Documentation Verification Report

Basic

πŸ“ Source: Mathlib/Combinatorics/Graph/Basic.lean

Statistics

MetricCount
DefinitionsInc, other, IsLink, IsLoopAt, IsNonloopAt, edgeSet, incidenceSet, loopSet, vertexSet, «termE(_)»»), «termV(_)»»)
11
Theoremsleft_mem, right_mem, edge_mem, eq_of_isLink_of_ne_left, eq_or_eq_of_isLink, eq_or_eq_or_eq, inc_other, isLink_other, isLoopAt_or_isNonloopAt, vertex_mem, adj, edge_mem, eq_and_eq_or_eq_and_eq, inc_left, inc_right, isLink_iff, isLink_iff_eq, isLink_iff_sym2_eq, left_eq_of_right_ne, left_eq_or_eq, left_mem, left_unique, right_eq_or_eq, right_mem, right_unique, edge_mem, eq_of_inc, inc, not_isNonloopAt, vertex_mem, edge_mem, inc, not_isLoopAt, vertex_mem, adj_comm, edgeSet_eq_setOf_exists_isLink, edge_mem_iff_exists_isLink, eq_or_eq_of_isLink_of_isLink, exists_isLink_of_mem_edgeSet, ext, ext_iff, ext_inc, incidenceSet_subset_edgeSet, isLink_comm, isLink_iff_inc, isLink_self_iff, isLink_symm, isLoopAt_iff_inc_not_isNonloopAt, isNonloopAt_iff_inc_not_isLoopAt, left_mem_of_isLink, loopSet_subset_incidenceSet, mem_incidenceSet, mem_loopSet, mk_eq_self
54
Total65

Graph

Definitions

NameCategoryTheorems
Inc πŸ“–MathDef
8 mathmath: IsLink.inc_left, isNonloopAt_iff_inc_not_isLoopAt, isLink_iff_inc, IsNonloopAt.inc, IsLoopAt.inc, IsLink.inc_right, mem_incidenceSet, isLoopAt_iff_inc_not_isNonloopAt
IsLink πŸ“–MathDef
9 mathmath: exists_isLink_of_mem_edgeSet, isLink_comm, isLink_iff_inc, ext_iff, Inc.isLink_other, edge_mem_iff_exists_isLink, edgeSet_eq_setOf_exists_isLink, isLink_symm, isLink_self_iff
IsLoopAt πŸ“–MathDef
6 mathmath: IsNonloopAt.not_isLoopAt, isNonloopAt_iff_inc_not_isLoopAt, mem_loopSet, Inc.isLoopAt_or_isNonloopAt, isLoopAt_iff_inc_not_isNonloopAt, isLink_self_iff
IsNonloopAt πŸ“–MathDef
4 mathmath: IsLoopAt.not_isNonloopAt, isNonloopAt_iff_inc_not_isLoopAt, Inc.isLoopAt_or_isNonloopAt, isLoopAt_iff_inc_not_isNonloopAt
edgeSet πŸ“–CompOp
7 mathmath: IsLink.edge_mem, IsNonloopAt.edge_mem, incidenceSet_subset_edgeSet, edge_mem_iff_exists_isLink, edgeSet_eq_setOf_exists_isLink, IsLoopAt.edge_mem, Inc.edge_mem
incidenceSet πŸ“–CompOp
3 mathmath: incidenceSet_subset_edgeSet, mem_incidenceSet, loopSet_subset_incidenceSet
loopSet πŸ“–CompOp
2 mathmath: mem_loopSet, loopSet_subset_incidenceSet
vertexSet πŸ“–CompOp
10 mathmath: Adj.right_mem, IsLink.right_mem, left_mem_of_isLink, IsLink.left_mem, IsNonloopAt.vertex_mem, ext_iff, Adj.left_mem, Inc.vertex_mem, IsLoopAt.vertex_mem, mk_eq_self
Β«termE(_)Β» πŸ“–Β» "API Documentation")CompOpβ€”
Β«termV(_)Β» πŸ“–Β» "API Documentation")CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
adj_comm πŸ“–mathematicalβ€”Adjβ€”Adj.symm
edgeSet_eq_setOf_exists_isLink πŸ“–mathematicalβ€”edgeSet
setOf
IsLink
β€”Set.ext
edge_mem_iff_exists_isLink
edge_mem_iff_exists_isLink πŸ“–mathematicalβ€”Set
Set.instMembership
edgeSet
IsLink
β€”β€”
eq_or_eq_of_isLink_of_isLink πŸ“–β€”IsLinkβ€”β€”β€”
exists_isLink_of_mem_edgeSet πŸ“–mathematicalSet
Set.instMembership
edgeSet
IsLinkβ€”edge_mem_iff_exists_isLink
ext πŸ“–β€”vertexSet
IsLink
β€”β€”edge_mem_iff_exists_isLink
IsLink.left_eq_or_eq
IsLink.left_mem
mk_eq_self
edgeSet_eq_setOf_exists_isLink
ext_iff πŸ“–mathematicalβ€”vertexSet
IsLink
β€”ext
ext_inc πŸ“–β€”vertexSet
Inc
β€”β€”ext
incidenceSet_subset_edgeSet πŸ“–mathematicalβ€”Set
Set.instHasSubset
incidenceSet
edgeSet
β€”IsLink.edge_mem
isLink_comm πŸ“–mathematicalβ€”IsLinkβ€”IsLink.symm
isLink_iff_inc πŸ“–mathematicalβ€”IsLink
Inc
β€”IsLink.inc_left
IsLink.inc_right
Inc.eq_or_eq_of_isLink
IsLink.left_eq_or_eq
IsLink.symm
isLink_self_iff πŸ“–mathematicalβ€”IsLink
IsLoopAt
β€”β€”
isLink_symm πŸ“–mathematicalSet
Set.instMembership
edgeSet
Symmetric
IsLink
β€”β€”
isLoopAt_iff_inc_not_isNonloopAt πŸ“–mathematicalβ€”IsLoopAt
Inc
IsNonloopAt
β€”β€”
isNonloopAt_iff_inc_not_isLoopAt πŸ“–mathematicalβ€”IsNonloopAt
Inc
IsLoopAt
β€”IsNonloopAt.inc
IsNonloopAt.not_isLoopAt
left_mem_of_isLink πŸ“–mathematicalIsLinkSet
Set.instMembership
vertexSet
β€”β€”
loopSet_subset_incidenceSet πŸ“–mathematicalβ€”Set
Set.instHasSubset
loopSet
incidenceSet
β€”β€”
mem_incidenceSet πŸ“–mathematicalβ€”Set
Set.instMembership
incidenceSet
Inc
β€”β€”
mem_loopSet πŸ“–mathematicalβ€”Set
Set.instMembership
loopSet
IsLoopAt
β€”β€”
mk_eq_self πŸ“–mathematicalSet
Set.instMembership
IsLink
vertexSet
IsLink.left_eq_or_eq
IsLink.left_mem
β€”IsLink.left_eq_or_eq
IsLink.left_mem
edge_mem_iff_exists_isLink

Graph.Adj

Theorems

NameKindAssumesProvesValidatesDepends On
left_mem πŸ“–mathematicalGraph.AdjSet
Set.instMembership
Graph.vertexSet
β€”Graph.IsLink.left_mem
right_mem πŸ“–mathematicalGraph.AdjSet
Set.instMembership
Graph.vertexSet
β€”left_mem
symm

Graph.Inc

Definitions

NameCategoryTheorems
other πŸ“–CompOp
2 mathmath: inc_other, isLink_other

Theorems

NameKindAssumesProvesValidatesDepends On
edge_mem πŸ“–mathematicalGraph.IncSet
Set.instMembership
Graph.edgeSet
β€”Graph.IsLink.edge_mem
eq_of_isLink_of_ne_left πŸ“–β€”Graph.Inc
Graph.IsLink
β€”β€”eq_or_eq_of_isLink
eq_or_eq_of_isLink πŸ“–β€”Graph.Inc
Graph.IsLink
β€”β€”Graph.IsLink.left_eq_or_eq
eq_or_eq_or_eq πŸ“–β€”Graph.Incβ€”β€”eq_of_isLink_of_ne_left
inc_other πŸ“–mathematicalGraph.Incotherβ€”Graph.IsLink.inc_right
isLink_other
isLink_other πŸ“–mathematicalGraph.IncGraph.IsLink
other
β€”β€”
isLoopAt_or_isNonloopAt πŸ“–mathematicalGraph.IncGraph.IsLoopAt
Graph.IsNonloopAt
β€”β€”
vertex_mem πŸ“–mathematicalGraph.IncSet
Set.instMembership
Graph.vertexSet
β€”Graph.IsLink.left_mem

Graph.IsLink

Theorems

NameKindAssumesProvesValidatesDepends On
adj πŸ“–mathematicalGraph.IsLinkGraph.Adjβ€”β€”
edge_mem πŸ“–mathematicalGraph.IsLinkSet
Set.instMembership
Graph.edgeSet
β€”Graph.edge_mem_iff_exists_isLink
eq_and_eq_or_eq_and_eq πŸ“–β€”Graph.IsLinkβ€”β€”left_eq_or_eq
right_unique
symm
inc_left πŸ“–mathematicalGraph.IsLinkGraph.Incβ€”β€”
inc_right πŸ“–mathematicalGraph.IsLinkGraph.Incβ€”symm
isLink_iff πŸ“–β€”Graph.IsLinkβ€”β€”eq_and_eq_or_eq_and_eq
symm
isLink_iff_eq πŸ“–β€”Graph.IsLinkβ€”β€”right_unique
isLink_iff_sym2_eq πŸ“–β€”Graph.IsLinkβ€”β€”isLink_iff
Sym2.eq_iff
left_eq_of_right_ne πŸ“–β€”Graph.IsLinkβ€”β€”left_eq_or_eq
left_eq_or_eq πŸ“–β€”Graph.IsLinkβ€”β€”Graph.eq_or_eq_of_isLink_of_isLink
left_mem πŸ“–mathematicalGraph.IsLinkSet
Set.instMembership
Graph.vertexSet
β€”Graph.left_mem_of_isLink
left_unique πŸ“–β€”Graph.IsLinkβ€”β€”right_unique
symm
right_eq_or_eq πŸ“–β€”Graph.IsLinkβ€”β€”left_eq_or_eq
symm
right_mem πŸ“–mathematicalGraph.IsLinkSet
Set.instMembership
Graph.vertexSet
β€”left_mem
symm
right_unique πŸ“–β€”Graph.IsLinkβ€”β€”right_eq_or_eq
symm

Graph.IsLoopAt

Theorems

NameKindAssumesProvesValidatesDepends On
edge_mem πŸ“–mathematicalGraph.IsLoopAtSet
Set.instMembership
Graph.edgeSet
β€”Graph.Inc.edge_mem
inc
eq_of_inc πŸ“–β€”Graph.IsLoopAt
Graph.Inc
β€”β€”Graph.Inc.eq_or_eq_of_isLink
inc πŸ“–mathematicalGraph.IsLoopAtGraph.Incβ€”Graph.IsLink.inc_left
not_isNonloopAt πŸ“–mathematicalGraph.IsLoopAtGraph.IsNonloopAtβ€”eq_of_inc
Graph.IsLink.inc_right
Graph.IsLink.inc_left
vertex_mem πŸ“–mathematicalGraph.IsLoopAtSet
Set.instMembership
Graph.vertexSet
β€”Graph.Inc.vertex_mem
inc

Graph.IsNonloopAt

Theorems

NameKindAssumesProvesValidatesDepends On
edge_mem πŸ“–mathematicalGraph.IsNonloopAtSet
Set.instMembership
Graph.edgeSet
β€”Graph.Inc.edge_mem
inc
inc πŸ“–mathematicalGraph.IsNonloopAtGraph.Incβ€”Graph.IsLink.inc_left
not_isLoopAt πŸ“–mathematicalGraph.IsNonloopAtGraph.IsLoopAtβ€”Graph.IsLoopAt.not_isNonloopAt
vertex_mem πŸ“–mathematicalGraph.IsNonloopAtSet
Set.instMembership
Graph.vertexSet
β€”Graph.Inc.vertex_mem
inc

---

← Back to Index