Documentation Verification Report

Hindman

📁 Source: Mathlib/Combinatorics/Hindman.lean

Statistics

MetricCount
DefinitionsFP, cons, head, tail, FS, cons, head, tail, add, addSemigroup, mul, semigroup
12
Theoremsfinset_prod, mul, mul_two, singleton, FP_drop_subset_FP, FP_partition_regular, add, add_two, finset_sum, singleton, FS_iter_tail_sub_FS, FS_partition_regular, exists_FP_of_finite_cover, exists_FP_of_large, exists_FS_of_finite_cover, exists_FS_of_large, exists_idempotent_ultrafilter_le_FP, exists_idempotent_ultrafilter_le_FS, continuous_add_left, continuous_mul_left, eventually_add, eventually_mul
22
Total34

Hindman

Definitions

NameCategoryTheorems
FP 📖CompData
7 mathmath: exists_idempotent_ultrafilter_le_FP, exists_FP_of_finite_cover, FP.finset_prod, exists_FP_of_large, FP.singleton, FP.mul_two, FP_drop_subset_FP
FS 📖CompData
7 mathmath: exists_idempotent_ultrafilter_le_FS, FS.finset_sum, exists_FS_of_finite_cover, FS.singleton, exists_FS_of_large, FS.add_two, FS_iter_tail_sub_FS

Theorems

NameKindAssumesProvesValidatesDepends On
FP_drop_subset_FP 📖mathematicalSet
Set.instHasSubset
FP
Stream'.drop
subset_refl
Set.instReflSubset
Stream'.drop_drop
trans
Set.instIsTransSubset
FP_partition_regular 📖mathematicalSet
Set.instHasSubset
FP
Set.sUnion
Set.instMembershipexists_idempotent_ultrafilter_le_FP
Ultrafilter.finite_sUnion_mem_iff
Filter.mem_of_superset
exists_FP_of_large
FS_iter_tail_sub_FS 📖mathematicalSet
Set.instHasSubset
FS
Stream'.drop
subset_refl
Set.instReflSubset
Stream'.drop_drop
trans
Set.instIsTransSubset
FS_partition_regular 📖mathematicalSet
Set.instHasSubset
FS
Set.sUnion
Set.instMembershipexists_idempotent_ultrafilter_le_FS
Ultrafilter.finite_sUnion_mem_iff
Filter.mem_of_superset
exists_FS_of_large
exists_FP_of_finite_cover 📖mathematicalSet
Set.instHasSubset
Top.top
BooleanAlgebra.toTop
Set.instBooleanAlgebra
Set.sUnion
Set.instMembership
FP
exists_idempotent_of_compact_t2_of_continuous_mul_left
Ultrafilter.instNonempty
ultrafilter_compact
Ultrafilter.t2Space
Ultrafilter.continuous_mul_left
Ultrafilter.finite_sUnion_mem_iff
Filter.mem_of_superset
Filter.univ_mem
exists_FP_of_large
exists_FP_of_large 📖mathematicalUltrafilter
Ultrafilter.mul
Semigroup.toMul
Set
Ultrafilter.instMembershipSet
Set.instHasSubset
FP
Ultrafilter.nonempty_of_mem
Filter.inter_mem
Set.inter_subset_right
Set.Nonempty.some_mem
Stream'.corec_eq
Stream'.head_cons
Set.inter_subset_left
Stream'.tail_cons
exists_FS_of_finite_cover 📖mathematicalSet
Set.instHasSubset
Top.top
BooleanAlgebra.toTop
Set.instBooleanAlgebra
Set.sUnion
Set.instMembership
FS
exists_idempotent_of_compact_t2_of_continuous_add_left
Ultrafilter.instNonempty
ultrafilter_compact
Ultrafilter.t2Space
Ultrafilter.continuous_add_left
Ultrafilter.finite_sUnion_mem_iff
Filter.mem_of_superset
Filter.univ_mem
exists_FS_of_large
exists_FS_of_large 📖mathematicalUltrafilter
Ultrafilter.add
AddSemigroup.toAdd
Set
Ultrafilter.instMembershipSet
Set.instHasSubset
FS
Ultrafilter.nonempty_of_mem
Filter.inter_mem
Set.inter_subset_right
Set.Nonempty.some_mem
Stream'.corec_eq
Stream'.head_cons
Set.inter_subset_left
Stream'.tail_cons
exists_idempotent_ultrafilter_le_FP 📖mathematicalUltrafilter
Ultrafilter.mul
Semigroup.toMul
Filter.Eventually
Set
Set.instMembership
FP
Ultrafilter.toFilter
exists_idempotent_in_compact_subsemigroup
Ultrafilter.t2Space
Ultrafilter.continuous_mul_left
IsCompact.nonempty_iInter_of_sequence_nonempty_isCompact_isClosed
Filter.mp_mem
Filter.univ_mem'
Stream'.drop_drop
Stream'.tail_eq_drop
Filter.mem_pure
IsClosed.isCompact
ultrafilter_compact
ultrafilter_isClosed_basic
isClosed_iInter
Set.mem_iInter
Set.mem_setOf_eq
Ultrafilter.eventually_mul
FP.mul
add_comm
exists_idempotent_ultrafilter_le_FS 📖mathematicalUltrafilter
Ultrafilter.add
AddSemigroup.toAdd
Filter.Eventually
Set
Set.instMembership
FS
Ultrafilter.toFilter
exists_idempotent_in_compact_add_subsemigroup
Ultrafilter.t2Space
Ultrafilter.continuous_add_left
IsCompact.nonempty_iInter_of_sequence_nonempty_isCompact_isClosed
Filter.mp_mem
Filter.univ_mem'
Stream'.drop_drop
Stream'.tail_eq_drop
Filter.mem_pure
IsClosed.isCompact
ultrafilter_compact
ultrafilter_isClosed_basic
isClosed_iInter
Set.mem_iInter
Set.mem_setOf_eq
Ultrafilter.eventually_add
FS.add
add_comm

Hindman.FP

Definitions

NameCategoryTheorems
cons 📖CompOp
head 📖CompOp
tail 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
finset_prod 📖mathematicalFinset.NonemptySet
Set.instMembership
Hindman.FP
Monoid.toSemigroup
CommMonoid.toMonoid
Finset.prod
Stream'.get
Hindman.FP_drop_subset_FP
Finset.eraseInduction
Finset.mul_prod_erase
Finset.min'_mem
Stream'.head_drop
Finset.eq_empty_or_nonempty
Finset.prod_empty
mul_one
Stream'.tail_eq_drop
Stream'.drop_drop
add_comm
Set.mem_of_subset_of_mem
Finset.min'_lt_of_mem_erase_min'
mul 📖mathematicalSet
Set.instMembership
Hindman.FP
Semigroup.toMulmul_assoc
mul_two 📖mathematicalSet
Set.instMembership
Hindman.FP
Semigroup.toMul
Stream'.get
Hindman.FP_drop_subset_FP
Stream'.head_drop
singleton
Stream'.get_drop
Stream'.tail_eq_drop
singleton 📖mathematicalSet
Set.instMembership
Hindman.FP
Stream'.get

Hindman.FS

Definitions

NameCategoryTheorems
cons 📖CompOp
head 📖CompOp
tail 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
add 📖mathematicalSet
Set.instMembership
Hindman.FS
AddSemigroup.toAddadd_assoc
add_two 📖mathematicalSet
Set.instMembership
Hindman.FS
AddSemigroup.toAdd
Stream'.get
Hindman.FS_iter_tail_sub_FS
Stream'.head_drop
singleton
Stream'.get_drop
Stream'.tail_eq_drop
finset_sum 📖mathematicalFinset.NonemptySet
Set.instMembership
Hindman.FS
AddMonoid.toAddSemigroup
AddCommMonoid.toAddMonoid
Finset.sum
Stream'.get
Hindman.FS_iter_tail_sub_FS
Finset.eraseInduction
Finset.add_sum_erase
Finset.min'_mem
Stream'.head_drop
Finset.eq_empty_or_nonempty
Finset.sum_empty
add_zero
Stream'.tail_eq_drop
Stream'.drop_drop
add_comm
Set.mem_of_subset_of_mem
Finset.min'_lt_of_mem_erase_min'
singleton 📖mathematicalSet
Set.instMembership
Hindman.FS
Stream'.get

Ultrafilter

Definitions

NameCategoryTheorems
add 📖CompOp
3 mathmath: Hindman.exists_idempotent_ultrafilter_le_FS, continuous_add_left, eventually_add
addSemigroup 📖CompOp
mul 📖CompOp
3 mathmath: Hindman.exists_idempotent_ultrafilter_le_FP, eventually_mul, continuous_mul_left
semigroup 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
continuous_add_left 📖mathematicalContinuous
Ultrafilter
topologicalSpace
add
TopologicalSpace.IsTopologicalBasis.continuous_iff
ultrafilterBasis_is_basis
Set.forall_mem_range
ultrafilter_isOpen_basic
continuous_mul_left 📖mathematicalContinuous
Ultrafilter
topologicalSpace
mul
TopologicalSpace.IsTopologicalBasis.continuous_iff
ultrafilterBasis_is_basis
Set.forall_mem_range
ultrafilter_isOpen_basic
eventually_add 📖mathematicalFilter.Eventually
toFilter
Ultrafilter
add
eventually_mul 📖mathematicalFilter.Eventually
toFilter
Ultrafilter
mul

---

← Back to Index