Documentation Verification Report

Dual

πŸ“ Source: Mathlib/Combinatorics/Matroid/Dual.lean

Statistics

MetricCount
DefinitionsCoindep, dual, dualIndepMatroid, «term_✢»
4
Theoremsexists_isBase_subset_compl, exists_subset_compl_isBase, indep, subset_ground, coindep, ssubset_ground, compl_inter_isBasis_of_inter_isBasis, compl_isBase_dual, compl_isBase_of_dual, inter_isBasis_iff_compl_inter_isBasis_dual, ssubset_ground, base_iff_dual_isBase_compl, coindep_def, coindep_iff_exists, coindep_iff_exists', coindep_iff_subset_compl_isBase, dualIndepMatroid_E, dualIndepMatroid_Indep, dual_coindep_iff, dual_dep_iff_forall, dual_dual, dual_finite, dual_ground, dual_indep_iff_exists, dual_indep_iff_exists', dual_inj, dual_injective, dual_involutive, dual_isBase_iff, dual_isBase_iff', dual_nonempty, eq_dual_comm, eq_dual_iff_dual_eq, ground_not_isBase, setOf_dual_isBase_eq
35
Total39

Matroid

Definitions

NameCategoryTheorems
Coindep πŸ“–MathDef
12 mathmath: spanning_iff_compl_coindep, coindep_iff_closure_compl_eq_ground, coindep_iff_exists, coindep_iff_forall_subset_not_isCocircuit, dual_coindep_iff, Spanning.compl_coindep, coindep_contract_iff, coindep_iff_subset_compl_isBase, coindep_iff_exists', coindep_iff_compl_spanning, Indep.coindep, coindep_def
dual πŸ“–CompOp
53 mathmath: base_iff_dual_isBase_compl, dual_isBase_iff', IsCircuit.isCocircuit, IsLoop.dual_isColoop, uniqueBaseOn_dual_eq, restrictSubtype_dual', dual_coindep_iff, eRk_dual_add_eRank', dual_contract_delete, dual_dep_iff_forall, dual_contract, dual_injective, dual_loops, dual_rankPos_iff_exists_isCircuit, IsCircuit.dual_rankPos, eRk_dual_add_eRank, dual_isLoop_iff_isColoop, dual_indep_iff_exists', freeOn_dual_eq, dual_finite, dual_isBase_iff, isCocircuit_def, IsColoop.dual_isLoop, dual_delete_contract, map_dual, IsBase.compl_isBase_dual, IsBase.compl_inter_isBasis_of_inter_isBasis, dual_dual, dual_delete_dual, Coindep.indep, dual_involutive, eq_dual_iff_dual_eq, dual_isColoop_iff_isLoop, dual_isCocircuit_iff, dual_indep_iff_exists, eRank_add_eRank_dual, dual_coloops, dual_contract_dual, loopyOn_dual_eq, restrictSubtype_dual, dual_ground, comapOn_dual_eq_of_bijOn, IsCocircuit.isCircuit, IsBase.inter_isBasis_iff_compl_inter_isBasis_dual, eq_dual_comm, dual_nonempty, dual_inj, IsBase.encard_compl_eq, Indep.coindep, emptyOn_dual_eq, coindep_def, setOf_dual_isBase_eq, dual_delete
dualIndepMatroid πŸ“–CompOp
2 mathmath: dualIndepMatroid_E, dualIndepMatroid_Indep
Β«term_✢» πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
base_iff_dual_isBase_compl πŸ“–mathematicalSet
Set.instHasSubset
E
IsBase
dual
Set.instSDiff
β€”dual_isBase_iff
Set.diff_diff_cancel_left
coindep_def πŸ“–mathematicalβ€”Coindep
Indep
dual
β€”β€”
coindep_iff_exists πŸ“–mathematicalSet
Set.instHasSubset
E
Coindep
IsBase
Set.instSDiff
β€”coindep_iff_exists'
coindep_iff_exists' πŸ“–mathematicalβ€”Coindep
IsBase
Set
Set.instHasSubset
Set.instSDiff
E
β€”IsBase.subset_ground
Disjoint.symm
coindep_iff_subset_compl_isBase πŸ“–mathematicalβ€”Coindep
IsBase
Set
Set.instHasSubset
Set.instSDiff
E
β€”Disjoint.symm
IsBase.subset_ground
dualIndepMatroid_E πŸ“–mathematicalβ€”IndepMatroid.E
dualIndepMatroid
E
β€”β€”
dualIndepMatroid_Indep πŸ“–mathematicalβ€”IndepMatroid.Indep
dualIndepMatroid
Set
Set.instHasSubset
E
IsBase
Disjoint
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
β€”β€”
dual_coindep_iff πŸ“–mathematicalβ€”Coindep
dual
Indep
β€”Coindep.eq_1
dual_dual
dual_dep_iff_forall πŸ“–mathematicalβ€”Dep
dual
Set.Nonempty
Set
Set.instInter
Set.instHasSubset
E
β€”β€”
dual_dual πŸ“–mathematicalβ€”dualβ€”ext_isBase
dual_isBase_iff
dual_ground
Set.diff_diff_cancel_left
dual_finite πŸ“–mathematicalβ€”Finite
dual
β€”ground_finite
dual_ground πŸ“–mathematicalβ€”E
dual
β€”β€”
dual_indep_iff_exists πŸ“–mathematicalSet
Set.instHasSubset
E
Indep
dual
IsBase
Disjoint
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
β€”dual_indep_iff_exists'
dual_indep_iff_exists' πŸ“–mathematicalβ€”Indep
dual
Set
Set.instHasSubset
E
IsBase
Disjoint
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
β€”β€”
dual_inj πŸ“–mathematicalβ€”dualβ€”dual_injective
dual_injective πŸ“–mathematicalβ€”Matroid
dual
β€”Function.Involutive.injective
dual_involutive
dual_involutive πŸ“–mathematicalβ€”Function.Involutive
Matroid
dual
β€”dual_dual
dual_isBase_iff πŸ“–mathematicalSet
Set.instHasSubset
E
IsBase
dual
Set.instSDiff
β€”isBase_compl_iff_maximal_disjoint_isBase
isBase_iff_maximal_indep
maximal_subset_iff
dual_isBase_iff' πŸ“–mathematicalβ€”IsBase
dual
Set
Set.instSDiff
E
Set.instHasSubset
β€”em
dual_isBase_iff
IsBase.subset_ground
dual_nonempty πŸ“–mathematicalβ€”Nonempty
dual
β€”ground_nonempty
eq_dual_comm πŸ“–mathematicalβ€”dualβ€”dual_dual
eq_dual_iff_dual_eq πŸ“–mathematicalβ€”dualβ€”Function.Involutive.eq_iff
dual_involutive
ground_not_isBase πŸ“–mathematicalβ€”IsBase
E
β€”Set.diff_empty
dual_isBase_iff
rankPos_iff
setOf_dual_isBase_eq πŸ“–mathematicalβ€”setOf
Set
IsBase
dual
Set.image
Set.instSDiff
E
β€”Set.ext
Set.diff_diff_cancel_left
IsBase.subset_ground
Eq.trans_subset
Set.diff_subset

Matroid.Coindep

Theorems

NameKindAssumesProvesValidatesDepends On
exists_isBase_subset_compl πŸ“–mathematicalMatroid.CoindepMatroid.IsBase
Set
Set.instHasSubset
Set.instSDiff
Matroid.E
β€”Matroid.coindep_iff_exists
subset_ground
exists_subset_compl_isBase πŸ“–mathematicalMatroid.CoindepMatroid.IsBase
Set
Set.instHasSubset
Set.instSDiff
Matroid.E
β€”Matroid.coindep_iff_subset_compl_isBase
indep πŸ“–mathematicalMatroid.CoindepMatroid.Indep
Matroid.dual
β€”β€”
subset_ground πŸ“–mathematicalMatroid.CoindepSet
Set.instHasSubset
Matroid.E
β€”Matroid.Indep.subset_ground
indep

Matroid.Indep

Theorems

NameKindAssumesProvesValidatesDepends On
coindep πŸ“–mathematicalMatroid.IndepMatroid.Coindep
Matroid.dual
β€”Matroid.dual_coindep_iff
ssubset_ground πŸ“–mathematicalMatroid.IndepSet
Set.instHasSSubset
Matroid.E
β€”exists_isBase_superset
HasSubset.Subset.trans_ssubset
Set.instIsNonstrictStrictOrderSubsetSSubset
Set.instIsTransSubset
Matroid.IsBase.ssubset_ground

Matroid.IsBase

Theorems

NameKindAssumesProvesValidatesDepends On
compl_inter_isBasis_of_inter_isBasis πŸ“–mathematicalMatroid.IsBase
Matroid.IsBasis
Set
Set.instInter
Matroid.dual
Set.instSDiff
Matroid.E
β€”Matroid.Indep.isBasis_of_forall_insert
Matroid.dual_indep_iff_exists
Set.disjoint_of_subset_left
Set.inter_subset_left
Set.disjoint_sdiff_left
Set.inter_subset_right
Set.diff_inter_self_eq_diff
HasSubset.Subset.trans
Set.instIsTransSubset
Set.diff_subset
by_contra
exchange
Set.diff_eq_empty
Set.diff_eq
Set.inter_eq_self_of_subset_right
subset_ground
Set.inter_right_comm
Set.singleton_inter_eq_empty
Set.union_empty_iff
Set.union_inter_distrib_right
Set.diff_inter_diff
Set.union_singleton
not_ne_iff
Set.nonempty_iff_ne_empty
Matroid.Indep.subset
indep
Set.insert_subset_insert
Matroid.IsBasis.mem_of_insert_indep
compl_isBase_dual πŸ“–mathematicalMatroid.IsBaseMatroid.dual
Set
Set.instSDiff
Matroid.E
β€”Matroid.dual_isBase_iff
Set.diff_diff_cancel_left
subset_ground
compl_isBase_of_dual πŸ“–mathematicalMatroid.IsBase
Matroid.dual
Set
Set.instSDiff
Matroid.E
β€”Matroid.dual_isBase_iff'
inter_isBasis_iff_compl_inter_isBasis_dual πŸ“–mathematicalMatroid.IsBase
Set
Set.instHasSubset
Matroid.E
Matroid.IsBasis
Set.instInter
Matroid.dual
Set.instSDiff
β€”compl_inter_isBasis_of_inter_isBasis
Matroid.dual_dual
sdiff_sdiff_right_self
Set.inter_eq_self_of_subset_right
subset_ground
compl_isBase_dual
ssubset_ground πŸ“–mathematicalMatroid.IsBaseSet
Set.instHasSSubset
Matroid.E
β€”HasSubset.Subset.ssubset_of_ne
Set.instIsNonstrictStrictOrderSubsetSSubset
Set.instAntisymmSubset
subset_ground
Matroid.ground_not_isBase

---

← Back to Index