Documentation Verification Report

Closure

πŸ“ Source: Mathlib/Combinatorics/Matroid/Closure.lean

Statistics

MetricCount
DefinitionsIsFlat, Spanning, closure, subtypeClosure
4
Theoremsclosure_compl, compl_spanning, closure_diff_singleton_ssubset, closure_diff_ssubset, closure_eq_setOf_isBasis_insert, closure_iInter_eq_biInter_closure_of_forall_subset, closure_insert_diff_eq_of_mem_closure, closure_inter_eq_inter_closure, closure_inter_eq_self_of_subset, closure_sInter_eq_biInter_closure_of_forall_subset, closure_ssubset_closure, eq_of_spanning_subset, exists_isBase_subset_spanning, indep_insert_diff_of_mem_closure, insert_dep_iff, insert_diff_indep_iff, insert_indep_iff, insert_indep_iff_of_notMem, insert_isBasis_iff_mem_closure, inter_isBasis_biInter, inter_isBasis_closure_iff_subset_closure_inter, inter_isBasis_iInter, inter_isBasis_sInter, isBase_iff_ground_subset_closure, isBase_of_ground_subset_closure, isBase_of_spanning, isBasis_closure, isBasis_of_subset_of_subset_closure, mem_closure_iff, mem_closure_iff', mem_closure_iff_of_notMem, notMem_closure_diff_of_mem, notMem_closure_iff, notMem_closure_iff_of_notMem, union_indep_iff_forall_notMem_closure_left, union_indep_iff_forall_notMem_closure_right, closure_eq, closure_of_superset, eq_of_superset_spanning, exchange_base_of_notMem_closure, isBase_insert_diff_of_mem_closure, spanning, spanning_of_superset, closure_eq_closure, isBasis_closure_right, closure_eq_closure, closure_eq_right, closure_inter_isBasis_closure, eq_of_closure_subset, insert_isBasis_insert_of_notMem_closure, isBase_of_spanning, isBasis_closure_right, isBasis_insert_diff_of_mem_closure, isBasis_of_closure_eq_closure, spanning_iff_spanning, subset_closure, closure, iInter, subset_ground, subset_of_isBasis_of_isBasis, isBase_iff_of_spanning, closure_eq, closure_eq_of_superset, compl_coindep, exists_isBase_subset, isBase_of_indep, isBase_of_minimal, isBase_restrict_iff, subset_ground, superset, union_left, union_right, closure_biInter_eq_biInter_closure_of_biUnion_indep, closure_biUnion_closure_eq_closure_biUnion, closure_biUnion_closure_eq_closure_sUnion, closure_biUnion_congr, closure_closure, closure_closure_union_closure_eq_closure_union, closure_def, closure_def', closure_diff_eq_self, closure_diff_singleton_eq_closure, closure_empty_eq_ground_iff, closure_empty_union_closure_eq, closure_eq_subtypeClosure, closure_exchange, closure_exchange_iff, closure_ground, closure_iInter_eq_iInter_closure_of_iUnion_indep, closure_iUnion_closure_eq_closure_iUnion, closure_iUnion_congr, closure_insert_closure_eq_closure_insert, closure_insert_congr, closure_insert_congr_right, closure_insert_eq_of_mem_closure, closure_inter_ground, closure_mono, closure_sInter_eq_biInter_closure_of_sUnion_indep, closure_spanning_iff, closure_subset_closure, closure_subset_closure_iff_subset_closure, closure_subset_closure_of_subset_closure, closure_subset_ground, closure_union_closure_empty_eq, closure_union_closure_left_eq, closure_union_closure_right_eq, closure_union_congr_left, closure_union_congr_right, closure_univ, coindep_iff_closure_compl_eq_ground, coindep_iff_compl_spanning, comap_closure_eq, emptyOn_closure_eq, empty_isBasis_iff, exists_isBasis_inter_ground_isBasis_closure, exists_of_closure_ssubset, ext_closure, ext_spanning, freeOn_closure_eq, ground_isFlat, ground_spanning, ground_subset_closure_iff, indep_iff_forall_closure_diff_ne, indep_iff_forall_closure_ssubset_of_ssubset, indep_iff_forall_notMem_closure_diff, indep_iff_forall_notMem_closure_diff', insert_indep_iff, instNonemptyElemSetSetOfAndIsFlatSubsetInterE, inter_ground_subset_closure, isBase_iff_indep_closure_eq, isBase_iff_minimal_spanning, isBasis'_iff_isBasis_closure, isBasis_iff_indep_closure, isBasis_iff_indep_subset_closure, isBasis_iff_isBasis_closure_of_subset, isBasis_iff_isBasis_closure_of_subset', isBasis_union_iff_indep_closure, isClosed_iff_isFlat, isFlat_closure, isFlat_iff, isFlat_iff_closure_eq, isFlat_iff_isClosed, loopyOn_closure_eq, loopyOn_spanning_iff, map_closure_eq, mem_closure_diff_singleton_iff_closure, mem_closure_iff_forall_mem_isFlat, mem_closure_insert, mem_closure_of_mem, mem_closure_of_mem', mem_closure_self, mem_ground_of_mem_closure, notMem_of_mem_diff_closure, not_spanning_iff_closure_ssubset, restrict_closure_eq, restrict_closure_eq', restrict_spanning_iff, restrict_spanning_iff', spanning_iff, spanning_iff_closure_eq, spanning_iff_compl_coindep, spanning_iff_exists_isBase_subset, spanning_iff_exists_isBase_subset', spanning_iff_ground_subset_closure, subset_closure, subset_closure_diff_iff_closure_eq, subset_closure_iff_forall_subset_isFlat, subset_closure_of_subset, subset_closure_of_subset', uniqueBaseOn_closure_eq
170
Total174

Matroid

Definitions

NameCategoryTheorems
IsFlat πŸ“–CompData
11 mathmath: instNonemptyElemSetSetOfAndIsFlatSubsetInterE, AlgebraicIndependent.matroid_isFlat_of_subsingleton, isClosed_iff_isFlat, isFlat_closure, isFlat_iff_closure_eq, ground_isFlat, closure_def', closure_def, AlgebraicIndependent.matroid_isFlat_iff, isFlat_iff_isClosed, isFlat_iff
Spanning πŸ“–CompData
30 mathmath: isCocircuit_iff_minimal_compl_nonspanning, loopyOn_spanning_iff, spanning_iff_compl_coindep, Coindep.compl_spanning, IsBase.spanning_of_superset, isColoop_iff_diff_not_spanning, spanning_iff_exists_isBase_subset, not_spanning_iff_closure_ssubset, AlgebraicIndependent.matroid_spanning_iff, Coindep.delete_spanning_iff, IsBasis.spanning_iff_spanning, restrict_spanning_iff, IsBase.spanning, AlgebraicIndependent.matroid_spanning_iff_of_subsingleton, spanning_iff_eRk_le', closure_spanning_iff, restrict_spanning_iff', spanning_iff, contract_spanning_iff, spanning_iff_closure_eq, spanning_iff_exists_isBase_subset', isColoop_tfae, contract_spanning_iff', isBase_iff_minimal_spanning, ground_spanning, isCocircuit_iff_minimal_compl_nonspanning', spanning_iff_ground_subset_closure, coindep_iff_compl_spanning, spanning_iff_eRk_le, IsColoop.diff_not_spanning
closure πŸ“–CompOp
165 mathmath: eRk_insert_closure_eq, exists_isBasis_inter_ground_isBasis_closure, cRk_union_closure_left_eq, Indep.mem_closure_iff, IsBasis'.closure_eq_closure, Indep.mem_closure_iff', closure_subset_closure_iff_subset_closure, IsCircuit.mem_closure_diff_singleton_of_mem, isBasis_iff_isBasis_closure_of_subset, isRkFinite_closure_iff, inter_ground_subset_closure, closure_iUnion_closure_eq_closure_iUnion, isColoop_iff_forall_mem_closure_iff_mem, IsRkFinite.closure_eq_closure_of_subset_of_forall_insert, IsNonloop.closure_eq_closure_iff_eq_or_dep, IsCircuit.closure_diff_singleton_eq, coindep_iff_closure_compl_eq_ground, closure_biInter_eq_biInter_closure_of_biUnion_indep, subset_closure_diff_iff_closure_eq, insert_indep_iff, closure_univ, isLoop_tfae, isColoop_iff_forall_mem_closure_iff_mem', not_spanning_iff_closure_ssubset, closure_subset_ground, closure_empty, Indep.isBasis_closure, eRk_union_closure_left_eq, closure_loops, contract_isNonloop_iff, restrict_spanning_iff, closure_insert_closure_eq_closure_insert, subset_closure_iff_forall_subset_isFlat, restrict_closure_eq, closure_eq_loops_of_subset, delete_closure_eq, cRk_closure, closure_loops_union_eq, isBasis_iff_indep_subset_closure, closure_eq_subtypeClosure, closure_union_coloops_eq, closure_inter_setOf_isNonloop_eq, closure_mono, Indep.union_indep_iff_forall_notMem_closure_left, closure_spanning_iff, Spanning.closure_eq, restrict_spanning_iff', emptyOn_closure_eq, contract_closure_eq, Indep.insert_indep_iff, closure_union_closure_left_eq, restrict_isColoop_iff, subset_closure, Indep.notMem_closure_iff, spanning_iff, isFlat_closure, isFlat_iff_closure_eq, closure_union_eq_of_subset_coloops, Indep.closure_diff_singleton_ssubset, IsBase.compl_closure_diff_singleton_isCocircuit, indep_iff_forall_closure_ssubset_of_ssubset, mem_closure_of_mem', cRk_union_closure_eq, closure_closure, Indep.closure_eq_setOf_isBasis_insert, IsBase.closure_eq, closure_disjoint_of_disjoint_of_subset_coloops, comap_closure_eq, closure_insert_isColoop_eq, closure_union_closure_empty_eq, Indep.closure_diff_ssubset, delete_closure_eq_of_disjoint, cRk_insert_closure_eq, Indep.insert_dep_iff, closure_ground, Indep.insert_isBasis_iff_mem_closure, closure_union_closure_right_eq, closure_inter_eq_of_subset_coloops, isLoop_iff_closure_eq_loops, closure_subset_closure, closure_def', closure_iInter_eq_iInter_closure_of_iUnion_indep, IsLoop.closure, IsBasis.isBasis_closure_right, subset_closure_of_subset, IsBasis.closure_inter_isBasis_closure, closure_def, contract_loops_eq, mem_closure_self, closure_union_loops_eq, map_closure_eq, closure_exchange_iff, eRk_eq_one_iff, closure_diff_eq_of_subset_coloops, indep_iff_forall_notMem_closure_diff', Indep.notMem_closure_diff_of_mem, Indep.closure_iInter_eq_biInter_closure_of_forall_subset, freeOn_closure_eq, IsColoop.notMem_closure_of_notMem, closure_diff_loops_eq, Indep.closure_inter_eq_self_of_subset, ground_subset_closure_iff, spanning_iff_closure_eq, mem_closure_of_mem, closure_inter_ground, IsRkFinite.closure, Spanning.closure_eq_of_superset, Indep.notMem_closure_iff_of_notMem, delete_isColoop_iff, eRk_union_closure_right_eq, mem_closure_iff_forall_mem_isFlat, loopyOn_closure_eq, Indep.mem_closure_iff_of_notMem, isBase_iff_indep_closure_eq, IsNonloop.mem_closure_comm, isColoop_iff_notMem_closure_compl, Indep.isBase_iff_ground_subset_closure, contract_closure_eq_contract_delete, Indep.inter_isBasis_closure_iff_subset_closure_inter, IsNonloop.closure_eq_closure_iff_isCircuit_of_ne, restrict_closure_eq', closure_empty_eq_ground_iff, AlgebraicIndependent.matroid_closure_eq, Coindep.closure_compl, Indep.closure_ssubset_closure, IsBase.closure_of_superset, isBasis_iff_isBasis_closure_of_subset', empty_isBasis_iff, IsRkFinite.closure_eq_closure_of_subset_of_eRk_ge_eRk, closure_disjoint_coloops_of_disjoint_coloops, Indep.insert_diff_indep_iff, isBasis_union_iff_indep_closure, indep_iff_forall_notMem_closure_diff, closure_inter_coloops_eq, IsLoop.mem_closure, Indep.union_indep_iff_forall_notMem_closure_right, eRk_le_one_iff, AlgebraicIndependent.matroid_closure_of_subsingleton, closure_closure_union_closure_eq_closure_union, isBasis'_iff_isBasis_closure, spanning_iff_ground_subset_closure, IsBasis.subset_closure, IsCircuit.subset_closure_diff_singleton, subset_closure_of_subset', closure_biUnion_closure_eq_closure_biUnion, cRk_union_closure_right_eq, closure_sInter_eq_biInter_closure_of_sUnion_indep, isBasis_iff_indep_closure, isLoop_iff_closure_eq_loops_and_mem_ground, IsColoop.mem_closure_iff_mem, IsFlat.closure, Indep.closure_inter_eq_inter_closure, uniqueBaseOn_closure_eq, mem_closure_iff_exists_isCircuit, not_isNonloop_iff_closure, Indep.closure_sInter_eq_biInter_closure_of_forall_subset, contract_isLoop_iff_mem_closure, closure_biUnion_closure_eq_closure_sUnion, eRk_closure_eq, closure_empty_union_closure_eq, IsBasis'.isBasis_closure_right, mem_closure_diff_singleton_iff_closure, IsBasis.closure_eq_closure, closure_eq_of_subset_coloops, Indep.insert_indep_iff_of_notMem
subtypeClosure πŸ“–CompOp
3 mathmath: isClosed_iff_isFlat, closure_eq_subtypeClosure, isFlat_iff_isClosed

Theorems

NameKindAssumesProvesValidatesDepends On
closure_biInter_eq_biInter_closure_of_biUnion_indep πŸ“–mathematicalSet.Nonempty
Indep
Set.iUnion
Set
Set.instMembership
closure
Set.iInter
β€”Set.Nonempty.coe_sort
Set.iInter_coe_set
Set.iInter_congr_Prop
closure_iInter_eq_iInter_closure_of_iUnion_indep
Set.iUnion_coe_set
Set.iUnion_congr_Prop
closure_biUnion_closure_eq_closure_biUnion πŸ“–mathematicalβ€”closure
Set.iUnion
Set
Set.instMembership
β€”Set.biUnion_eq_iUnion
closure_iUnion_closure_eq_closure_iUnion
closure_biUnion_closure_eq_closure_sUnion πŸ“–mathematicalβ€”closure
Set.iUnion
Set
Set.instMembership
Set.sUnion
β€”Set.sUnion_eq_iUnion
Set.biUnion_eq_iUnion
closure_iUnion_closure_eq_closure_iUnion
closure_biUnion_congr πŸ“–mathematicalclosureSet.iUnion
Set
Set.instMembership
β€”closure_biUnion_closure_eq_closure_biUnion
Set.iUnionβ‚‚_congr
closure_closure πŸ“–mathematicalβ€”closureβ€”HasSubset.Subset.antisymm'
Set.instAntisymmSubset
subset_closure
closure_subset_ground
Set.subset_sInter
HasSubset.Subset.trans
Set.instIsTransSubset
closure_subset_closure
Set.sInter_subset_of_mem
Eq.subset
Set.instReflSubset
IsFlat.closure
closure_closure_union_closure_eq_closure_union πŸ“–mathematicalβ€”closure
Set
Set.instUnion
β€”Set.union_eq_iUnion
closure_iUnion_closure_eq_closure_iUnion
closure_def πŸ“–mathematicalβ€”closure
Set.sInter
setOf
Set
IsFlat
Set.instHasSubset
Set.instInter
E
β€”β€”
closure_def' πŸ“–mathematicalSet
Set.instHasSubset
E
closure
Set.sInter
setOf
IsFlat
β€”closure.eq_1
Set.inter_eq_self_of_subset_left
closure_diff_eq_self πŸ“–β€”Set
Set.instHasSubset
closure
Set.instSDiff
β€”β€”Set.diff_union_inter
closure_union_closure_left_eq
Set.union_eq_self_of_subset_right
HasSubset.Subset.trans
Set.instIsTransSubset
Set.inter_subset_right
closure_closure
closure_diff_singleton_eq_closure πŸ“–β€”Set
Set.instMembership
closure
Set.instSDiff
Set.instSingletonSet
β€”β€”closure_diff_eq_self
closure_empty_eq_ground_iff πŸ“–mathematicalβ€”closure
Set
Set.instEmptyCollection
E
loopyOn
β€”ext_closure
subset_antisymm
Set.instAntisymmSubset
loopyOn_closure_eq
closure_mono
Set.empty_subset
loopyOn_ground
closure_empty_union_closure_eq πŸ“–mathematicalβ€”Set
Set.instUnion
closure
Set.instEmptyCollection
β€”Set.union_eq_self_of_subset_left
closure_subset_closure
Set.empty_subset
closure_eq_subtypeClosure πŸ“–mathematicalβ€”closure
Set
Set.instMembership
Set.Iic
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
E
DFunLike.coe
ClosureOperator
Set.Elem
Subtype.preorder
ClosureOperator.instFunLike
subtypeClosure
Set.instInter
Set.inter_subset_right
β€”ground_isFlat
Set.inter_subset_right
IsFlat.subset_ground
Set.Iic.coe_iInf
closure_exchange πŸ“–β€”Set
Set.instMembership
Set.instSDiff
closure
Set.instInsert
β€”β€”mem_closure_insert
Set.notMem_empty
Set.diff_self
closure_insert_eq_of_mem_closure
closure_exchange_iff πŸ“–mathematicalβ€”Set
Set.instMembership
Set.instSDiff
closure
Set.instInsert
β€”closure_exchange
closure_ground πŸ“–mathematicalβ€”closure
E
β€”HasSubset.Subset.antisymm
Set.instAntisymmSubset
closure_subset_ground
subset_closure
Set.instReflSubset
closure_iInter_eq_iInter_closure_of_iUnion_indep πŸ“–mathematicalIndep
Set.iUnion
closure
Set.iInter
β€”Set.iInter_congr_Prop
Set.iInter_exists
Set.iInter_iInter_eq'
Indep.closure_sInter_eq_biInter_closure_of_forall_subset
Set.range_nonempty
closure_iUnion_closure_eq_closure_iUnion πŸ“–mathematicalβ€”closure
Set.iUnion
β€”Set.inter_subset_right
closure_eq_subtypeClosure
Set.iUnion_inter
Set.Iic.coe_iInf
Set.Iic.coe_iSup
ClosureOperator.closure_iSup_closure
closure_iUnion_congr πŸ“–mathematicalclosureSet.iUnionβ€”closure_iUnion_closure_eq_closure_iUnion
closure_closure
closure_insert_closure_eq_closure_insert πŸ“–mathematicalβ€”closure
Set
Set.instInsert
β€”closure_union_closure_right_eq
closure_insert_congr πŸ“–β€”Set
Set.instMembership
Set.instSDiff
closure
Set.instInsert
β€”β€”closure_exchange
closure_closure
Set.insert_eq_of_mem
closure_insert_closure_eq_closure_insert
Set.insert_comm
closure_insert_congr_right πŸ“–mathematicalclosureSet
Set.instInsert
β€”closure_union_congr_left
closure_insert_eq_of_mem_closure πŸ“–mathematicalSet
Set.instMembership
closure
Set.instInsertβ€”closure_insert_closure_eq_closure_insert
Set.insert_eq_of_mem
closure_closure
closure_inter_ground πŸ“–mathematicalβ€”closure
Set
Set.instInter
E
β€”Set.inter_assoc
Set.inter_self
closure_mono πŸ“–mathematicalβ€”Monotone
Set
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
closure
β€”closure_subset_closure
closure_sInter_eq_biInter_closure_of_sUnion_indep πŸ“–mathematicalSet.Nonempty
Set
Indep
Set.sUnion
closure
Set.sInter
Set.iInter
Set.instMembership
β€”Indep.closure_sInter_eq_biInter_closure_of_forall_subset
Set.subset_sUnion_of_mem
closure_spanning_iff πŸ“–mathematicalSet
Set.instHasSubset
E
Spanning
closure
β€”spanning_iff_closure_eq
closure_subset_ground
closure_closure
closure_subset_closure πŸ“–mathematicalSet
Set.instHasSubset
closureβ€”Set.subset_sInter
Set.sInter_subset_of_mem
subset_trans
Set.instIsTransSubset
Set.inter_subset_inter_left
closure_subset_closure_iff_subset_closure πŸ“–mathematicalSet
Set.instHasSubset
E
closureβ€”HasSubset.Subset.trans
Set.instIsTransSubset
subset_closure
closure_subset_closure_of_subset_closure
closure_subset_closure_of_subset_closure πŸ“–β€”Set
Set.instHasSubset
closure
β€”β€”LE.le.trans_eq
closure_subset_closure
closure_closure
closure_subset_ground πŸ“–mathematicalβ€”Set
Set.instHasSubset
closure
E
β€”Set.sInter_subset_of_mem
ground_isFlat
Set.inter_subset_right
closure_union_closure_empty_eq πŸ“–mathematicalβ€”Set
Set.instUnion
closure
Set.instEmptyCollection
β€”Set.union_eq_self_of_subset_right
closure_subset_closure
Set.empty_subset
closure_union_closure_left_eq πŸ“–mathematicalβ€”closure
Set
Set.instUnion
β€”closure_closure_union_closure_eq_closure_union
closure_closure
closure_union_closure_right_eq πŸ“–mathematicalβ€”closure
Set
Set.instUnion
β€”closure_closure_union_closure_eq_closure_union
closure_closure
closure_union_congr_left πŸ“–mathematicalclosureSet
Set.instUnion
β€”closure_union_closure_left_eq
closure_union_congr_right πŸ“–mathematicalclosureSet
Set.instUnion
β€”closure_union_closure_right_eq
closure_univ πŸ“–mathematicalβ€”closure
Set.univ
E
β€”closure_inter_ground
Set.univ_inter
closure_ground
coindep_iff_closure_compl_eq_ground πŸ“–mathematicalSet
Set.instHasSubset
E
Coindep
closure
Set.instSDiff
β€”coindep_iff_compl_spanning
spanning_iff_closure_eq
coindep_iff_compl_spanning πŸ“–mathematicalSet
Set.instHasSubset
E
Coindep
Spanning
Set.instSDiff
β€”coindep_iff_exists
spanning_iff_exists_isBase_subset
comap_closure_eq πŸ“–mathematicalβ€”closure
comap
Set.preimage
Set.image
β€”exists_isBasis'
comap_isBasis'_iff
IsBasis'.closure_eq_closure
Indep.mem_closure_iff'
IsBasis'.indep
Set.insert_eq_of_mem
Set.injOn_insert
emptyOn_closure_eq πŸ“–mathematicalβ€”closure
emptyOn
Set
Set.instEmptyCollection
β€”HasSubset.Subset.antisymm
Set.instAntisymmSubset
closure_subset_ground
Set.empty_subset
empty_isBasis_iff πŸ“–mathematicalβ€”IsBasis
Set
Set.instEmptyCollection
Set.instHasSubset
closure
β€”isBasis_iff_indep_closure
empty_indep
Set.empty_subset
exists_isBasis_inter_ground_isBasis_closure πŸ“–mathematicalβ€”IsBasis
Set
Set.instInter
E
closure
β€”exists_isBasis
IsBasis.isBasis_closure_right
closure_inter_ground
exists_of_closure_ssubset πŸ“–mathematicalSet
Set.instHasSSubset
closure
Set.instMembershipβ€”HasSSubset.SSubset.not_subset
Set.instIsNonstrictStrictOrderSubsetSSubset
closure_subset_closure_of_subset_closure
Mathlib.Tactic.Push.not_and_eq
ext_closure πŸ“–β€”closureβ€”β€”ext_indep
closure_univ
ext_spanning πŸ“–β€”E
Spanning
β€”β€”em
Spanning.subset_ground
HasSubset.Subset.trans
Set.instIsTransSubset
Eq.subset
Set.instReflSubset
ext_iff_indep
dual_ground
coindep_def
coindep_iff_compl_spanning
freeOn_closure_eq πŸ“–mathematicalβ€”closure
freeOn
Set
Set.instInter
β€”closure_inter_ground
Indep.mem_closure_iff'
freeOn_indep
Set.inter_subset_right
ground_isFlat πŸ“–mathematicalβ€”IsFlat
E
β€”IsBasis.subset_ground
Set.Subset.rfl
ground_spanning πŸ“–mathematicalβ€”Spanning
E
β€”closure_ground
Eq.subset
Set.instReflSubset
ground_subset_closure_iff πŸ“–mathematicalβ€”Set
Set.instHasSubset
E
closure
β€”Set.instReflSubset
Set.instAntisymmSubset
closure_subset_ground
indep_iff_forall_closure_diff_ne πŸ“–mathematicalβ€”Indepβ€”indep_iff_forall_notMem_closure_diff'
Eq.subset
Set.instReflSubset
mem_closure_of_mem
by_contra
closure_inter_ground
Set.inter_comm
Set.inter_diff_distrib_left
Set.inter_singleton_eq_empty
Set.diff_empty
Set.insert_diff_self_of_mem
closure_insert_closure_eq_closure_insert
Set.insert_eq_of_mem
closure_closure
indep_iff_forall_closure_ssubset_of_ssubset πŸ“–mathematicalSet
Set.instHasSubset
E
Indep
Set.instHasSSubset
closure
β€”Indep.closure_ssubset_closure
indep_iff_forall_notMem_closure_diff
HasSSubset.SSubset.ne
Set.instIrreflSSubset
Set.diff_singleton_ssubset
Set.insert_diff_self_of_mem
closure_insert_closure_eq_closure_insert
Set.insert_eq_of_mem
Set.insert_diff_singleton
Set.insert_diff_of_mem
closure_closure
indep_iff_forall_notMem_closure_diff πŸ“–mathematicalSet
Set.instHasSubset
E
Indep
Set.instMembership
closure
Set.instSDiff
Set.instSingletonSet
β€”Eq.subset
Set.instReflSubset
Indep.closure_inter_eq_self_of_subset
Set.diff_subset
exists_isBasis
HasSubset.Subset.antisymm'
Set.instAntisymmSubset
IsBasis.subset
by_contra
Set.mem_of_mem_of_subset
IsBasis.subset_closure
closure_subset_closure
Set.subset_diff_singleton
IsBasis.indep
indep_iff_forall_notMem_closure_diff' πŸ“–mathematicalβ€”Indep
Set
Set.instHasSubset
E
Set.instMembership
closure
Set.instSDiff
Set.instSingletonSet
β€”Indep.subset_ground
indep_iff_forall_notMem_closure_diff
insert_indep_iff πŸ“–mathematicalβ€”Indep
Set
Set.instInsert
Set.instMembership
Set.instSDiff
E
closure
β€”Indep.insert_indep_iff
Indep.subset
Set.subset_insert
instNonemptyElemSetSetOfAndIsFlatSubsetInterE πŸ“–mathematicalβ€”Set.Elem
Set
setOf
IsFlat
Set.instHasSubset
Set.instInter
E
β€”ground_isFlat
Set.inter_subset_right
inter_ground_subset_closure πŸ“–mathematicalβ€”Set
Set.instHasSubset
Set.instInter
E
closure
β€”β€”
isBase_iff_indep_closure_eq πŸ“–mathematicalβ€”IsBase
Indep
closure
E
β€”isBasis_ground_iff
isBasis_iff_indep_subset_closure
HasSubset.Subset.antisymm
Set.instAntisymmSubset
closure_subset_ground
LE.le.trans_eq
subset_closure
Indep.subset_ground
Eq.subset
Set.instReflSubset
isBase_iff_minimal_spanning πŸ“–mathematicalβ€”IsBase
Minimal
Set
Set.instLE
Spanning
β€”minimal_subset_iff
IsBase.spanning
IsBase.eq_of_superset_spanning
Spanning.exists_isBase_subset
isBasis'_iff_isBasis_closure πŸ“–mathematicalβ€”IsBasis'
IsBasis
closure
Set
Set.instHasSubset
β€”closure_inter_ground
isBasis'_iff_isBasis_inter_ground
IsBasis.isBasis_closure_right
HasSubset.Subset.trans
Set.instIsTransSubset
IsBasis.subset
Set.inter_subset_left
IsBasis.isBasis_subset
Set.subset_inter
Indep.subset_ground
IsBasis.indep
subset_closure
isBasis_iff_indep_closure πŸ“–mathematicalβ€”IsBasis
Indep
Set
Set.instHasSubset
closure
β€”IsBasis.indep
IsBasis.subset_closure
IsBasis.subset
IsBasis.isBasis_subset
isBasis_union_iff_indep_closure
Set.subset_union_right
isBasis_iff_indep_subset_closure πŸ“–mathematicalβ€”IsBasis
Indep
Set
Set.instHasSubset
closure
β€”IsBasis.indep
IsBasis.subset
IsBasis.subset_closure
Indep.isBasis_of_subset_of_subset_closure
isBasis_iff_isBasis_closure_of_subset πŸ“–mathematicalSet
Set.instHasSubset
E
IsBasis
closure
β€”IsBasis.isBasis_closure_right
IsBasis.isBasis_subset
subset_closure
isBasis_iff_isBasis_closure_of_subset' πŸ“–mathematicalSet
Set.instHasSubset
IsBasis
closure
E
β€”IsBasis.isBasis_closure_right
IsBasis.subset_ground
IsBasis.isBasis_subset
subset_closure
isBasis_union_iff_indep_closure πŸ“–mathematicalβ€”IsBasis
Set
Set.instUnion
Indep
Set.instHasSubset
closure
β€”IsBasis.indep
HasSubset.Subset.trans
Set.instIsTransSubset
Set.subset_union_right
IsBasis.subset_closure
IsBasis.isBasis_subset
Indep.isBasis_closure
Set.subset_union_left
Set.union_subset
subset_closure
Indep.subset_ground
isClosed_iff_isFlat πŸ“–mathematicalβ€”ClosureOperator.IsClosed
Set.Elem
Set
Set.Iic
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
E
Subtype.preorder
Set.instMembership
subtypeClosure
IsFlat
β€”β€”
isFlat_closure πŸ“–mathematicalβ€”IsFlat
closure
β€”closure.eq_1
Set.sInter_eq_iInter
IsFlat.iInter
instNonemptyElemSetSetOfAndIsFlatSubsetInterE
isFlat_iff πŸ“–mathematicalβ€”IsFlat
Set
Set.instHasSubset
E
β€”β€”
isFlat_iff_closure_eq πŸ“–mathematicalβ€”IsFlat
closure
β€”IsFlat.closure
isFlat_closure
isFlat_iff_isClosed πŸ“–mathematicalβ€”IsFlat
ClosureOperator.IsClosed
Set.Elem
Set
Set.Iic
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
E
Subtype.preorder
Set.instMembership
subtypeClosure
β€”IsFlat.subset_ground
loopyOn_closure_eq πŸ“–mathematicalβ€”closure
loopyOn
β€”restrict_closure_eq'
emptyOn_closure_eq
Set.empty_inter
Set.diff_empty
Set.empty_union
loopyOn_spanning_iff πŸ“–mathematicalβ€”Spanning
loopyOn
Set
Set.instHasSubset
β€”spanning_iff
loopyOn_closure_eq
loopyOn_ground
map_closure_eq πŸ“–mathematicalSet.InjOn
E
closure
map
Set.image
Set.preimage
β€”Set.ext
Indep.mem_closure_iff'
Indep.map
Set.image_insert_eq
Set.InjOn.eq_iff
Indep.subset_ground
map_image_indep_iff
Set.insert_subset
exists_isBasis
closure_inter_ground
map_ground
IsBasis.closure_eq_closure
IsBasis.indep
Set.image_preimage_inter
IsBasis.map
mem_closure_diff_singleton_iff_closure πŸ“–mathematicalSet
Set.instMembership
E
closure
Set.instSDiff
Set.instSingletonSet
β€”subset_closure_diff_iff_closure_eq
mem_closure_iff_forall_mem_isFlat πŸ“–mathematicalSet
Set.instHasSubset
E
Set.instMembership
closure
β€”closure_def'
mem_closure_insert πŸ“–β€”Set
Set.instMembership
closure
Set.instInsert
β€”β€”closure_inter_ground
Set.insert_inter_of_notMem
closure_subset_ground
Set.insert_inter_of_mem
exists_isBasis
closure_insert_closure_eq_closure_insert
IsBasis.closure_eq_closure
Indep.mem_closure_iff
Indep.notMem_closure_iff
IsBasis.indep
dep_iff
Set.insert_comm
Set.insert_subset
Indep.subset_ground
Set.mem_insert
Set.mem_insert_iff
Indep.not_dep
Indep.subset
Set.subset_insert
mem_closure_of_mem πŸ“–mathematicalSet
Set.instMembership
Set.instHasSubset
E
closureβ€”subset_closure
mem_closure_of_mem' πŸ“–mathematicalSet
Set.instMembership
E
closureβ€”closure_inter_ground
mem_closure_of_mem
mem_closure_self πŸ“–mathematicalSet
Set.instMembership
E
closure
Set.instSingletonSet
β€”mem_closure_of_mem'
mem_ground_of_mem_closure πŸ“–mathematicalSet
Set.instMembership
closure
Eβ€”closure_subset_ground
notMem_of_mem_diff_closure πŸ“–β€”Set
Set.instMembership
Set.instSDiff
E
closure
β€”β€”mem_closure_of_mem'
not_spanning_iff_closure_ssubset πŸ“–mathematicalSet
Set.instHasSubset
E
Spanning
Set.instHasSSubset
closure
β€”spanning_iff_closure_eq
ssubset_iff_subset_ne
Set.instIsNonstrictStrictOrderSubsetSSubset
Set.instAntisymmSubset
closure_subset_ground
restrict_closure_eq πŸ“–mathematicalSet
Set.instHasSubset
E
closure
restrict
Set.instInter
β€”restrict_closure_eq'
Set.diff_eq_empty
Set.union_empty
Set.inter_eq_self_of_subset_left
restrict_closure_eq' πŸ“–mathematicalβ€”closure
restrict
Set
Set.instUnion
Set.instInter
Set.instSDiff
E
β€”exists_isBasis'
isBasis'_restrict_iff
Set.ext
IsBasis'.closure_eq_closure
Indep.mem_closure_iff'
IsBasis'.indep
Set.mem_union
Set.mem_inter_iff
restrict_ground_eq
restrict_indep_iff
Set.mem_diff
Indep.subset_ground
Set.mem_insert
restrict_spanning_iff πŸ“–mathematicalSet
Set.instHasSubset
E
Spanning
restrict
closure
β€”spanning_iff
restrict_ground_eq
restrict_closure_eq
Set.inter_eq_right
restrict_spanning_iff' πŸ“–mathematicalβ€”Spanning
restrict
Set
Set.instHasSubset
Set.instInter
E
closure
β€”spanning_iff
restrict_closure_eq'
restrict_ground_eq
Set.diff_eq_compl_inter
Set.union_inter_distrib_right
Set.inter_eq_right
Set.union_comm
Set.diff_subset_iff
Set.diff_compl
Set.inter_eq_self_of_subset_left
spanning_iff πŸ“–mathematicalβ€”Spanning
closure
E
Set
Set.instHasSubset
β€”β€”
spanning_iff_closure_eq πŸ“–mathematicalSet
Set.instHasSubset
E
Spanning
closure
β€”spanning_iff
spanning_iff_compl_coindep πŸ“–mathematicalSet
Set.instHasSubset
E
Spanning
Coindep
Set.instSDiff
β€”coindep_iff_compl_spanning
Set.diff_diff_cancel_left
spanning_iff_exists_isBase_subset πŸ“–mathematicalSet
Set.instHasSubset
E
Spanning
IsBase
β€”spanning_iff_exists_isBase_subset'
spanning_iff_exists_isBase_subset' πŸ“–mathematicalβ€”Spanning
IsBase
Set
Set.instHasSubset
E
β€”exists_isBasis
Spanning.subset_ground
IsBasis.isBasis_closure_right
isBasis_ground_iff
Spanning.closure_eq
IsBasis.subset
Spanning.superset
IsBase.spanning
spanning_iff_ground_subset_closure πŸ“–mathematicalSet
Set.instHasSubset
E
Spanning
closure
β€”spanning_iff_closure_eq
subset_antisymm_iff
Set.instReflSubset
Set.instAntisymmSubset
closure_subset_ground
subset_closure πŸ“–mathematicalSet
Set.instHasSubset
E
closureβ€”closure_def'
subset_closure_diff_iff_closure_eq πŸ“–mathematicalSet
Set.instHasSubset
E
closure
Set.instSDiff
β€”closure_diff_eq_self
HasSubset.Subset.trans
Set.instIsTransSubset
subset_closure_of_subset'
Eq.subset
Set.instReflSubset
subset_closure_iff_forall_subset_isFlat πŸ“–mathematicalSet
Set.instHasSubset
E
closureβ€”closure_def'
subset_closure_of_subset πŸ“–mathematicalSet
Set.instHasSubset
E
closureβ€”HasSubset.Subset.trans
Set.instIsTransSubset
subset_closure
subset_closure_of_subset' πŸ“–mathematicalSet
Set.instHasSubset
E
closureβ€”closure_inter_ground
subset_closure_of_subset
Set.subset_inter
uniqueBaseOn_closure_eq πŸ“–mathematicalβ€”closure
uniqueBaseOn
Set
Set.instUnion
Set.instInter
Set.instSDiff
β€”uniqueBaseOn.eq_1
restrict_closure_eq'
freeOn_closure_eq
Set.inter_right_comm
Set.inter_assoc
Set.inter_self
freeOn_ground

Matroid.Coindep

Theorems

NameKindAssumesProvesValidatesDepends On
closure_compl πŸ“–mathematicalMatroid.CoindepMatroid.closure
Set
Set.instSDiff
Matroid.E
β€”Matroid.coindep_iff_closure_compl_eq_ground
subset_ground
compl_spanning πŸ“–mathematicalMatroid.CoindepMatroid.Spanning
Set
Set.instSDiff
Matroid.E
β€”Matroid.coindep_iff_compl_spanning
subset_ground

Matroid.Indep

Theorems

NameKindAssumesProvesValidatesDepends On
closure_diff_singleton_ssubset πŸ“–mathematicalMatroid.Indep
Set
Set.instMembership
Set.instHasSSubset
Matroid.closure
Set.instSDiff
Set.instSingletonSet
β€”closure_ssubset_closure
closure_diff_ssubset πŸ“–mathematicalMatroid.Indep
Set.Nonempty
Set
Set.instInter
Set.instHasSSubset
Matroid.closure
Set.instSDiff
β€”closure_ssubset_closure
HasSubset.Subset.ssubset_of_ne
Set.instIsNonstrictStrictOrderSubsetSSubset
Set.instAntisymmSubset
Set.diff_subset
Set.disjoint_iff_inter_eq_empty
sdiff_eq_left
closure_eq_setOf_isBasis_insert πŸ“–mathematicalMatroid.IndepMatroid.closure
setOf
Matroid.IsBasis
Set
Set.instInsert
β€”isBasis_setOf_insert_isBasis
Matroid.IsBasis.isBasis_subset
Matroid.IsBasis.isBasis_of_isBasis_of_subset_of_subset
Matroid.IsBasis.isBasis_union
Matroid.IsBasis.subset
HasSubset.Subset.trans
Set.instIsTransSubset
Set.subset_union_right
Set.subset_insert
Set.insert_subset
Matroid.IsBasis.subset_ground
subset_antisymm_iff
Set.instReflSubset
Set.instAntisymmSubset
Matroid.closure_def
Set.subset_sInter_iff
Set.sInter_subset_of_mem
Set.inter_subset_left
subset_isBasis_of_subset
Set.inter_eq_left
Matroid.IsFlat.subset_ground
Matroid.IsFlat.subset_of_isBasis_of_isBasis
Matroid.IsBasis.isBasis_union_of_subset
Matroid.IsBasis.indep
Set.mem_insert
closure_iInter_eq_biInter_closure_of_forall_subset πŸ“–mathematicalMatroid.Indep
Set
Set.instHasSubset
Matroid.closure
Set.iInter
β€”Matroid.closure_iInter_eq_iInter_closure_of_iUnion_indep
subset
closure_insert_diff_eq_of_mem_closure πŸ“–β€”Matroid.Indep
Set
Set.instMembership
Matroid.closure
Set.instSDiff
Set.instInsert
Set.instSingletonSet
β€”β€”subset_antisymm
Set.instAntisymmSubset
Matroid.closure_subset_closure_of_subset_closure
Matroid.subset_closure
subset_ground
eq_or_ne
Matroid.mem_closure_of_mem'
closure_inter_eq_inter_closure πŸ“–mathematicalMatroid.Indep
Set
Set.instUnion
Matroid.closure
Set.instInter
β€”Set.inter_eq_iInter
Matroid.closure_iInter_eq_iInter_closure_of_iUnion_indep
Set.union_eq_iUnion
Set.iInter_congr
closure_inter_eq_self_of_subset πŸ“–mathematicalMatroid.Indep
Set
Set.instHasSubset
Set.instInter
Matroid.closure
β€”subset
subset_antisymm_iff
Set.instReflSubset
Set.instAntisymmSubset
Set.subset_inter
Matroid.subset_closure
subset_ground
Matroid.IsBasis.mem_of_insert_indep
isBasis_closure
Set.insert_subset
closure_sInter_eq_biInter_closure_of_forall_subset πŸ“–mathematicalMatroid.Indep
Set.Nonempty
Set
Set.instHasSubset
Matroid.closure
Set.sInter
Set.iInter
Set.instMembership
β€”subset_antisymm_iff
Set.instReflSubset
Set.instAntisymmSubset
Set.subset_iInterβ‚‚_iff
HasSubset.Subset.trans
Set.instIsTransSubset
Set.sInter_subset_of_mem
Set.Nonempty.some_mem
subset
Matroid.closure_subset_closure
by_contra
Matroid.closure_subset_ground
Set.mem_iInterβ‚‚
Matroid.mem_closure_of_mem
closure_inter_eq_self_of_subset
subset_ground
subset_isBasis_of_subset
notMem_closure_iff_of_notMem
Set.notMem_subset
Set.insert_subset_insert
Set.insert_subset
insert_isBasis_iff_mem_closure
Matroid.IsBasis.exchange
Set.mem_insert
Set.mem_insert_of_mem
mem_closure_iff
not_dep
Matroid.IsBasis.indep
Set.diff_singleton_eq_self
Set.diff_subset_iff
Set.singleton_union
Set.diff_subset
eq_of_isBasis
Matroid.IsBasis.isBasis_subset
Matroid.IsBasis.subset
Set.subset_insert
closure_ssubset_closure πŸ“–mathematicalMatroid.Indep
Set
Set.instHasSSubset
Matroid.closureβ€”Set.exists_of_ssubset
HasSubset.Subset.ssubset_of_not_subset
Set.instIsNonstrictStrictOrderSubsetSSubset
Matroid.closure_subset_closure
HasSSubset.SSubset.subset
Eq.subset
Set.instReflSubset
closure_inter_eq_self_of_subset
Matroid.mem_closure_of_mem
subset_ground
eq_of_spanning_subset πŸ“–β€”Matroid.Indep
Matroid.Spanning
Set
Set.instHasSubset
β€”β€”Matroid.IsBase.eq_of_subset_indep
isBase_of_spanning
subset
exists_isBase_subset_spanning πŸ“–mathematicalMatroid.Indep
Matroid.Spanning
Set
Set.instHasSubset
Matroid.IsBaseβ€”subset_isBasis_of_subset
Matroid.Spanning.subset_ground
Matroid.IsBasis.isBase_of_spanning
Matroid.IsBasis.subset
indep_insert_diff_of_mem_closure πŸ“–β€”Matroid.Indep
Set
Set.instMembership
Matroid.closure
Set.instSDiff
Set.instInsert
Set.instSingletonSet
β€”β€”subset
Set.insert_diff_of_mem
insert_diff_indep_iff
Set.diff_subset
Matroid.mem_ground_of_mem_closure
notMem_closure_diff_of_mem
Matroid.closure_subset_closure
Matroid.closure_insert_eq_of_mem_closure
insert_dep_iff πŸ“–mathematicalMatroid.IndepMatroid.Dep
Set
Set.instInsert
Set.instMembership
Set.instSDiff
Matroid.closure
β€”Set.mem_diff
mem_closure_iff
Set.insert_eq_of_mem
not_dep
insert_diff_indep_iff πŸ“–mathematicalMatroid.Indep
Set
Set.instSDiff
Set.instSingletonSet
Set.instMembership
Set.instInsert
Matroid.E
Matroid.closure
β€”eq_or_ne
Set.insert_eq_of_mem
Set.insert_diff_singleton_comm
insert_indep_iff
Set.mem_diff_singleton
insert_indep_iff πŸ“–mathematicalMatroid.IndepSet
Set.instInsert
Set.instMembership
Set.instSDiff
Matroid.E
Matroid.closure
β€”em
Set.insert_eq_of_mem
insert_indep_iff_of_notMem
insert_indep_iff_of_notMem πŸ“–mathematicalMatroid.Indep
Set
Set.instMembership
Set.instInsert
Set.instSDiff
Matroid.E
Matroid.closure
β€”Set.mem_diff
mem_closure_iff_of_notMem
Matroid.dep_iff
not_imp_not
Set.insert_subset_iff
subset_ground
Set.mem_insert
insert_isBasis_iff_mem_closure πŸ“–mathematicalMatroid.IndepMatroid.IsBasis
Set
Set.instInsert
Set.instMembership
Matroid.closure
β€”closure_eq_setOf_isBasis_insert
Set.mem_setOf
inter_isBasis_biInter πŸ“–mathematicalMatroid.Indep
Set.Nonempty
Matroid.IsBasis
Set
Set.instInter
Set.iInter
Set.instMembership
β€”isBasis_of_subset_of_subset_closure
inter_left
Set.inter_subset_left
Set.biInter_inter
Matroid.closure_biInter_eq_biInter_closure_of_biUnion_indep
subset
Set.iUnion_congr_Prop
HasSubset.Subset.trans
Set.instIsTransSubset
Set.biInter_subset_of_mem
Matroid.IsBasis.subset_closure
inter_isBasis_closure_iff_subset_closure_inter πŸ“–mathematicalMatroid.IndepMatroid.IsBasis
Set
Set.instInter
Set.instHasSubset
Matroid.closure
β€”Matroid.IsBasis.subset_closure
isBasis_of_subset_of_subset_closure
inter_left
Set.inter_subset_left
inter_isBasis_iInter πŸ“–mathematicalMatroid.Indep
Matroid.IsBasis
Set
Set.instInter
Set.iInterβ€”Set.iInter_congr_Prop
Set.iInter_true
Set.iInter_plift_down
inter_isBasis_biInter
Set.univ_nonempty
PLift.instNonempty_mathlib
inter_isBasis_sInter πŸ“–mathematicalMatroid.Indep
Set.Nonempty
Set
Matroid.IsBasis
Set.instInter
Set.sInterβ€”Set.sInter_eq_biInter
inter_isBasis_biInter
isBase_iff_ground_subset_closure πŸ“–mathematicalMatroid.IndepMatroid.IsBase
Set
Set.instHasSubset
Matroid.E
Matroid.closure
β€”Eq.subset
Set.instReflSubset
Matroid.IsBase.closure_eq
isBase_of_ground_subset_closure
isBase_of_ground_subset_closure πŸ“–mathematicalMatroid.Indep
Set
Set.instHasSubset
Matroid.E
Matroid.closure
Matroid.IsBaseβ€”Matroid.isBasis_ground_iff
isBasis_of_subset_of_subset_closure
subset_ground
isBase_of_spanning πŸ“–mathematicalMatroid.Indep
Matroid.Spanning
Matroid.IsBaseβ€”Matroid.Spanning.exists_isBase_subset
Matroid.IsBase.eq_of_subset_indep
isBasis_closure πŸ“–mathematicalMatroid.IndepMatroid.IsBasis
Matroid.closure
β€”closure_eq_setOf_isBasis_insert
isBasis_setOf_insert_isBasis
isBasis_of_subset_of_subset_closure πŸ“–mathematicalMatroid.Indep
Set
Set.instHasSubset
Matroid.closure
Matroid.IsBasisβ€”Matroid.IsBasis.isBasis_subset
isBasis_closure
mem_closure_iff πŸ“–mathematicalMatroid.IndepSet
Set.instMembership
Matroid.closure
Matroid.Dep
Set.instInsert
β€”closure_eq_setOf_isBasis_insert
Set.mem_setOf
isBasis_insert_iff
mem_closure_iff' πŸ“–mathematicalMatroid.IndepSet
Set.instMembership
Matroid.closure
Matroid.E
β€”mem_closure_iff
Matroid.dep_iff
Set.insert_subset_iff
subset_ground
imp_iff_not_or
Set.insert_eq_of_mem
mem_closure_iff_of_notMem πŸ“–mathematicalMatroid.Indep
Set
Set.instMembership
Matroid.closure
Matroid.Dep
Set.instInsert
β€”insert_dep_iff
Set.mem_diff
notMem_closure_diff_of_mem πŸ“–mathematicalMatroid.Indep
Set
Set.instMembership
Matroid.closure
Set.instSDiff
Set.instSingletonSet
β€”Matroid.indep_iff_forall_notMem_closure_diff'
notMem_closure_iff πŸ“–mathematicalMatroid.Indep
Set
Set.instMembership
Matroid.E
Matroid.closure
Set.instInsert
β€”mem_closure_iff
Matroid.dep_iff
Set.insert_subset_iff
subset_ground
notMem_closure_iff_of_notMem πŸ“–mathematicalMatroid.Indep
Set
Set.instMembership
Matroid.E
Matroid.closure
Set.instInsert
β€”notMem_closure_iff
union_indep_iff_forall_notMem_closure_left πŸ“–mathematicalMatroid.IndepSet
Set.instUnion
Set.instMembership
Matroid.closure
Set.instSDiff
Set.instSingletonSet
β€”Set.union_comm
union_indep_iff_forall_notMem_closure_right
union_indep_iff_forall_notMem_closure_right πŸ“–mathematicalMatroid.IndepSet
Set.instUnion
Set.instMembership
Matroid.closure
Set.instSDiff
Set.instSingletonSet
β€”notMem_closure_diff_of_mem
Set.union_diff_distrib
Set.diff_singleton_eq_self
subset_isBasis_of_subset
Set.subset_union_left
subset_ground
HasSubset.Subset.eq_or_ssubset
Set.instIsNonstrictStrictOrderSubsetSSubset
Set.instAntisymmSubset
Matroid.IsBasis.subset
Matroid.IsBasis.indep
Set.exists_of_ssubset
Set.union_diff_right
Set.union_comm
Set.notMem_subset
Matroid.closure_subset_closure
Set.subset_diff_singleton
Matroid.IsBasis.subset_closure

Matroid.IsBase

Theorems

NameKindAssumesProvesValidatesDepends On
closure_eq πŸ“–mathematicalMatroid.IsBaseMatroid.closure
Matroid.E
β€”Matroid.IsBasis.closure_eq_closure
Matroid.isBasis_ground_iff
Matroid.closure_ground
closure_of_superset πŸ“–mathematicalMatroid.IsBase
Set
Set.instHasSubset
Matroid.closure
Matroid.E
β€”HasSubset.Subset.antisymm
Set.instAntisymmSubset
Matroid.closure_subset_ground
Matroid.closure_subset_closure
closure_eq
eq_of_superset_spanning πŸ“–β€”Matroid.IsBase
Matroid.Spanning
Set
Set.instHasSubset
β€”β€”Matroid.Spanning.exists_isBase_subset
subset_antisymm
Set.instAntisymmSubset
eq_of_subset_isBase
HasSubset.Subset.trans
Set.instIsTransSubset
exchange_base_of_notMem_closure πŸ“–mathematicalMatroid.IsBase
Set
Set.instMembership
Matroid.closure
Set.instSDiff
Set.instSingletonSet
Matroid.E
Set.instInsertβ€”eq_or_ne
Set.insert_diff_self_of_mem
Matroid.Indep.notMem_closure_iff
Matroid.Indep.diff
indep
exchange_isBase_of_indep
isBase_insert_diff_of_mem_closure πŸ“–β€”Matroid.IsBase
Set
Set.instMembership
Matroid.closure
Set.instSDiff
Set.instInsert
Set.instSingletonSet
β€”β€”Matroid.isBasis_ground_iff
Matroid.IsBasis.isBasis_insert_diff_of_mem_closure
Set.insert_diff_of_mem
Set.diff_singleton_eq_self
Matroid.Indep.notMem_closure_diff_of_mem
Matroid.IsBasis.indep
Matroid.closure_subset_closure
Matroid.closure_inter_ground
spanning πŸ“–mathematicalMatroid.IsBaseMatroid.Spanningβ€”closure_eq
subset_ground
spanning_of_superset πŸ“–mathematicalMatroid.IsBase
Set
Set.instHasSubset
Matroid.E
Matroid.Spanningβ€”Matroid.Spanning.superset
spanning

Matroid.IsBasis

Theorems

NameKindAssumesProvesValidatesDepends On
closure_eq_closure πŸ“–mathematicalMatroid.IsBasisMatroid.closureβ€”subset_antisymm
Set.instAntisymmSubset
Matroid.closure_subset_closure
subset
Matroid.closure_closure
Matroid.Indep.closure_eq_setOf_isBasis_insert
indep
isBasis_subset
Set.subset_insert
Set.insert_subset
closure_eq_right πŸ“–β€”Matroid.IsBasis
Matroid.closure
β€”β€”closure_eq_closure
Matroid.closure_closure
closure_inter_isBasis_closure πŸ“–mathematicalMatroid.IsBasis
Set
Set.instInter
Matroid.Indep
Matroid.closureβ€”Matroid.Indep.inter_isBasis_closure_iff_subset_closure_inter
HasSubset.Subset.trans
Set.instIsTransSubset
Matroid.closure_subset_closure_of_subset_closure
Matroid.closure_subset_closure
Set.inter_subset_inter_left
Set.inter_subset_left
eq_of_closure_subset πŸ“–β€”Matroid.IsBasis
Set
Set.instHasSubset
Matroid.closure
β€”β€”Matroid.Indep.closure_inter_eq_self_of_subset
indep
Set.inter_eq_self_of_subset_right
HasSubset.Subset.trans
Set.instIsTransSubset
subset
insert_isBasis_insert_of_notMem_closure πŸ“–mathematicalMatroid.IsBasis
Set
Set.instMembership
Matroid.closure
Matroid.E
Set.instInsertβ€”insert_isBasis_insert
Matroid.Indep.insert_indep_iff
indep
isBase_of_spanning πŸ“–mathematicalMatroid.IsBasis
Matroid.Spanning
Matroid.IsBaseβ€”Matroid.Indep.isBase_of_spanning
indep
spanning_iff_spanning
isBasis_closure_right πŸ“–mathematicalMatroid.IsBasisMatroid.closureβ€”Matroid.IsBasis'.isBasis_closure_right
isBasis'
isBasis_insert_diff_of_mem_closure πŸ“–β€”Matroid.IsBasis
Set
Set.instMembership
Matroid.closure
Set.instSDiff
Set.instInsert
Set.instSingletonSet
β€”β€”Matroid.isBasis_iff_indep_closure
Matroid.Indep.indep_insert_diff_of_mem_closure
LE.le.trans_eq
Matroid.Indep.closure_insert_diff_eq_of_mem_closure
HasSubset.Subset.trans
Set.instIsTransSubset
Set.diff_subset
Set.insert_subset
isBasis_of_closure_eq_closure πŸ“–β€”Matroid.IsBasis
Set
Set.instHasSubset
Matroid.closure
Matroid.E
β€”β€”Matroid.Indep.isBasis_of_subset_of_subset_closure
indep
closure_eq_closure
Matroid.subset_closure
spanning_iff_spanning πŸ“–mathematicalMatroid.IsBasisMatroid.Spanningβ€”Matroid.spanning_iff_closure_eq
left_subset_ground
subset_ground
closure_eq_closure
subset_closure πŸ“–mathematicalMatroid.IsBasisSet
Set.instHasSubset
Matroid.closure
β€”Matroid.closure_subset_closure_iff_subset_closure
subset_ground
closure_eq_closure
subset_refl
Set.instReflSubset

Matroid.IsBasis'

Theorems

NameKindAssumesProvesValidatesDepends On
closure_eq_closure πŸ“–mathematicalMatroid.IsBasis'Matroid.closureβ€”Matroid.closure_inter_ground
Matroid.IsBasis.closure_eq_closure
isBasis_inter_ground
isBasis_closure_right πŸ“–mathematicalMatroid.IsBasis'Matroid.IsBasis
Matroid.closure
β€”closure_eq_closure
Matroid.Indep.isBasis_closure
indep

Matroid.IsFlat

Theorems

NameKindAssumesProvesValidatesDepends On
closure πŸ“–mathematicalMatroid.IsFlatMatroid.closureβ€”HasSubset.Subset.antisymm
Set.instAntisymmSubset
Set.sInter_subset_of_mem
Matroid.subset_closure
subset_ground
iInter πŸ“–mathematicalMatroid.IsFlatSet.iInterβ€”Set.subset_iInter
Matroid.Indep.subset_isBasis_of_subset
Matroid.IsBasis.indep
HasSubset.Subset.trans
Set.instIsTransSubset
Matroid.IsBasis.subset
Set.iInter_subset
subset_ground
Set.subset_union_right
subset_of_isBasis_of_isBasis
Set.union_assoc
Set.union_eq_self_of_subset_right
Matroid.IsBasis.isBasis_union
Matroid.IsBasis.isBasis_union_of_subset
subset_ground πŸ“–mathematicalMatroid.IsFlatSet
Set.instHasSubset
Matroid.E
β€”β€”
subset_of_isBasis_of_isBasis πŸ“–mathematicalMatroid.IsFlat
Matroid.IsBasis
Set
Set.instHasSubset
β€”β€”

Matroid.Restriction

Theorems

NameKindAssumesProvesValidatesDepends On
isBase_iff_of_spanning πŸ“–mathematicalMatroid.IsRestriction
Matroid.Spanning
Matroid.E
Matroid.IsBase
Set
Set.instHasSubset
β€”Matroid.Spanning.isBase_restrict_iff
Matroid.restrict_ground_eq

Matroid.Spanning

Theorems

NameKindAssumesProvesValidatesDepends On
closure_eq πŸ“–mathematicalMatroid.SpanningMatroid.closure
Matroid.E
β€”β€”
closure_eq_of_superset πŸ“–mathematicalMatroid.Spanning
Set
Set.instHasSubset
Matroid.closure
Matroid.E
β€”Matroid.closure_inter_ground
Matroid.spanning_iff_closure_eq
superset
Set.subset_inter
subset_ground
compl_coindep πŸ“–mathematicalMatroid.SpanningMatroid.Coindep
Set
Set.instSDiff
Matroid.E
β€”Matroid.spanning_iff_compl_coindep
subset_ground
exists_isBase_subset πŸ“–mathematicalMatroid.SpanningMatroid.IsBase
Set
Set.instHasSubset
β€”Matroid.spanning_iff_exists_isBase_subset
subset_ground
isBase_of_indep πŸ“–mathematicalMatroid.Spanning
Matroid.Indep
Matroid.IsBaseβ€”Matroid.Indep.isBase_of_spanning
isBase_of_minimal πŸ“–mathematicalMatroid.SpanningMatroid.IsBaseβ€”Matroid.isBase_iff_minimal_spanning
minimal_subset_iff
isBase_restrict_iff πŸ“–mathematicalMatroid.SpanningMatroid.IsBase
Matroid.restrict
Set
Set.instHasSubset
β€”Matroid.isBase_restrict_iff'
Matroid.isBasis'_iff_isBasis
subset_ground
Matroid.Indep.isBase_of_spanning
Matroid.IsBasis.indep
Matroid.IsBasis.spanning_iff_spanning
Matroid.IsBasis.subset
Matroid.Indep.isBasis_of_subset_of_subset_closure
Matroid.IsBase.indep
Matroid.IsBase.closure_eq
subset_ground πŸ“–mathematicalMatroid.SpanningSet
Set.instHasSubset
Matroid.E
β€”β€”
superset πŸ“–β€”Matroid.Spanning
Set
Set.instHasSubset
Matroid.E
β€”β€”HasSubset.Subset.antisymm
Set.instAntisymmSubset
Matroid.closure_subset_ground
closure_eq
Matroid.closure_subset_closure
union_left πŸ“–mathematicalMatroid.Spanning
Set
Set.instHasSubset
Matroid.E
Set.instUnionβ€”superset
Set.subset_union_left
subset_ground
union_right πŸ“–mathematicalMatroid.Spanning
Set
Set.instHasSubset
Matroid.E
Set.instUnionβ€”superset
Set.subset_union_right
subset_ground

---

← Back to Index