Documentation Verification Report

RuzsaSzemeredi

πŸ“ Source: Mathlib/Combinatorics/Extremal/RuzsaSzemeredi.lean

Statistics

MetricCount
DefinitionsruzsaSzemerediNumber, ruzsaSzemerediNumberNat
2
Theoremsle_ruzsaSzemerediNumber, addRothNumber_le_ruzsaSzemerediNumber, rothNumberNat_le_ruzsaSzemerediNumberNat, rothNumberNat_le_ruzsaSzemerediNumberNat', ruzsaSzemerediNumberNat_asymptotic_lower_bound, ruzsaSzemerediNumberNat_card, ruzsaSzemerediNumberNat_le, ruzsaSzemerediNumberNat_lower_bound, ruzsaSzemerediNumberNat_mono, ruzsaSzemerediNumberNat_one, ruzsaSzemerediNumberNat_two, ruzsaSzemerediNumberNat_zero, ruzsaSzemerediNumber_congr, ruzsaSzemerediNumber_le, ruzsaSzemerediNumber_mono, ruzsaSzemerediNumber_spec
16
Total18

SimpleGraph.LocallyLinear

Theorems

NameKindAssumesProvesValidatesDepends On
le_ruzsaSzemerediNumber πŸ“–mathematicalSimpleGraph.LocallyLinearFinset.card
Finset
SimpleGraph.cliqueFinset
ruzsaSzemerediNumber
β€”Nat.le_findGreatest
SimpleGraph.card_cliqueFinset_le

(root)

Definitions

NameCategoryTheorems
ruzsaSzemerediNumber πŸ“–CompOp
7 mathmath: ruzsaSzemerediNumber_congr, ruzsaSzemerediNumber_spec, addRothNumber_le_ruzsaSzemerediNumber, ruzsaSzemerediNumber_le, ruzsaSzemerediNumber_mono, SimpleGraph.LocallyLinear.le_ruzsaSzemerediNumber, ruzsaSzemerediNumberNat_card
ruzsaSzemerediNumberNat πŸ“–CompOp
10 mathmath: ruzsaSzemerediNumberNat_le, ruzsaSzemerediNumberNat_two, rothNumberNat_le_ruzsaSzemerediNumberNat, ruzsaSzemerediNumberNat_zero, ruzsaSzemerediNumberNat_card, ruzsaSzemerediNumberNat_one, ruzsaSzemerediNumberNat_lower_bound, rothNumberNat_le_ruzsaSzemerediNumberNat', ruzsaSzemerediNumberNat_asymptotic_lower_bound, ruzsaSzemerediNumberNat_mono

Theorems

NameKindAssumesProvesValidatesDepends On
addRothNumber_le_ruzsaSzemerediNumber πŸ“–mathematicalβ€”Fintype.card
DFunLike.coe
OrderHom
Finset
PartialOrder.toPreorder
Finset.partialOrder
Nat.instPreorder
OrderHom.instFunLike
addRothNumber
AddMonoidWithOne.toAddMonoid
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
Finset.univ
ruzsaSzemerediNumber
instFintypeSum
β€”Nat.instAtLeastTwoHAddOfNat
addRothNumber_spec
SimpleGraph.TripartiteFromTriangles.card_triangles
SimpleGraph.LocallyLinear.le_ruzsaSzemerediNumber
rothNumberNat_le_ruzsaSzemerediNumberNat πŸ“–mathematicalβ€”DFunLike.coe
OrderHom
Nat.instPreorder
OrderHom.instFunLike
rothNumberNat
ruzsaSzemerediNumberNat
β€”Fin.addRothNumber_eq_rothNumberNat
le_rfl
Fintype.card_fin
mul_le_mul_right
Nat.instMulLeftMono
OrderHomClass.mono
OrderHom.instOrderHomClass
Finset.subset_univ
addRothNumber_le_ruzsaSzemerediNumber
Units.isUnit
Fintype.card_sum
Nat.instAtLeastTwoHAddOfNat
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.RingNF.nat_rawCast_1
pow_one
add_zero
rothNumberNat_le_ruzsaSzemerediNumberNat' πŸ“–mathematicalβ€”Real
Real.instLE
Real.instMul
Real.instSub
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instNatCast
instOfNatAtLeastTwo
Nat.instAtLeastTwoHAddOfNat
DFunLike.coe
OrderHom
Nat.instPreorder
OrderHom.instFunLike
rothNumberNat
ruzsaSzemerediNumberNat
β€”Nat.instAtLeastTwoHAddOfNat
CharP.cast_eq_zero
CharP.ofCharZero
RCLike.charZero_rclike
zero_div
zero_sub
zero_tsub
Nat.instCanonicallyOrderedAdd
Nat.instOrderedSub
MulZeroClass.mul_zero
ruzsaSzemerediNumberNat_zero
Nat.cast_one
one_div
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
Nat.instZeroLEOneClass
Nat.instCharZero
ruzsaSzemerediNumberNat_one
ruzsaSzemerediNumberNat_two
mul_le_mul_of_nonneg_right
IsOrderedRing.toMulPosMono
Real.instIsOrderedRing
Mathlib.Meta.NormNum.instAtLeastTwo
Nat.cast_add
Mathlib.Meta.NormNum.IsNat.to_eq
Mathlib.Meta.NormNum.isNat_natCast
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_mul
AddGroup.toOrderedSub
covariant_swap_add_of_covariant_add
Real.instIsOrderedAddMonoid
div_add_one
three_ne_zero'
ZeroLEOneClass.neZero.three
Real.instZeroLEOneClass
NeZero.charZero_one
le_sub_iff_add_le
div_le_iffβ‚€
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
Real.instIsStrictOrderedRing
zero_lt_three'
add_assoc
add_sub_assoc
add_mul
Distrib.rightDistribClass
mul_right_comm
Mathlib.Meta.NormNum.isNat_mul
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_sub
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.isNat_add
LT.lt.le
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
Nat.instNontrivial
Nat.cast_nonneg
rothNumberNat_le_ruzsaSzemerediNumberNat
le_imp_le_of_le_of_le
Nat.mono_cast
ruzsaSzemerediNumberNat_mono
add_le_add_left
le_refl
ruzsaSzemerediNumberNat_asymptotic_lower_bound πŸ“–mathematicalβ€”Asymptotics.IsBigO
Real
Real.norm
Filter.atTop
Nat.instPreorder
Real.instMul
Monoid.toNatPow
Real.instMonoid
Real.instNatCast
Real.exp
Real.instNeg
instOfNatAtLeastTwo
Nat.instAtLeastTwoHAddOfNat
Real.sqrt
Real.log
ruzsaSzemerediNumberNat
β€”Asymptotics.IsBigO.trans
Nat.instAtLeastTwoHAddOfNat
sq
Asymptotics.IsBigO.mul
NormedDivisionRing.toNormMulClass
div_eq_inv_mul
Asymptotics.IsBigO.const_mul_right
RCLike.charZero_rclike
Asymptotics.isBigO_refl
Asymptotics.IsLittleO.right_isBigO_sub
norm_mul
norm_inv
Real.norm_ofNat
RCLike.norm_natCast
Filter.Tendsto.atTop_of_const_mulβ‚€
Real.instIsStrictOrderedRing
zero_lt_three
Real.instZeroLEOneClass
NeZero.charZero_one
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
mul_inv_cancel_leftβ‚€
Real.instIsOrderedRing
Real.instArchimedean
Asymptotics.IsBigO_def
Asymptotics.IsBigOWith_def
Real.norm_natCast
instIsDirectedOrder
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
instArchimedeanNat
Real.isBigO_exp_comp_exp_comp
neg_mul
sub_neg_eq_add
add_zero
IsOrderedRing.toPosMulMono
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instNontrivial
Real.sqrt_monotone
Real.log_le_log
Nat.instNontrivial
Nat.mono_cast
Asymptotics.IsBigO.of_norm_eventuallyLE
Filter.mp_mem
Filter.eventually_ge_atTop
Filter.univ_mem'
le_of_not_gt
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.mul_congr
Nat.cast_one
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_mul
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Tactic.Linarith.add_lt_of_le_of_neg
Mathlib.Tactic.Linarith.sub_nonpos_of_le
Int.cast_ofNat
Int.cast_natCast
Rat.cast_natCast
CancelDenoms.sub_subst
CancelDenoms.div_subst
Mathlib.Meta.NormNum.isNat_eq_true
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNNRat_div
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.isNNRat_inv_pos
Mathlib.Tactic.Linarith.mul_neg
Mathlib.Tactic.Linarith.sub_neg_of_lt
Mathlib.Meta.NormNum.isNat_lt_true
abs_of_nonneg
Real.abs_exp
ruzsaSzemerediNumberNat_lower_bound
ruzsaSzemerediNumberNat_card πŸ“–mathematicalβ€”ruzsaSzemerediNumberNat
Fintype.card
ruzsaSzemerediNumber
β€”ruzsaSzemerediNumber_congr
ruzsaSzemerediNumberNat_le πŸ“–mathematicalβ€”ruzsaSzemerediNumberNat
Nat.choose
β€”LE.le.trans_eq
ruzsaSzemerediNumber_le
Fintype.card_fin
ruzsaSzemerediNumberNat_lower_bound πŸ“–mathematicalβ€”Real
Real.instLE
Real.instMul
Real.instSub
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instNatCast
instOfNatAtLeastTwo
Nat.instAtLeastTwoHAddOfNat
Real.exp
Real.instNeg
Real.sqrt
Real.log
ruzsaSzemerediNumberNat
β€”Nat.instAtLeastTwoHAddOfNat
mul_assoc
le_total
LE.le.trans
mul_nonpos_of_nonpos_of_nonneg
IsOrderedRing.toMulPosMono
Real.instIsOrderedRing
mul_nonneg
IsOrderedRing.toPosMulMono
Nat.cast_nonneg'
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.instZeroLEOneClass
le_of_lt
Real.exp_pos
Nat.cast_nonneg
mul_le_mul_of_nonneg_left
Behrend.roth_lower_bound
rothNumberNat_le_ruzsaSzemerediNumberNat'
ruzsaSzemerediNumberNat_mono πŸ“–mathematicalβ€”Monotone
Nat.instPreorder
ruzsaSzemerediNumberNat
β€”ruzsaSzemerediNumber_mono
ruzsaSzemerediNumberNat_one πŸ“–mathematicalβ€”ruzsaSzemerediNumberNatβ€”le_zero_iff
ruzsaSzemerediNumberNat_le
ruzsaSzemerediNumberNat_two πŸ“–mathematicalβ€”ruzsaSzemerediNumberNatβ€”le_zero_iff
ruzsaSzemerediNumberNat_le
ruzsaSzemerediNumberNat_zero πŸ“–mathematicalβ€”ruzsaSzemerediNumberNatβ€”le_zero_iff
ruzsaSzemerediNumberNat_le
ruzsaSzemerediNumber_congr πŸ“–mathematicalβ€”ruzsaSzemerediNumberβ€”LE.le.antisymm
ruzsaSzemerediNumber_mono
ruzsaSzemerediNumber_le πŸ“–mathematicalβ€”ruzsaSzemerediNumber
Nat.choose
Fintype.card
β€”Nat.findGreatest_le
ruzsaSzemerediNumber_mono πŸ“–mathematicalβ€”ruzsaSzemerediNumberβ€”Nat.findGreatest_mono
Finset.map_injective
Finset.card_map
SimpleGraph.cliqueFinset_map
SimpleGraph.LocallyLinear.map
Nat.choose_mono
Fintype.card_le_of_embedding
ruzsaSzemerediNumber_spec πŸ“–mathematicalβ€”Finset.card
Finset
SimpleGraph.cliqueFinset
ruzsaSzemerediNumber
SimpleGraph.LocallyLinear
β€”Nat.findGreatest_spec
SimpleGraph.locallyLinear_bot

---

← Back to Index