.toContinuousMul
PowerSeries.WithPiTopology.multipliable_one_sub_X_pow
tprod_congr
geom_sum_mul_neg
---
β Back to Index