Documentation Verification Report

Basic

πŸ“ Source: Mathlib/Combinatorics/Matroid/Basic.lean

Statistics

MetricCount
DefinitionsMatroid, Dep, E, ExchangeProperty, ExistsMaximalSubsetProperty, Finitary, IsBase, IsBasis, IsBasis', RankFinite, RankInfinite, RankPos, aesop_mat, copy, copyBase, copyIndep
16
Theoremsnonempty, not_indep, subset_ground, superset, antichain, encard_diff_eq, encard_diff_le_aux, encard_isBase_eq, indep_of_forall_finite, ground_finite, diff, eq_of_isBasis, exists_insert_of_not_isBase, exists_insert_of_not_maximal, exists_isBase_subset_union_isBase, exists_isBase_superset, finite, inter_left, inter_right, isBase_of_forall_insert, isBase_of_maximal, isBasis_iff_forall_insert_dep, isBasis_insert_iff, isBasis_of_forall_insert, isBasis_of_maximal_subset, isBasis_self, isBasis_setOf_insert_isBasis, not_dep, rankPos_of_nonempty, subset, subset_ground, subset_isBasis'_of_subset, subset_isBasis_of_subset, dep_of_insert, dep_of_ssubset, diff_finite_comm, diff_infinite_comm, encard_diff_comm, encard_eq_encard_of_isBase, eq_exchange_of_diff_eq_singleton, eq_of_subset_indep, eq_of_subset_isBase, exchange, exchange_isBase_of_indep, exchange_isBase_of_indep', exchange_mem, exists_insert_of_ssubset, finite, finite_of_finite, indep, infinite, infinite_of_infinite, insert_dep, insert_not_isBase, isBase_of_isBasis_superset, isBasis_ground, isBasis_of_subset, mem_of_insert_indep, ncard_diff_comm, ncard_eq_ncard_of_isBase, nonempty, not_isBase_of_ssubset, rankFinite_of_finite, rankInfinite_of_infinite, rankPos_of_nonempty, subset_ground, eq_of_subset_indep, indep, insert_not_indep, inter_eq_of_subset_indep, isBasis, isBasis_inter_ground, mem_of_insert_indep, subset, dep_of_ssubset, eq_of_subset_indep, exists_isBase, exists_isBasis_inter_eq_of_superset, iUnion_isBasis_iUnion, indep, insert_dep, insert_isBasis_insert, inter_eq_of_subset_indep, isBasis', isBasis_iUnion, isBasis_inter_ground, isBasis_sUnion, isBasis_subset, isBasis_union, isBasis_union_of_subset, left_subset_ground, mem_of_insert_indep, not_isBasis_of_ssubset, subset, subset_ground, union_isBasis_union, ground_nonempty, exists_finite_isBase, exists_infinite_isBase, empty_not_isBase, copyBase_E, copyBase_Indep, copyBase_IsBase, copyIndep_E, copyIndep_Indep, copyIndep_IsBase, copy_E, copy_Indep, copy_IsBase, dep_iff, dep_of_not_indep, empty_indep, empty_not_isBase, existsMaximalSubsetProperty_indep, exists_isBase, exists_isBasis, exists_isBasis', exists_isBasis_disjoint_isBasis_of_subset, exists_isBasis_subset_isBasis, exists_isBasis_union_inter_isBasis, ext, ext_iff, ext_iff_indep, ext_iff_isBase, ext_indep, ext_indep_iff, ext_isBase, ext_isBase_indep, finitary_iff, finitary_of_rankFinite, finite_iff, finite_of_finite, finite_setOf_matroid, finite_setOf_matroid', ground_finite, ground_indep_iff_isBase, ground_nonempty, ground_nonempty_iff, indep_iff, indep_iff', indep_iff_forall_finite_subset_indep, indep_iff_not_dep, indep_of_forall_finite_subset_indep, indep_of_not_dep, indep_or_dep, insert_isBase_of_insert_indep, instNonemptySubtypeSetIsBase, isBase_compl_iff_maximal_disjoint_isBase, isBase_exchange, isBase_iff_maximal_indep, isBasis'_iff_isBasis, isBasis'_iff_isBasis_inter_ground, isBasis_empty_iff, isBasis_ground_iff, isBasis_iff, isBasis_iff', isBasis_iff_isBasis'_subset_ground, isBasis_iff_maximal, isBasis_self_iff_indep, maximality, nonempty_type, not_dep_iff, not_indep_iff, not_rankFinite, not_rankFinite_iff, not_rankInfinite, not_rankInfinite_iff, rankFinite_iff, rankFinite_of_finite, rankFinite_or_rankInfinite, rankInfinite_iff, rankPos_iff, rankPos_nonempty, setOf_dep_eq, setOf_indep_eq, set_finite, subset_ground
177
Total193

Matroid

Definitions

NameCategoryTheorems
Dep πŸ“–MathDef
44 mathmath: Indep.mem_closure_iff, IsBase.dep_of_insert, eRk_lt_encard_iff_dep, IsCircuit.minimal, IsBasis.contract_dep_iff, Indep.isBasis_insert_iff, isLoop_tfae, map_dep_iff, eRk_lt_encard_iff_dep_of_finite, IsCircuit.contract_dep, dual_dep_iff_forall, restrict_dep_iff, IsBase.dep_of_ssubset, Indep.contract_dep_iff, dep_iff_superset_isCircuit', indep_iff_not_dep, mapEquiv_dep_iff, Indep.insert_dep_iff, comap_dep_iff, IsBase.insert_dep, isCircuit_iff_dep_forall_diff_singleton_indep, IsLoop.dep, isCircuit_def, IsRestriction.dep_iff, IsCircuit.contract_dep_of_not_subset, Indep.mem_closure_iff_of_notMem, delete_dep_iff, indep_or_dep, isCircuit_iff_forall_ssubset, Indep.isBasis_iff_forall_insert_dep, singleton_dep, not_dep_iff, dep_of_not_indep, IsBasis.dep_of_ssubset, not_indep_iff, IsBasis.insert_dep, IsLoop.dep_of_mem, IsCircuit.dep, Indep.not_dep, dep_iff_superset_isCircuit, IsBasis'.contract_dep_iff, isCircuit_iff, dep_iff, setOf_dep_eq
E πŸ“–CompOp
226 mathmath: exists_isBasis_inter_ground_isBasis_closure, instNonemptyElemSetSetOfAndIsFlatSubsetInterE, isColoop_iff_forall_mem_compl_isCircuit, IsNonloop.mem_ground, isCocircuit_iff_minimal_compl_nonspanning, isRkFinite_ground, ext_indep_iff, Indep.mem_closure_iff', IsStrictMinor.ssubset, Coindep.compl_spanning, restrict_eq_self_iff, ofBase_E, IsRestriction.exists_eq_delete, subset_ground, dual_isBase_iff', Coindep.exists_subset_compl_isBase, eRank_le_encard_add_eRk_compl, inter_ground_subset_closure, delete_inter_ground_eq, ext_iff_isBase, cRk_inter_ground, Dep.subset_ground, finite_setOf_matroid', IsBase.compl_isBase_of_dual, IsBasis.subset_ground, Indep.exists_eq_image_of_mapSetEmbedding, restrict_loops_eq', insert_indep_iff, closure_univ, IsRestriction.exists_eq_restrict, isColoop_iff_diff_not_spanning, isColoop_iff_forall_mem_closure_iff_mem', closure_subset_ground, IsMinor.exists_eq_contract_delete_disjoint, isBasis_iff_isBasis'_subset_ground, coindep_iff_forall_subset_not_isCocircuit, delete_eq_self_iff, contract_eq_self_iff, cRk_ground, IsColoop.mem_ground, restrictSubtype_ground, isBasis_ground_iff, isClosed_iff_isFlat, eRk_dual_add_eRank', eRk_compl_union_of_disjoint, Spanning.contract_eq_loopyOn, IsBase.isBasis_ground, contract_isNonloop_iff, removeLoops_ground_eq, dual_dep_iff_forall, comapOn_ground_eq, ext_iff, eRk_compl_insert_union_add_eRk_compl_insert_inter_le, contract_ground, comap_map, fundCocircuit_subset_insert_compl, Coindep.exists_isBase_subset_compl, closure_eq_subtypeClosure, spanning_iff_eRk_le', emptyOn_ground, restrict_ground_eq, dualIndepMatroid_E, eRk_union_ground, dep_iff_superset_isCircuit', sigma_ground_eq, Spanning.closure_eq, mapEmbedding_ground_eq, restrict_spanning_iff', dual_indep_iff_exists', instFiniteElemERestrictSubtype, IsStrictRestriction.ssubset, indep_iff_not_dep, sum'_ground_eq, ground_not_isBase, mapSetEmbedding_indep_iff', Indep.insert_indep_iff, eRank_le_encard_ground, coloops_subset_ground, spanning_iff, isBasis'_iff_isBasis_inter_ground, isBasis_iff', ground_isFlat, IsBasis.isBasis_inter_ground, eRank_def, IsBase.compl_closure_diff_singleton_isCocircuit, ofIsBaseOfFinite_E, eRk_inter_ground, uniqueBaseOn_ground, mapSetEquiv.ground, IsBase.subset_ground, IsBase.closure_eq, setOf_isNonloop_eq, freeOn_ground, closure_ground, delete_eq_restrict, IsRestriction.base_iff, ground_nonempty, mapEquiv_ground_eq, IsBase.compl_isBase_dual, IsBasis'.isBasis_inter_ground, IndepMatroid.matroid_E, eRk_ground_inter, Spanning.compl_coindep, isRkFinite_ground_iff_rankFinite, IsBase.compl_inter_isBasis_of_inter_isBasis, eRk_ground, map_id, delete_ground, closure_def, sum_ground, map_val_restrictSubtype_eq, ofExistsFiniteIsBase_E, mapSetEmbedding_indep_iff, restrict_ground_eq_self, finite_setOf_matroid, eRank_eq_zero_iff, Indep.subset_ground, indep_iff_forall_notMem_closure_diff', eRk_ground_union, eq_restrict_removeLoops, isBasis_restrict_iff', isRestriction_iff_exists, ground_indep_iff_eq_freeOn, ground_subset_closure_iff, eRk_eq_zero_iff', instRankPosElemERestrictSubtype, closure_inter_ground, finite_iff, spanning_iff_exists_isBase_subset', isLoop_iff_forall_mem_compl_isBase, comap_ground_eq, eRank_add_eRank_dual, isNonloop_iff_mem_compl_loops, IsCircuit.subset_ground, Spanning.closure_eq_of_superset, IsBasis.left_subset_ground, IsRestriction.dep_iff, delete_isColoop_iff, Spanning.subset_ground, isColoop_tfae, isRestriction_iff_exists_eq_delete, IsRestriction.subset, contract_spanning_iff', Nonempty.ground_nonempty, IsRkFinite.inter_ground, restrictSubtype_ground_isBasis_iff, restrictSubtype_ground_isBase_iff, contract_inter_ground_eq, isBase_iff_indep_closure_eq, contract_eq_contract_iff, Indep.isBase_iff_ground_subset_closure, IsStrictRestriction.eq_restrict, ground_indep_iff_isBase, AlgebraicIndependent.matroid_e, Coindep.subset_ground, restrict_closure_eq', ground_finite, closure_empty_eq_ground_iff, not_rankPos_iff, Coindep.closure_compl, restrictSubtype_dual, dual_ground, eq_loopyOn_or_rankPos, IsCocircuit.subset_ground, IsBase.closure_of_superset, eq_freeOn_iff, isBasis_iff_isBasis_closure_of_subset', coindep_iff_subset_compl_isBase, isFlat_iff_isClosed, Indep.insert_diff_indep_iff, ground_spanning, isCocircuit_iff_minimal_compl_nonspanning', restrict_compl, isNonloop_iff, eRk_compl_union_add_eRk_compl_inter_le, coindep_iff_exists', map_val_restrictSubtype_ground_eq, ground_nonempty_iff, delete_subset_ground, eq_loopyOn_iff, comap_isBase_iff, Finite.ground_finite, isRkFinite_inter_ground_iff, IsMinor.subset, delete_eq_delete_iff, IsRestriction.isLoop_iff, contract_ground_subset_ground, eq_loopyOn_iff_eRank, dualIndepMatroid_Indep, loops_subset_ground, ext_iff_indep, mapSetEmbedding_ground, IsBase.isBasis_of_isRestriction, eq_loopyOn_iff_loops_eq, Loopless.ground_eq, empty_isBase_iff, IsRestriction.indep_iff, mapEquiv_eq_map, mapSetEquiv_indep_iff, IsBase.ssubset_ground, IsRestriction.eq_restrict, isLoop_iff_closure_eq_loops_and_mem_ground, eq_loopyOn_iff_loops, IsLoop.mem_ground, IsBase.encard_compl_eq, ground_eq_empty_iff, ext_iff_isCircuit, restrict_isLoop_iff, isStrictMinor_iff_isMinor_ssubset, delete_isBase_iff, instNonemptyElemERestrictSubtype, loopyOn_ground, IsRestriction.isBasis_iff, IsFlat.subset_ground, dep_iff, compl_loops_eq, indep_iff_forall_subset_not_isCircuit', IsColoop.diff_not_spanning, setOf_dual_isBase_eq, IsStrictRestriction.exists_eq_restrict, mem_ground_of_mem_closure, Indep.ssubset_ground, comapOn_preimage_eq, isFlat_iff, setOf_dep_eq, Indep.insert_indep_iff_of_notMem
ExchangeProperty πŸ“–MathDef
1 mathmath: isBase_exchange
ExistsMaximalSubsetProperty πŸ“–MathDef
4 mathmath: existsMaximalSubsetProperty_of_bdd, maximality, IndepMatroid.indep_maximal, existsMaximalSubsetProperty_indep
Finitary πŸ“–CompData
18 mathmath: AlgebraicIndependent.instFinitaryMatroid, comap_finitary, IsRestriction.finitary, finitary_iff, instFinitaryMapEmbedding, finitary_of_rankFinite, finitary_iff_forall_isCircuit_finite, instFinitaryElemRestrictSubtype, freeOn_finitary, IndepMatroid.ofFinitary_finitary, delete_finitary, uniqueBaseOn_finitary, contract_finitary, instFinitaryMapEquiv, restrict_finitary, instFinitaryMap, IndepMatroid.ofFinitaryCardAugment_finitary, comapOn_finitary
IsBase πŸ“–MathDef
91 mathmath: base_iff_dual_isBase_compl, Indep.isBase_of_forall_insert, rankPos_iff, ofIsBaseOfFinite_isBase, IsBasis.isBase_restrict, comapOn_isBase_iff_of_surjOn, isBase_restrict_iff', isBase_compl_iff_maximal_disjoint_isBase, IndepMatroid.matroid_IsBase, dual_isBase_iff', Coindep.exists_subset_compl_isBase, RankInfinite.exists_infinite_isBase, ext_iff_isBase, Spanning.isBase_of_indep, spanning_iff_exists_isBase_subset, coindep_iff_exists, Indep.isBase_of_maximal, isBasis_ground_iff, instNonemptySubtypeSetIsBase, IsBasis'.isBase_restrict, mapEmbedding_isBase_iff, ext_iff, Indep.isBase_of_spanning, Indep.isBase_of_eRk_ge, IsBasis.isBase_of_spanning, Coindep.exists_isBase_subset_compl, map_image_isBase_iff, indep_iff, dual_indep_iff_exists', comapOn_isBase_iff, ground_not_isBase, sum_isBase_iff, dual_isBase_iff, comapOn_isBase_iff_of_bijOn, Spanning.exists_isBase_subset, IsRestriction.base_iff, loopyOn_isBase_iff, RankPos.empty_not_isBase, AlgebraicIndependent.matroid_isBase_iff, Spanning.isBase_of_minimal, Indep.isBase_of_cRank_le, disjointSum_isBase_iff, Indep.isBase_of_cRank_le_of_finite, setOf_indep_eq, Indep.exists_isBase_superset, rankFinite_iff, sigma_isBase_iff, Restriction.isBase_iff_of_spanning, IsNonloop.exists_mem_isBase, copyIndep_IsBase, spanning_iff_exists_isBase_subset', dual_indep_iff_exists, exists_isBase, emptyOn_isBase_iff, restrictSubtype_ground_isBase_iff, isBase_iff_indep_closure_eq, Spanning.isBase_restrict_iff, Indep.isBase_iff_ground_subset_closure, ground_indep_iff_isBase, RankFinite.exists_finite_isBase, ofExistsFiniteIsBase_isBase, freeOn_isBase_iff, empty_not_isBase, isBase_iff_minimal_spanning, coindep_iff_subset_compl_isBase, isBase_restrict_iff, rankInfinite_iff, Spanning.isBase_of_le_cRank, sum'_isBase_iff, coindep_iff_exists', isBase_iff_maximal_indep, IsBasis.restrict_isBase, comap_isBase_iff, Indep.contract_isBase_iff, restrictSubtype_isBase_iff, Coindep.delete_isBase_iff, dualIndepMatroid_Indep, disjointSigma_isBase_iff, IsBasis.exists_isBase, map_isBase_iff, isBase_exchange, empty_isBase_iff, delete_isBase_iff, Spanning.isBase_of_le_cRank_of_finite, indep_iff', mapEquiv_isBase_iff, uniqueBaseOn_isBase_iff, Indep.isBase_of_ground_subset_closure, Indep.exists_isBase_subset_spanning, setOf_dual_isBase_eq, removeLoops_isBase_eq
IsBasis πŸ“–MathDef
78 mathmath: exists_isBasis_inter_ground_isBasis_closure, exists_isBasis_disjoint_isBasis_of_subset, Indep.isBasis_of_forall_insert, isBasis_iff, freeOn_isBasis_iff, isBasis_iff_isBasis_closure_of_subset, isBasis_iff_indep_encard_eq_of_finite, sigma_isBasis_iff, exists_isBasis_union_inter_isBasis, restrictSubtype_isBasis_iff, Indep.isBasis_insert_iff, AlgebraicIndependent.matroid_isBasis_iff, Indep.isBasis_of_maximal_subset, isBasis_restrict_iff, Indep.isBasis_of_eRk_ge, isBasis_iff_isBasis'_subset_ground, Indep.subset_finite_isBasis_of_subset_of_isRkFinite, Indep.isBasis_closure, isBasis_ground_iff, IsBase.isBasis_ground, isBasis_iff_indep_subset_closure, isBasis_self_iff_indep, IsCircuit.diff_singleton_isBasis, loopyOn_isBasis_iff, IsBasis'.isBasis, isBasis'_iff_isBasis_inter_ground, isBasis_iff', isRkFinite_iff, Indep.closure_eq_setOf_isBasis_insert, Indep.insert_isBasis_iff_mem_closure, IsRestriction.base_iff, comap_isBasis_iff, IsBasis'.isBasis_inter_ground, isBasis_iff_empty_of_subset_loops, sum_isBasis_iff, uniqueBaseOn_inter_isBasis, disjointSum_isBasis_iff, sum'_isBasis_iff, disjointSigma_isBasis_iff, isBasis_restrict_iff', map_isBasis_iff, IsRkFinite.isBasis_of_subset_closure_of_subset_of_encard_le, isBasis_loops_iff, IsCircuit.isBasis_iff_eq_diff_singleton, isBasis'_iff_isBasis, isBasis_iff_maximal, uniqueBaseOn_isBasis_iff, restrictSubtype_ground_isBasis_iff, Indep.isBasis_setOf_insert_isBasis, Indep.isBasis_iff_forall_insert_dep, Indep.inter_isBasis_closure_iff_subset_closure_inter, delete_isBasis_iff, isBasis_iff_isBasis_closure_of_subset', exists_isBasis_subset_isBasis, empty_isBasis_iff, isBase_restrict_iff, isBasis_union_iff_indep_closure, exists_isBasis, eq_eRk_iff, IsBase.inter_isBasis_iff_compl_inter_isBasis_dual, mapEmbedding_isBasis_iff, IsBase.isBasis_of_subset, isBasis'_iff_isBasis_restrict_univ, mapEquiv_isBasis_iff, comap_isBase_iff, isBasis'_iff_isBasis_closure, IsBase.isBasis_of_isRestriction, map_isBasis_iff', Indep.subset_isBasis_of_subset, isBasis_iff_indep_closure, Indep.isBasis_of_subset_of_subset_closure, AlgebraicIndependent.matroid_isBasis_iff_of_subsingleton, delete_isBase_iff, IsRestriction.isBasis_iff, IsCircuit.isBasis_iff_insert_eq, IsBasis'.isBasis_closure_right, isBasis_empty_iff, Indep.isBasis_self
IsBasis' πŸ“–MathDef
23 mathmath: removeLoops_isBasis'_eq, comap_isBasis'_iff, isBase_restrict_iff', restrictSubtype_isBasis_iff, isBasis_iff_isBasis'_subset_ground, Indep.subset_finite_isBasis'_of_subset_of_isRkFinite, IsBasis.isBasis', isBasis'_restrict_iff, delete_isBasis'_iff, isRkFinite_iff_exists_isBasis', Indep.isBasis'_of_eRk_ge, freeOn_isBasis'_iff, comapOn_isBase_iff, isBasis'_iff_isBasis_inter_ground, IsRkFinite.exists_finite_isBasis', Indep.subset_isBasis'_of_subset, isBasis'_iff_isBasis, isBasis'_iff_indep_encard_eq_of_finite, isBasis'_iff_isBasis_restrict_univ, restrictSubtype_isBase_iff, isBasis'_iff_isBasis_closure, exists_isBasis', IsRkFinite.exists_finset_isBasis'
RankFinite πŸ“–CompData
27 mathmath: IndepMatroid.ofBddAugment_rankFinite, instRankFiniteElemRestrictSubtype, ofExistsFiniteIsBase_rankFinite, restrict_rankFinite, IsBase.rankFinite_of_finite, comap_rankFinite, eRank_lt_top_iff, rankFinite_of_finite, IsRkFinite.rankFinite, comapOn_rankFinite, instRankFiniteMapEquiv, isRkFinite_ground_iff_rankFinite, not_rankFinite, rankFinite_iff, loopyOn_rankFinite, rankFinite_iff_cRank_lt_aleph0, not_rankFinite_iff, delete_rankFinite, not_rankInfinite_iff, rankFinite_or_rankInfinite, uniqueBaseOn_rankFinite, IsRestriction.rankFinite, instRankFiniteMap, eRank_ne_top_iff, instRankFiniteMapEmbedding, IndepMatroid.instRankFiniteMatroidOfBdd, contract_rankFinite
RankInfinite πŸ“–CompData
8 mathmath: eRank_eq_top_iff, IsBase.rankInfinite_of_infinite, rankInfinite_iff_aleph0_le_cRank, not_rankFinite_iff, not_rankInfinite, rankInfinite_iff, not_rankInfinite_iff, rankFinite_or_rankInfinite
RankPos πŸ“–CompData
17 mathmath: rankPos_iff, IsBase.rankPos_of_nonempty, instRankPosMapEquiv, dual_rankPos_iff_exists_isCircuit, IsCircuit.dual_rankPos, instRankPosOfNonemptyOfLoopless, instRankPosMap, uniqueBaseOn_rankPos, IsNonloop.rankPos, instRankPosElemERestrictSubtype, freeOn_rankPos, rankPos_iff_exists_isCocircuit, not_rankPos_iff, eq_loopyOn_or_rankPos, instRankPosMapEmbedding, Coindep.delete_rankPos, Indep.rankPos_of_nonempty
aesop_mat πŸ“–CompOpβ€”
copy πŸ“–CompOp
3 mathmath: copy_IsBase, copy_E, copy_Indep
copyBase πŸ“–CompOp
3 mathmath: copyBase_E, copyBase_Indep, copyBase_IsBase
copyIndep πŸ“–CompOp
3 mathmath: copyIndep_IsBase, copyIndep_E, copyIndep_Indep

Theorems

NameKindAssumesProvesValidatesDepends On
copyBase_E πŸ“–mathematicalE
IsBase
copyBaseβ€”β€”
copyBase_Indep πŸ“–mathematicalE
IsBase
Indep
copyBase
β€”β€”
copyBase_IsBase πŸ“–mathematicalE
IsBase
copyBaseβ€”β€”
copyIndep_E πŸ“–mathematicalE
Indep
copyIndepβ€”β€”
copyIndep_Indep πŸ“–mathematicalE
Indep
copyIndepβ€”β€”
copyIndep_IsBase πŸ“–mathematicalE
Indep
IsBase
copyIndep
β€”β€”
copy_E πŸ“–mathematicalE
IsBase
Indep
copyβ€”β€”
copy_Indep πŸ“–mathematicalE
IsBase
Indep
copyβ€”β€”
copy_IsBase πŸ“–mathematicalE
IsBase
Indep
copyβ€”β€”
dep_iff πŸ“–mathematicalβ€”Dep
Indep
Set
Set.instHasSubset
E
β€”β€”
dep_of_not_indep πŸ“–mathematicalIndep
Set
Set.instHasSubset
E
Depβ€”β€”
empty_indep πŸ“–mathematicalβ€”Indep
Set
Set.instEmptyCollection
β€”exists_isBase
Indep.subset
IsBase.indep
Set.empty_subset
empty_not_isBase πŸ“–mathematicalβ€”IsBase
Set
Set.instEmptyCollection
β€”RankPos.empty_not_isBase
existsMaximalSubsetProperty_indep πŸ“–mathematicalSet
Set.instHasSubset
E
ExistsMaximalSubsetProperty
Indep
β€”maximality
exists_isBase πŸ“–mathematicalβ€”IsBaseβ€”β€”
exists_isBasis πŸ“–mathematicalSet
Set.instHasSubset
E
IsBasisβ€”Indep.subset_isBasis_of_subset
empty_indep
Set.empty_subset
exists_isBasis' πŸ“–mathematicalβ€”IsBasis'β€”Indep.subset_isBasis'_of_subset
empty_indep
Set.empty_subset
exists_isBasis_disjoint_isBasis_of_subset πŸ“–mathematicalSet
Set.instHasSubset
E
IsBasis
Set.instUnion
Disjoint
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
β€”exists_isBasis_subset_isBasis
Set.union_diff_self
Set.union_eq_self_of_subset_left
Set.disjoint_iff_forall_ne
IsBasis.mem_of_insert_indep
Indep.subset
IsBasis.indep
Set.insert_subset
exists_isBasis_subset_isBasis πŸ“–mathematicalSet
Set.instHasSubset
E
IsBasisβ€”exists_isBasis
HasSubset.Subset.trans
Set.instIsTransSubset
Indep.subset_isBasis_of_subset
IsBasis.indep
IsBasis.subset
exists_isBasis_union_inter_isBasis πŸ“–mathematicalSet
Set.instHasSubset
E
IsBasis
Set.instUnion
Set.instInter
β€”exists_isBasis
IsBasis.exists_isBasis_inter_eq_of_superset
Set.subset_union_right
ext πŸ“–β€”E
IsBase
Indep
β€”β€”β€”
ext_iff πŸ“–mathematicalβ€”E
IsBase
Indep
β€”ext
ext_iff_indep πŸ“–mathematicalβ€”E
Indep
β€”ext_indep
ext_iff_isBase πŸ“–mathematicalβ€”E
IsBase
β€”ext_isBase
ext_indep πŸ“–β€”E
Indep
β€”β€”Indep.subset_ground
LE.le.trans_eq
ext_isBase
ext_indep_iff πŸ“–mathematicalβ€”E
Indep
β€”ext_indep
ext_isBase πŸ“–β€”E
IsBase
β€”β€”IsBase.subset_ground
LE.le.trans_eq
ext
Set.ext
indep_iff'
ext_isBase_indep πŸ“–β€”E
Indep
β€”β€”ext_indep
Indep.exists_isBase_superset
Indep.subset
finitary_iff πŸ“–mathematicalβ€”Finitary
Indep
β€”β€”
finitary_of_rankFinite πŸ“–mathematicalβ€”Finitaryβ€”Set.finite_or_infinite
Set.Subset.rfl
exists_isBase
Set.Infinite.exists_subset_ncard_eq
Indep.exists_isBase_superset
Set.ncard_le_ncard
IsBase.finite
LT.lt.ne
IsBase.ncard_eq_ncard_of_isBase
finite_iff πŸ“–mathematicalβ€”Finite
Set.Finite
E
β€”β€”
finite_of_finite πŸ“–mathematicalβ€”Finiteβ€”Set.toFinite
Subtype.finite
finite_setOf_matroid πŸ“–mathematicalβ€”Set.Finite
Matroid
setOf
Set
Set.instHasSubset
E
β€”ext_isBase
Set.ext_iff
Set.finite_image_iff
Function.Injective.injOn
Set.Finite.subset
Set.Finite.prod
Set.Finite.finite_subsets
HasSubset.Subset.trans
Set.instIsTransSubset
IsBase.subset_ground
finite_setOf_matroid' πŸ“–mathematicalβ€”Set.Finite
Matroid
setOf
Set
E
β€”Set.Finite.subset
finite_setOf_matroid
subset_refl
Set.instReflSubset
ground_finite πŸ“–mathematicalβ€”Set.Finite
E
β€”Finite.ground_finite
ground_indep_iff_isBase πŸ“–mathematicalβ€”Indep
E
IsBase
β€”Indep.isBase_of_maximal
HasSubset.Subset.antisymm
Set.instAntisymmSubset
Indep.subset_ground
IsBase.indep
ground_nonempty πŸ“–mathematicalβ€”Set.Nonempty
E
β€”Nonempty.ground_nonempty
ground_nonempty_iff πŸ“–mathematicalβ€”Set.Nonempty
E
Nonempty
β€”β€”
indep_iff πŸ“–mathematicalβ€”Indep
IsBase
Set
Set.instHasSubset
β€”indep_iff'
indep_iff' πŸ“–mathematicalβ€”Indep
IsBase
Set
Set.instHasSubset
β€”β€”
indep_iff_forall_finite_subset_indep πŸ“–mathematicalβ€”Indepβ€”Indep.subset
Finitary.indep_of_forall_finite
indep_iff_not_dep πŸ“–mathematicalβ€”Indep
Dep
Set
Set.instHasSubset
E
β€”dep_iff
not_imp_not
Indep.subset_ground
indep_of_forall_finite_subset_indep πŸ“–β€”Indepβ€”β€”Finitary.indep_of_forall_finite
indep_of_not_dep πŸ“–mathematicalDep
Set
Set.instHasSubset
E
Indepβ€”by_contra
indep_or_dep πŸ“–mathematicalSet
Set.instHasSubset
E
Indep
Dep
β€”Dep.eq_1
em
insert_isBase_of_insert_indep πŸ“–β€”Set
Set.instMembership
IsBase
Set.instInsert
Indep
β€”β€”eq_or_ne
Set.insert_diff_of_mem
Set.diff_singleton_eq_self
IsBase.exchange_isBase_of_indep
instNonemptySubtypeSetIsBase πŸ“–mathematicalβ€”Set
IsBase
β€”nonempty_subtype
exists_isBase
isBase_compl_iff_maximal_disjoint_isBase πŸ“–mathematicalSet
Set.instHasSubset
E
IsBase
Set.instSDiff
Maximal
Set.instLE
Disjoint
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
β€”Set.disjoint_sdiff_right
LE.le.antisymm
compl_compl
Set.compl_inter
Set.diff_eq
Set.subset_compl_iff_disjoint_right
IsBase.eq_of_subset_isBase
Set.subset_diff
IsBase.subset_ground
disjoint_comm
Set.disjoint_of_subset_left
Set.diff_subset
Set.disjoint_sdiff_left
sdiff_sdiff_right_self
inf_of_le_right
isBase_exchange πŸ“–mathematicalβ€”ExchangeProperty
IsBase
β€”β€”
isBase_iff_maximal_indep πŸ“–mathematicalβ€”IsBase
Maximal
Set
Set.instLE
Indep
β€”maximal_subset_iff
IsBase.indep
IsBase.eq_of_subset_indep
Indep.exists_isBase_superset
isBasis'_iff_isBasis πŸ“–mathematicalSet
Set.instHasSubset
E
IsBasis'
IsBasis
β€”isBasis'_iff_isBasis_inter_ground
Set.inter_eq_self_of_subset_left
isBasis'_iff_isBasis_inter_ground πŸ“–mathematicalβ€”IsBasis'
IsBasis
Set
Set.instInter
E
β€”IsBasis'.eq_1
IsBasis.eq_1
Set.inter_subset_right
maximal_iff_maximal_of_imp_of_forall
HasSubset.Subset.trans
Set.instIsTransSubset
Set.inter_subset_left
Eq.le
Set.subset_inter
Indep.subset_ground
isBasis_empty_iff πŸ“–mathematicalβ€”IsBasis
Set
Set.instEmptyCollection
β€”Set.subset_empty_iff
IsBasis.subset
Indep.isBasis_self
empty_indep
isBasis_ground_iff πŸ“–mathematicalβ€”IsBasis
E
IsBase
β€”IsBasis.eq_1
Eq.subset
Set.instReflSubset
isBase_iff_maximal_indep
maximal_and_iff_right_of_imp
Indep.subset_ground
isBasis_iff πŸ“–mathematicalSet
Set.instHasSubset
E
IsBasis
Indep
β€”isBasis_iff'
isBasis_iff' πŸ“–mathematicalβ€”IsBasis
Indep
Set
Set.instHasSubset
E
β€”IsBasis.eq_1
maximal_subset_iff
isBasis_iff_isBasis'_subset_ground πŸ“–mathematicalβ€”IsBasis
IsBasis'
Set
Set.instHasSubset
E
β€”IsBasis.isBasis'
IsBasis.subset_ground
isBasis'_iff_isBasis
isBasis_iff_maximal πŸ“–mathematicalSet
Set.instHasSubset
E
IsBasis
Maximal
Set.instLE
Indep
β€”IsBasis.eq_1
isBasis_self_iff_indep πŸ“–mathematicalβ€”IsBasis
Indep
β€”isBasis_iff'
Eq.subset
Set.instReflSubset
subset_antisymm
Set.instAntisymmSubset
Indep.subset_ground
maximality πŸ“–mathematicalSet
Set.instHasSubset
E
ExistsMaximalSubsetProperty
Indep
β€”β€”
nonempty_type πŸ“–β€”β€”β€”β€”ground_nonempty
not_dep_iff πŸ“–mathematicalSet
Set.instHasSubset
E
Dep
Indep
β€”Dep.eq_1
not_indep_iff πŸ“–mathematicalSet
Set.instHasSubset
E
Indep
Dep
β€”Dep.eq_1
not_rankFinite πŸ“–mathematicalβ€”RankFiniteβ€”exists_isBase
IsBase.infinite
IsBase.finite
not_rankFinite_iff πŸ“–mathematicalβ€”RankFinite
RankInfinite
β€”rankFinite_or_rankInfinite
not_rankInfinite
not_rankFinite
not_rankInfinite πŸ“–mathematicalβ€”RankInfiniteβ€”exists_isBase
IsBase.infinite
IsBase.finite
not_rankInfinite_iff πŸ“–mathematicalβ€”RankInfinite
RankFinite
β€”not_rankFinite_iff
rankFinite_iff πŸ“–mathematicalβ€”RankFinite
IsBase
Set.Finite
β€”β€”
rankFinite_of_finite πŸ“–mathematicalβ€”RankFiniteβ€”set_finite
subset_ground
exists_isBase
rankFinite_or_rankInfinite πŸ“–mathematicalβ€”RankFinite
RankInfinite
β€”exists_isBase
IsBase.rankFinite_of_finite
IsBase.rankInfinite_of_infinite
Set.finite_or_infinite
rankInfinite_iff πŸ“–mathematicalβ€”RankInfinite
IsBase
Set.Infinite
β€”β€”
rankPos_iff πŸ“–mathematicalβ€”RankPos
IsBase
Set
Set.instEmptyCollection
β€”β€”
rankPos_nonempty πŸ“–mathematicalβ€”Nonemptyβ€”exists_isBase
Set.eq_empty_or_nonempty
RankPos.empty_not_isBase
subset_ground
setOf_dep_eq πŸ“–mathematicalβ€”setOf
Set
Dep
Set.instInter
Compl.compl
Set.instCompl
Indep
Set.Iic
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
E
β€”β€”
setOf_indep_eq πŸ“–mathematicalβ€”setOf
Set
Indep
SetLike.coe
LowerSet
Preorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
LowerSet.instSetLike
lowerClosure
IsBase
β€”β€”
set_finite πŸ“–mathematicalSet
Set.instHasSubset
E
Set.Finiteβ€”Set.Finite.subset
ground_finite
subset_ground πŸ“–mathematicalIsBaseSet
Set.instHasSubset
E
β€”β€”

Matroid.Dep

Theorems

NameKindAssumesProvesValidatesDepends On
nonempty πŸ“–mathematicalMatroid.DepSet.Nonemptyβ€”Set.nonempty_iff_ne_empty
not_indep
Matroid.empty_indep
not_indep πŸ“–mathematicalMatroid.DepMatroid.Indepβ€”β€”
subset_ground πŸ“–mathematicalMatroid.DepSet
Set.instHasSubset
Matroid.E
β€”β€”
superset πŸ“–β€”Matroid.Dep
Set
Set.instHasSubset
Matroid.E
β€”β€”Matroid.dep_of_not_indep
Matroid.Indep.not_dep
Matroid.Indep.subset

Matroid.ExchangeProperty

Theorems

NameKindAssumesProvesValidatesDepends On
antichain πŸ“–β€”Matroid.ExchangeProperty
Set
Set.instHasSubset
β€”β€”HasSubset.Subset.antisymm
Set.instAntisymmSubset
by_contra
encard_diff_eq πŸ“–mathematicalMatroid.ExchangePropertySet.encard
Set
Set.instSDiff
β€”LE.le.antisymm
encard_diff_le_aux
encard_diff_le_aux πŸ“–mathematicalMatroid.ExchangePropertyENat
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
Set.encard
Set
Set.instSDiff
β€”β€”
encard_isBase_eq πŸ“–mathematicalMatroid.ExchangePropertySet.encardβ€”Set.encard_diff_add_encard_inter
encard_diff_eq
Set.inter_comm

Matroid.Finitary

Theorems

NameKindAssumesProvesValidatesDepends On
indep_of_forall_finite πŸ“–β€”Matroid.Indepβ€”β€”β€”

Matroid.Finite

Theorems

NameKindAssumesProvesValidatesDepends On
ground_finite πŸ“–mathematicalβ€”Set.Finite
Matroid.E
β€”β€”

Matroid.Indep

Theorems

NameKindAssumesProvesValidatesDepends On
diff πŸ“–mathematicalMatroid.IndepSet
Set.instSDiff
β€”subset
Set.diff_subset
eq_of_isBasis πŸ“–β€”Matroid.Indep
Matroid.IsBasis
β€”β€”Matroid.IsBasis.eq_of_subset_indep
Matroid.IsBasis.subset
Eq.subset
Set.instReflSubset
exists_insert_of_not_isBase πŸ“–mathematicalMatroid.Indep
Matroid.IsBase
Set
Set.instMembership
Set.instSDiff
Set.instInsert
β€”exists_isBase_superset
Set.exists_of_ssubset
HasSubset.Subset.ssubset_of_ne
Set.instIsNonstrictStrictOrderSubsetSSubset
Set.instAntisymmSubset
subset
Matroid.IsBase.indep
Set.insert_subset
Matroid.IsBase.exchange
Set.notMem_subset
Matroid.indep_iff
Set.insert_subset_insert
Set.subset_diff_singleton
exists_insert_of_not_maximal πŸ“–mathematicalMatroid.Indep
Maximal
Set
Set.instLE
Set.instMembership
Set.instSDiff
Set.instInsert
β€”exists_insert_of_not_isBase
Matroid.IsBase.eq_of_subset_indep
isBase_of_maximal
exists_isBase_subset_union_isBase πŸ“–mathematicalMatroid.Indep
Matroid.IsBase
Set
Set.instHasSubset
Set.instUnion
β€”subset_isBasis_of_subset
Set.subset_union_left
subset_ground
Matroid.IsBase.subset_ground
Matroid.IsBase.isBase_of_isBasis_superset
Set.subset_union_right
Matroid.IsBasis.subset
exists_isBase_superset πŸ“–mathematicalMatroid.IndepMatroid.IsBase
Set
Set.instHasSubset
β€”Matroid.indep_iff
finite πŸ“–mathematicalMatroid.IndepSet.Finiteβ€”exists_isBase_superset
Set.Finite.subset
Matroid.IsBase.finite
inter_left πŸ“–mathematicalMatroid.IndepSet
Set.instInter
β€”subset
Set.inter_subset_right
inter_right πŸ“–mathematicalMatroid.IndepSet
Set.instInter
β€”subset
Set.inter_subset_left
isBase_of_forall_insert πŸ“–mathematicalMatroid.Indep
Set
Set.instInsert
Matroid.IsBaseβ€”Matroid.exists_isBase
exists_insert_of_not_isBase
Matroid.IsBase.subset_ground
isBase_of_maximal πŸ“–mathematicalMatroid.IndepMatroid.IsBaseβ€”Matroid.isBase_iff_maximal_indep
maximal_subset_iff
isBasis_iff_forall_insert_dep πŸ“–mathematicalMatroid.Indep
Set
Set.instHasSubset
Matroid.IsBasis
Matroid.Dep
Set.instInsert
β€”Matroid.IsBasis.eq_1
Set.maximal_iff_forall_insert
subset
HasSubset.Subset.trans
Set.instIsTransSubset
subset_ground
em
isBasis_insert_iff πŸ“–mathematicalMatroid.IndepMatroid.IsBasis
Set
Set.instInsert
Matroid.Dep
Set.instMembership
β€”isBasis_iff_forall_insert_dep
Set.subset_insert
subset_ground
isBasis_of_forall_insert πŸ“–mathematicalMatroid.Indep
Set
Set.instHasSubset
Matroid.Dep
Set.instInsert
Matroid.IsBasisβ€”isBasis_iff_forall_insert_dep
isBasis_of_maximal_subset πŸ“–mathematicalMatroid.Indep
Set
Set.instHasSubset
Matroid.E
Matroid.IsBasisβ€”Matroid.isBasis_iff
HasSubset.Subset.antisymm
Set.instAntisymmSubset
isBasis_self πŸ“–mathematicalMatroid.IndepMatroid.IsBasisβ€”Matroid.isBasis_self_iff_indep
isBasis_setOf_insert_isBasis πŸ“–mathematicalMatroid.IndepMatroid.IsBasis
setOf
Set
Set.instInsert
β€”isBasis_of_forall_insert
Set.insert_eq_of_mem
isBasis_self
eq_of_isBasis
Matroid.IsBasis.subset_ground
not_dep πŸ“–mathematicalMatroid.IndepMatroid.Depβ€”β€”
rankPos_of_nonempty πŸ“–mathematicalMatroid.Indep
Set.Nonempty
Matroid.RankPosβ€”exists_isBase_superset
Matroid.IsBase.rankPos_of_nonempty
Set.Nonempty.mono
subset πŸ“–β€”Matroid.Indep
Set
Set.instHasSubset
β€”β€”exists_isBase_superset
Matroid.indep_iff
HasSubset.Subset.trans
Set.instIsTransSubset
subset_ground πŸ“–mathematicalMatroid.IndepSet
Set.instHasSubset
Matroid.E
β€”exists_isBase_superset
HasSubset.Subset.trans
Set.instIsTransSubset
Matroid.IsBase.subset_ground
subset_isBasis'_of_subset πŸ“–mathematicalMatroid.Indep
Set
Set.instHasSubset
Matroid.IsBasis'β€”subset_isBasis_of_subset
Set.subset_inter
subset_ground
subset_isBasis_of_subset πŸ“–mathematicalMatroid.Indep
Set
Set.instHasSubset
Matroid.E
Matroid.IsBasisβ€”Matroid.maximality

Matroid.IsBase

Theorems

NameKindAssumesProvesValidatesDepends On
dep_of_insert πŸ“–mathematicalMatroid.IsBase
Set
Set.instMembership
Matroid.E
Matroid.Dep
Set.instInsert
β€”dep_of_ssubset
Set.ssubset_insert
Set.insert_subset
subset_ground
dep_of_ssubset πŸ“–mathematicalMatroid.IsBase
Set
Set.instHasSSubset
Set.instHasSubset
Matroid.E
Matroid.Depβ€”HasSSubset.SSubset.ne
Set.instIrreflSSubset
eq_of_subset_indep
HasSSubset.SSubset.subset
Set.instIsNonstrictStrictOrderSubsetSSubset
diff_finite_comm πŸ“–mathematicalMatroid.IsBaseSet.Finite
Set
Set.instSDiff
β€”Set.finite_iff_finite_of_encard_eq_encard
encard_diff_comm
diff_infinite_comm πŸ“–mathematicalMatroid.IsBaseSet.Infinite
Set
Set.instSDiff
β€”Set.infinite_iff_infinite_of_encard_eq_encard
encard_diff_comm
encard_diff_comm πŸ“–mathematicalMatroid.IsBaseSet.encard
Set
Set.instSDiff
β€”Matroid.ExchangeProperty.encard_diff_eq
Matroid.isBase_exchange
encard_eq_encard_of_isBase πŸ“–mathematicalMatroid.IsBaseSet.encardβ€”Matroid.ExchangeProperty.encard_isBase_eq
Matroid.isBase_exchange
eq_exchange_of_diff_eq_singleton πŸ“–mathematicalMatroid.IsBase
Set
Set.instSDiff
Set.instSingletonSet
Set.instMembership
Set.instInsert
β€”exchange
Eq.subset
Set.instReflSubset
Set.mem_singleton
eq_of_subset_isBase
Set.insert_diff_singleton_comm
Set.diff_subset_iff
Set.insert_subset_iff
Set.union_comm
eq_of_subset_indep πŸ“–β€”Matroid.IsBase
Matroid.Indep
Set
Set.instHasSubset
β€”β€”Matroid.Indep.exists_isBase_superset
HasSubset.Subset.antisymm
Set.instAntisymmSubset
eq_of_subset_isBase
HasSubset.Subset.trans
Set.instIsTransSubset
eq_of_subset_isBase πŸ“–β€”Matroid.IsBase
Set
Set.instHasSubset
β€”β€”Matroid.ExchangeProperty.antichain
Matroid.isBase_exchange
exchange πŸ“–mathematicalMatroid.IsBase
Set
Set.instMembership
Set.instSDiff
Set.instInsert
Set.instSingletonSet
β€”Matroid.isBase_exchange
exchange_isBase_of_indep πŸ“–β€”Matroid.IsBase
Set
Set.instMembership
Matroid.Indep
Set.instInsert
Set.instSDiff
Set.instSingletonSet
β€”β€”Matroid.Indep.exists_isBase_superset
encard_diff_comm
Set.subset_singleton_iff_eq
Set.diff_eq_empty
Set.diff_diff_comm
Set.insert_subset_iff
Set.eq_empty_iff_forall_notMem
Set.encard_eq_zero
Set.encard_empty
Set.encard_eq_one
Set.encard_singleton
sdiff_sdiff_right_self
Set.inter_comm
Set.diff_union_inter
Eq.subset
Set.instReflSubset
exchange_isBase_of_indep' πŸ“–β€”Matroid.IsBase
Set
Set.instMembership
Matroid.Indep
Set.instSDiff
Set.instInsert
Set.instSingletonSet
β€”β€”Set.insert_diff_singleton_comm
exchange_isBase_of_indep
exchange_mem πŸ“–mathematicalMatroid.IsBase
Set
Set.instMembership
Set.instInsert
Set.instSDiff
Set.instSingletonSet
β€”exchange
exists_insert_of_ssubset πŸ“–mathematicalMatroid.IsBase
Set
Set.instHasSSubset
Set.instMembership
Set.instSDiff
Matroid.Indep
Set.instInsert
β€”Matroid.Indep.exists_insert_of_not_isBase
Matroid.Indep.subset
indep
HasSSubset.SSubset.subset
Set.instIsNonstrictStrictOrderSubsetSSubset
HasSSubset.SSubset.ne
Set.instIrreflSSubset
eq_of_subset_isBase
finite πŸ“–mathematicalMatroid.IsBaseSet.Finiteβ€”Matroid.RankFinite.exists_finite_isBase
finite_of_finite
finite_of_finite πŸ“–mathematicalMatroid.IsBaseSet.Finiteβ€”Set.finite_iff_finite_of_encard_eq_encard
encard_eq_encard_of_isBase
indep πŸ“–mathematicalMatroid.IsBaseMatroid.Indepβ€”Matroid.indep_iff
subset_rfl
Set.instReflSubset
infinite πŸ“–mathematicalMatroid.IsBaseSet.Infiniteβ€”Matroid.RankInfinite.exists_infinite_isBase
infinite_of_infinite
infinite_of_infinite πŸ“–β€”Matroid.IsBase
Set.Infinite
β€”β€”Mathlib.Tactic.Contrapose.contrapose₁
finite_of_finite
insert_dep πŸ“–mathematicalMatroid.IsBase
Set
Set.instMembership
Set.instSDiff
Matroid.E
Matroid.Dep
Set.instInsert
β€”Matroid.not_indep_iff
Set.insert_subset
subset_ground
Set.insert_eq_self
eq_of_subset_indep
Set.subset_insert
insert_not_isBase πŸ“–mathematicalMatroid.IsBase
Set
Set.instMembership
Set.instInsertβ€”not_isBase_of_ssubset
Set.ssubset_insert
isBase_of_isBasis_superset πŸ“–β€”Matroid.IsBase
Set
Set.instHasSubset
Matroid.IsBasis
β€”β€”Matroid.Indep.exists_insert_of_not_isBase
Matroid.IsBasis.indep
Matroid.IsBasis.mem_of_insert_indep
isBasis_ground πŸ“–mathematicalMatroid.IsBaseMatroid.IsBasis
Matroid.E
β€”Matroid.isBasis_ground_iff
isBasis_of_subset πŸ“–mathematicalSet
Set.instHasSubset
Matroid.E
Matroid.IsBase
Matroid.IsBasisβ€”Matroid.isBasis_iff
indep
eq_of_subset_indep
mem_of_insert_indep πŸ“–mathematicalMatroid.IsBase
Matroid.Indep
Set
Set.instInsert
Set.instMembershipβ€”by_contra
Matroid.Dep.not_indep
dep_of_insert
Matroid.Indep.subset_ground
Set.mem_insert
ncard_diff_comm πŸ“–mathematicalMatroid.IsBaseSet.ncard
Set
Set.instSDiff
β€”Set.ncard_def
encard_diff_comm
ncard_eq_ncard_of_isBase πŸ“–mathematicalMatroid.IsBaseSet.ncardβ€”Set.ncard_def
encard_eq_encard_of_isBase
nonempty πŸ“–mathematicalMatroid.IsBaseSet.Nonemptyβ€”Set.nonempty_iff_ne_empty
Matroid.empty_not_isBase
not_isBase_of_ssubset πŸ“–β€”Matroid.IsBase
Set
Set.instHasSSubset
β€”β€”HasSSubset.SSubset.ne
Set.instIrreflSSubset
eq_of_subset_isBase
HasSSubset.SSubset.subset
Set.instIsNonstrictStrictOrderSubsetSSubset
rankFinite_of_finite πŸ“–mathematicalMatroid.IsBaseMatroid.RankFiniteβ€”β€”
rankInfinite_of_infinite πŸ“–mathematicalMatroid.IsBase
Set.Infinite
Matroid.RankInfiniteβ€”β€”
rankPos_of_nonempty πŸ“–mathematicalMatroid.IsBase
Set.Nonempty
Matroid.RankPosβ€”Matroid.rankPos_iff
eq_of_subset_isBase
Set.empty_subset
subset_ground πŸ“–mathematicalMatroid.IsBaseSet
Set.instHasSubset
Matroid.E
β€”Matroid.subset_ground

Matroid.IsBasis

Theorems

NameKindAssumesProvesValidatesDepends On
dep_of_ssubset πŸ“–mathematicalMatroid.IsBasis
Set
Set.instHasSSubset
Set.instHasSubset
Matroid.Depβ€”subset_ground
Matroid.not_indep_iff
HasSSubset.SSubset.ne
Set.instIrreflSSubset
eq_of_subset_indep
HasSSubset.SSubset.subset
Set.instIsNonstrictStrictOrderSubsetSSubset
eq_of_subset_indep πŸ“–β€”Matroid.IsBasis
Matroid.Indep
Set
Set.instHasSubset
β€”β€”HasSubset.Subset.antisymm
Set.instAntisymmSubset
exists_isBase πŸ“–mathematicalMatroid.IsBasisMatroid.IsBase
Set
Set.instInter
β€”Matroid.Indep.exists_isBase_superset
indep
subset_antisymm
Set.instAntisymmSubset
Set.subset_inter
subset
eq_of_subset_indep
Matroid.Indep.inter_right
Matroid.IsBase.indep
Set.inter_subset_right
subset_refl
Set.instReflSubset
exists_isBasis_inter_eq_of_superset πŸ“–mathematicalMatroid.IsBasis
Set
Set.instHasSubset
Matroid.E
Set.instInterβ€”Matroid.Indep.subset_isBasis_of_subset
indep
HasSubset.Subset.trans
Set.instIsTransSubset
subset
subset_antisymm
Set.instAntisymmSubset
mem_of_insert_indep
Matroid.Indep.subset
Set.insert_subset
Set.subset_inter
iUnion_isBasis_iUnion πŸ“–β€”Matroid.IsBasis
Matroid.Indep
Set.iUnion
β€”β€”Matroid.Indep.isBasis_of_forall_insert
Set.iUnion_subset
HasSubset.Subset.trans
Set.instIsTransSubset
subset
Set.subset_iUnion
Matroid.Dep.superset
insert_dep
Set.mem_iUnion
Set.insert_subset_insert
Set.insert_subset_iff
Set.iUnion_subset_iff
Matroid.Indep.subset_ground
indep
subset_ground
indep πŸ“–mathematicalMatroid.IsBasisMatroid.Indepβ€”β€”
insert_dep πŸ“–mathematicalMatroid.IsBasis
Set
Set.instMembership
Set.instSDiff
Matroid.Dep
Set.instInsert
β€”dep_of_ssubset
Set.ssubset_insert
Set.insert_subset
subset
insert_isBasis_insert πŸ“–β€”Matroid.IsBasis
Matroid.Indep
Set
Set.instInsert
β€”β€”union_isBasis_union
Matroid.Indep.isBasis_self
Matroid.Indep.subset
Set.subset_union_right
inter_eq_of_subset_indep πŸ“–mathematicalMatroid.IsBasis
Set
Set.instHasSubset
Matroid.Indep
Set.instInterβ€”HasSubset.Subset.antisymm'
Set.instAntisymmSubset
Set.subset_inter
subset
mem_of_insert_indep
Matroid.Indep.subset
Set.insert_subset
isBasis' πŸ“–mathematicalMatroid.IsBasisMatroid.IsBasis'β€”β€”
isBasis_iUnion πŸ“–mathematicalMatroid.IsBasisSet.iUnionβ€”Set.iUnion_const
iUnion_isBasis_iUnion
indep
isBasis_inter_ground πŸ“–mathematicalMatroid.IsBasisSet
Set.instInter
Matroid.E
β€”Set.inter_eq_self_of_subset_left
subset_ground
isBasis_sUnion πŸ“–mathematicalSet.Nonempty
Set
Matroid.IsBasis
Set.sUnionβ€”Set.sUnion_eq_iUnion
Set.nonempty_coe_sort
isBasis_iUnion
Subtype.prop
isBasis_subset πŸ“–β€”Matroid.IsBasis
Set
Set.instHasSubset
β€”β€”Matroid.isBasis_iff
HasSubset.Subset.trans
Set.instIsTransSubset
subset_ground
indep
eq_of_subset_indep
isBasis_union πŸ“–mathematicalMatroid.IsBasisSet
Set.instUnion
β€”Set.union_self
union_isBasis_union
indep
isBasis_union_of_subset πŸ“–mathematicalMatroid.IsBasis
Matroid.Indep
Set
Set.instHasSubset
Set.instUnionβ€”Set.union_eq_self_of_subset_right
union_isBasis_union
Matroid.Indep.isBasis_self
left_subset_ground πŸ“–mathematicalMatroid.IsBasisSet
Set.instHasSubset
Matroid.E
β€”Matroid.Indep.subset_ground
indep
mem_of_insert_indep πŸ“–β€”Matroid.IsBasis
Set
Set.instMembership
Matroid.Indep
Set.instInsert
β€”β€”by_contra
Matroid.Dep.not_indep
insert_dep
not_isBasis_of_ssubset πŸ“–β€”Matroid.IsBasis
Set
Set.instHasSSubset
β€”β€”HasSSubset.SSubset.ne
Set.instIrreflSSubset
eq_of_subset_indep
indep
HasSSubset.SSubset.subset
Set.instIsNonstrictStrictOrderSubsetSSubset
subset
subset πŸ“–mathematicalMatroid.IsBasisSet
Set.instHasSubset
β€”β€”
subset_ground πŸ“–mathematicalMatroid.IsBasisSet
Set.instHasSubset
Matroid.E
β€”β€”
union_isBasis_union πŸ“–β€”Matroid.IsBasis
Matroid.Indep
Set
Set.instUnion
β€”β€”Set.union_eq_iUnion
iUnion_isBasis_iUnion

Matroid.IsBasis'

Theorems

NameKindAssumesProvesValidatesDepends On
eq_of_subset_indep πŸ“–β€”Matroid.IsBasis'
Matroid.Indep
Set
Set.instHasSubset
β€”β€”HasSubset.Subset.antisymm
Set.instAntisymmSubset
indep πŸ“–mathematicalMatroid.IsBasis'Matroid.Indepβ€”β€”
insert_not_indep πŸ“–mathematicalMatroid.IsBasis'
Set
Set.instMembership
Set.instSDiff
Matroid.Indep
Set.instInsert
β€”Set.insert_eq_self
eq_of_subset_indep
Set.subset_insert
Set.insert_subset
subset
inter_eq_of_subset_indep πŸ“–mathematicalMatroid.IsBasis'
Set
Set.instHasSubset
Matroid.Indep
Set.instInterβ€”Matroid.IsBasis.inter_eq_of_subset_indep
isBasis_inter_ground
Set.inter_comm
Set.inter_assoc
Set.inter_eq_self_of_subset_left
Matroid.Indep.subset_ground
isBasis πŸ“–mathematicalMatroid.IsBasis'
Set
Set.instHasSubset
Matroid.E
Matroid.IsBasisβ€”β€”
isBasis_inter_ground πŸ“–mathematicalMatroid.IsBasis'Matroid.IsBasis
Set
Set.instInter
Matroid.E
β€”Matroid.isBasis'_iff_isBasis_inter_ground
mem_of_insert_indep πŸ“–β€”Matroid.IsBasis'
Set
Set.instMembership
Matroid.Indep
Set.instInsert
β€”β€”Matroid.IsBasis.mem_of_insert_indep
isBasis_inter_ground
Matroid.Indep.subset_ground
Set.mem_insert
subset πŸ“–mathematicalMatroid.IsBasis'Set
Set.instHasSubset
β€”β€”

Matroid.Nonempty

Theorems

NameKindAssumesProvesValidatesDepends On
ground_nonempty πŸ“–mathematicalβ€”Set.Nonempty
Matroid.E
β€”β€”

Matroid.RankFinite

Theorems

NameKindAssumesProvesValidatesDepends On
exists_finite_isBase πŸ“–mathematicalβ€”Matroid.IsBase
Set.Finite
β€”β€”

Matroid.RankInfinite

Theorems

NameKindAssumesProvesValidatesDepends On
exists_infinite_isBase πŸ“–mathematicalβ€”Matroid.IsBase
Set.Infinite
β€”β€”

Matroid.RankPos

Theorems

NameKindAssumesProvesValidatesDepends On
empty_not_isBase πŸ“–mathematicalβ€”Matroid.IsBase
Set
Set.instEmptyCollection
β€”β€”

(root)

Definitions

NameCategoryTheorems
Matroid πŸ“–CompData
9 mathmath: Matroid.finite_setOf_matroid', Matroid.dual_injective, Matroid.lt_eq_isStrictMinor, Matroid.finite_setOf_isRestriction, Matroid.finite_setOf_matroid, Matroid.dual_involutive, Matroid.IsStrictMinor.lt, Matroid.IsMinor.le, Matroid.le_eq_isMinor

---

← Back to Index