Documentation Verification Report

Contract

πŸ“ Source: Mathlib/Combinatorics/Matroid/Minor/Contract.lean

Statistics

MetricCount
Definitionscontract, «term_/_»
2
Theoremscoindep_contract_of_disjoint, of_contract, contract_dep_iff, contract_indep_iff, contract_isBase_iff, diff_indep_contract_of_subset, of_contract, union_indep_iff_contract_indep, union_isBasis_union_of_contract_isBasis, contract_dep_iff, contract_eq_contract_delete, contract_indep_diff_iff, contract_indep_iff, contract_isBasis', contract_isBasis'_diff_diff_of_subset, contract_isBasis'_diff_of_subset, contract_isBasis_of_indep, contract_isBasis_union_union, contract_dep_iff, contract_diff_isBasis_diff, contract_eq_contract_delete, contract_indep_diff_iff, contract_indep_iff, contract_indep_iff_of_disjoint, contract_isBasis, contract_isBasis_diff_diff_of_subset, contract_isBasis_of_disjoint, contract_isBasis_of_disjoint_indep, contract_isBasis_of_indep, contract_isBasis_of_isBasis', contract_isBasis_union_union, diff_subset_loops_contract, contractElem_isCircuit, contract_dep, contract_dep_of_not_subset, contract_diff_isCircuit, contract_isCircuit, exists_subset_isCircuit_of_contract, delete_diff_isCocircuit, delete_isCocircuit, of_contract, contractElem_indep_iff, of_contract, contract, contract_eq_loopyOn, coindep_contract_iff, contractElem_eq_self, contract_closure_eq, contract_closure_eq_contract_delete, contract_coloops_eq, contract_comm, contract_contract, contract_contract_eq_contract_diff, contract_delete_comm, contract_delete_comm', contract_delete_contract, contract_delete_contract', contract_delete_contract_delete, contract_delete_contract_delete', contract_delete_diff, contract_empty, contract_eq_contract_iff, contract_eq_delete_of_subset_coloops, contract_eq_delete_of_subset_loops, contract_eq_self_iff, contract_finitary, contract_finite, contract_ground, contract_ground_subset_ground, contract_inter_ground_eq, contract_isCocircuit_iff, contract_isColoop_iff, contract_isLoop_iff_mem_closure, contract_isNonloop_iff, contract_loops_eq, contract_rankFinite, contract_restrict_eq_restrict_contract, contract_spanning_iff, contract_spanning_iff', delete_contract_comm', delete_contract_delete, delete_contract_delete', delete_contract_eq_diff, dual_contract, dual_contract_delete, dual_contract_dual, dual_delete, dual_delete_contract, dual_delete_dual, restrict_contract_eq_contract_restrict
90
Total92

Matroid

Definitions

NameCategoryTheorems
contract πŸ“–CompOp
84 mathmath: IsBasis'.contract_isBasis_of_indep, IsBasis'.contract_eq_contract_delete, IsNonloop.contractElem_indep_iff, IsBasis'.contract_isBasis', IsBasis.contract_isBasis_of_indep, IsBasis.contract_dep_iff, contract_isCocircuit_iff, IsBasis.contract_indep_iff, contract_contract_eq_contract_diff, IsBasis.contract_isBasis, IsMinor.exists_eq_contract_delete_disjoint, contract_eq_self_iff, Coindep.coindep_contract_of_disjoint, IsCircuit.contract_dep, contract_delete_isMinor, Spanning.contract_eq_loopyOn, contract_isNonloop_iff, dual_contract_delete, contract_eq_delete_of_subset_loops, dual_contract, Indep.contract_dep_iff, IsCircuit.contract_isCircuit, contract_eq_delete_of_subset_coloops, contract_ground, IsBasis.contract_isBasis_diff_diff_of_subset, Indep.diff_indep_contract_of_subset, contract_delete_comm', contract_closure_eq, IsCircuit.contract_diff_isCircuit, delete_contract_delete, Indep.union_indep_iff_contract_indep, delete_contract_eq_diff, IsBasis.contract_indep_iff_of_disjoint, contract_spanning_iff, dual_delete_contract, contract_delete_contract, contract_empty, IsBasis.contract_isBasis_union_union, IsBasis'.contract_isBasis_union_union, IsBasis.contract_diff_isBasis_diff, contract_loops_eq, dual_delete_dual, contract_delete_diff, contract_coloops_eq, contract_isColoop_iff, contract_delete_contract', IsBasis.contract_isBasis_of_isBasis', coindep_contract_iff, contract_finitary, IsBasis.contract_isBasis_of_disjoint_indep, IsBasis.contract_indep_diff_iff, contract_delete_contract_delete, IsCircuit.contract_dep_of_not_subset, contractElem_eq_self, contract_spanning_iff', Indep.contract_indep_iff, contract_inter_ground_eq, contract_eq_contract_iff, contract_closure_eq_contract_delete, dual_contract_dual, IsCircuit.contractElem_isCircuit, contract_finite, delete_contract_comm', restrict_contract_eq_contract_restrict, contract_comm, contract_delete_comm, IsBasis.contract_eq_contract_delete, contract_contract, delete_contract_delete', contract_restrict_eq_restrict_contract, IsBasis'.contract_isBasis'_diff_diff_of_subset, Indep.contract_isBase_iff, IsBasis.diff_subset_loops_contract, contract_ground_subset_ground, contract_delete_contract_delete', IsBasis'.contract_dep_iff, Spanning.contract, IsBasis'.contract_isBasis'_diff_of_subset, IsBasis'.contract_indep_diff_iff, IsBasis'.contract_indep_iff, contract_isLoop_iff_mem_closure, dual_delete, IsBasis.contract_isBasis_of_disjoint, contract_rankFinite
Β«term_/_Β» πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
coindep_contract_iff πŸ“–mathematicalβ€”Coindep
contract
Disjoint
Set
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
β€”coindep_def
dual_contract
delete_indep_iff
contractElem_eq_self πŸ“–mathematicalSet
Set.instMembership
E
contract
Set.instSingletonSet
β€”dual_delete_dual
deleteElem_eq_self
dual_dual
contract_closure_eq πŸ“–mathematicalβ€”closure
contract
Set
Set.instSDiff
Set.instUnion
β€”Set.diff_union_inter
Set.diff_diff
Set.union_comm
contract_loops_eq
contract_contract
subset_antisymm_iff
Set.instReflSubset
Set.instAntisymmSubset
Set.union_subset_iff
Set.diff_subset
Set.diff_subset_iff
sdiff_sdiff_right_self
mem_closure_of_mem'
mem_ground_of_mem_closure
closure_subset_ground
contract_closure_eq_contract_delete πŸ“–mathematicalβ€”contract
closure
delete
Set
Set.instSDiff
β€”exists_isBasis
IsBasis.contract_eq_contract_delete
IsBasis.isBasis_closure_right
delete_delete
Set.union_comm
Set.diff_union_diff_cancel
subset_closure
IsBasis.subset
contract_inter_ground_eq
closure_inter_ground
Set.inter_subset_right
Set.diff_inter
Set.diff_eq_empty
closure_subset_ground
Set.union_empty
contract_coloops_eq πŸ“–mathematicalβ€”coloops
contract
Set
Set.instSDiff
β€”dual_delete_dual
dual_coloops
delete_loops_eq
dual_loops
contract_comm πŸ“–mathematicalβ€”contractβ€”contract_contract
Set.union_comm
contract_contract πŸ“–mathematicalβ€”contract
Set
Set.instUnion
β€”dual_contract
delete_delete
contract_contract_eq_contract_diff πŸ“–mathematicalβ€”contract
Set
Set.instSDiff
β€”contract_contract
Set.union_diff_self
contract_delete_comm πŸ“–mathematicalDisjoint
Set
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
delete
contract
β€”delete_eq_restrict
contract_ground
Set.diff_diff_comm
restrict_contract_eq_contract_restrict
contract_inter_ground_eq
Disjoint.mono_left
Set.inter_subset_left
Set.inter_subset_right
contract_eq_contract_iff
Set.inter_assoc
delete_ground
Set.inter_eq_self_of_subset_right
Set.diff_subset
contract_delete_comm' πŸ“–mathematicalβ€”delete
contract
Set
Set.instSDiff
β€”contract_delete_diff
contract_delete_comm
Set.disjoint_sdiff_right
contract_delete_contract πŸ“–mathematicalDisjoint
Set
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
contract
delete
Set.instUnion
β€”contract_delete_contract'
sdiff_eq_left
contract_delete_contract' πŸ“–mathematicalβ€”contract
delete
Set
Set.instUnion
Set.instSDiff
β€”delete_contract_eq_diff
contract_delete_comm
Set.disjoint_sdiff_left
contract_contract
contract_delete_contract_delete πŸ“–mathematicalDisjoint
Set
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
delete
contract
Set.instUnion
β€”contract_delete_contract_delete'
sdiff_eq_left
contract_delete_contract_delete' πŸ“–mathematicalβ€”delete
contract
Set
Set.instUnion
Set.instSDiff
β€”contract_delete_contract'
delete_delete
contract_delete_diff πŸ“–mathematicalβ€”delete
contract
Set
Set.instSDiff
β€”delete_eq_delete_iff
contract_ground
Set.diff_eq
Set.inter_inter_distrib_right
Set.inter_assoc
contract_empty πŸ“–mathematicalβ€”contract
Set
Set.instEmptyCollection
β€”dual_delete_dual
delete_empty
dual_dual
contract_eq_contract_iff πŸ“–mathematicalβ€”contract
Set
Set.instInter
E
β€”dual_delete_dual
delete_eq_delete_iff
dual_ground
contract_eq_delete_of_subset_coloops πŸ“–mathematicalSet
Set.instHasSubset
coloops
contract
delete
β€”dual_delete
contract_eq_delete_of_subset_loops
dual_contract
contract_eq_delete_of_subset_loops πŸ“–mathematicalSet
Set.instHasSubset
loops
contract
delete
β€”IsBasis.contract_eq_contract_delete
empty_isBasis_iff
contract_empty
Set.diff_empty
contract_eq_self_iff πŸ“–mathematicalβ€”contract
Disjoint
Set
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
E
β€”dual_delete_dual
dual_dual
delete_eq_self_iff
dual_ground
contract_finitary πŸ“–mathematicalβ€”Finitary
contract
β€”exists_isBasis'
Indep.contract_indep_iff
IsBasis'.indep
Set.disjoint_left
Indep.subset_ground
indep_of_forall_finite_subset_indep
Indep.subset
Set.inter_subset_right
Set.Finite.inter_of_left
IsBasis'.contract_eq_contract_delete
delete_finitary
contract_finite πŸ“–mathematicalβ€”Finite
contract
β€”dual_delete_dual
dual_finite
delete_finite
contract_ground πŸ“–mathematicalβ€”E
contract
Set
Set.instSDiff
β€”β€”
contract_ground_subset_ground πŸ“–mathematicalβ€”Set
Set.instHasSubset
E
contract
β€”Eq.trans_subset
contract_ground
Set.diff_subset
contract_inter_ground_eq πŸ“–mathematicalβ€”contract
Set
Set.instInter
E
β€”dual_delete_dual
dual_ground
delete_inter_ground_eq
contract_isCocircuit_iff πŸ“–mathematicalβ€”IsCocircuit
contract
Disjoint
Set
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
β€”isCocircuit_def
dual_contract
delete_isCircuit_iff
contract_isColoop_iff πŸ“–mathematicalβ€”IsColoop
contract
Set
Set.instMembership
β€”contract_coloops_eq
contract_isLoop_iff_mem_closure πŸ“–mathematicalβ€”IsLoop
contract
Set
Set.instMembership
closure
β€”exists_isBasis'
IsBasis'.contract_eq_contract_delete
delete_isLoop_iff
singleton_dep
Indep.contract_dep_iff
IsBasis'.indep
Set.singleton_union
Indep.insert_dep_iff
IsBasis'.closure_eq_closure
IsBasis'.subset
contract_isNonloop_iff πŸ“–mathematicalβ€”IsNonloop
contract
Set
Set.instMembership
Set.instSDiff
E
closure
β€”isNonloop_iff_mem_compl_loops
contract_ground
contract_loops_eq
closure_inter_ground
subset_closure
contract_loops_eq πŸ“–mathematicalβ€”loops
contract
Set
Set.instSDiff
closure
β€”β€”
contract_rankFinite πŸ“–mathematicalβ€”RankFinite
contract
β€”exists_isBase
Indep.finite
Indep.of_contract
IsBase.indep
contract_restrict_eq_restrict_contract πŸ“–mathematicalDisjoint
Set
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
restrict
contract
Set.instUnion
β€”ext_indep
Set.union_diff_right
Disjoint.sdiff_eq_right
exists_isBasis'
Set.inter_eq_self_of_subset_left
Set.subset_union_right
isBasis'_restrict_iff
restrict_indep_iff
IsBasis'.contract_indep_iff
IsBasis'.subset
contract_spanning_iff πŸ“–mathematicalSet
Set.instHasSubset
E
Spanning
contract
Set.instUnion
Disjoint
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
β€”spanning_iff
contract_closure_eq
contract_ground
Set.union_subset_iff
Set.subset_diff
Set.union_diff_cancel
subset_closure_of_subset'
Set.subset_union_right
contract_spanning_iff' πŸ“–mathematicalβ€”Spanning
contract
Set
Set.instUnion
Set.instInter
E
Disjoint
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
β€”contract_inter_ground_eq
contract_spanning_iff
Set.diff_union_inter
Set.disjoint_union_right
Disjoint.mono_left
HasSubset.Subset.trans
Set.instIsTransSubset
Set.subset_union_left
Spanning.subset_ground
Set.disjoint_sdiff_right
Disjoint.mono_right
Set.inter_subset_left
delete_contract_comm' πŸ“–mathematicalβ€”contract
delete
Set
Set.instSDiff
β€”delete_contract_eq_diff
contract_delete_comm
Set.disjoint_sdiff_left
delete_contract_delete πŸ“–mathematicalDisjoint
Set
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
delete
contract
Set.instUnion
β€”delete_contract_delete'
sdiff_eq_left
delete_contract_delete' πŸ“–mathematicalβ€”delete
contract
Set
Set.instSDiff
Set.instUnion
β€”delete_contract_comm'
delete_delete
delete_contract_eq_diff πŸ“–mathematicalβ€”contract
delete
Set
Set.instSDiff
β€”contract_eq_contract_iff
delete_ground
Set.diff_inter_distrib_right
Set.diff_eq
Set.inter_assoc
dual_contract πŸ“–mathematicalβ€”dual
contract
delete
β€”dual_delete_dual
dual_dual
dual_contract_delete πŸ“–mathematicalβ€”dual
delete
contract
β€”dual_delete
dual_contract
dual_contract_dual πŸ“–mathematicalβ€”dual
contract
delete
β€”dual_contract
dual_dual
dual_delete πŸ“–mathematicalβ€”dual
delete
contract
β€”dual_dual
dual_delete_dual
dual_delete_contract πŸ“–mathematicalβ€”dual
contract
delete
β€”dual_contract
dual_delete
dual_delete_dual πŸ“–mathematicalβ€”dual
delete
contract
β€”β€”
restrict_contract_eq_contract_restrict πŸ“–mathematicalSet
Set.instHasSubset
contract
restrict
Set.instSDiff
β€”contract_restrict_eq_restrict_contract
Set.disjoint_sdiff_right
Set.diff_union_self
Set.union_eq_self_of_subset_right

Matroid.Coindep

Theorems

NameKindAssumesProvesValidatesDepends On
coindep_contract_of_disjoint πŸ“–mathematicalMatroid.Coindep
Disjoint
Set
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
Matroid.contractβ€”Matroid.coindep_contract_iff

Matroid.Dep

Theorems

NameKindAssumesProvesValidatesDepends On
of_contract πŸ“–mathematicalMatroid.Dep
Matroid.contract
Set
Set.instHasSubset
Matroid.E
Set.instUnionβ€”eq_1
Set.union_subset
HasSubset.Subset.trans
Set.instIsTransSubset
subset_ground
Set.diff_subset
Set.union_comm
Matroid.Indep.contract_indep_iff
Matroid.Indep.subset
Set.subset_union_left
Set.subset_diff

Matroid.Indep

Theorems

NameKindAssumesProvesValidatesDepends On
contract_dep_iff πŸ“–mathematicalMatroid.IndepMatroid.Dep
Matroid.contract
Disjoint
Set
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
Set.instUnion
β€”Matroid.dep_iff
contract_indep_iff
Matroid.contract_ground
Set.subset_diff
disjoint_comm
Set.union_subset_iff
subset_ground
contract_indep_iff πŸ“–mathematicalMatroid.IndepMatroid.contract
Disjoint
Set
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
Set.instUnion
β€”contract_isBase_iff
Set.disjoint_of_subset_left
HasSubset.Subset.trans
Set.instIsTransSubset
Set.subset_union_left
Set.subset_union_right
Set.diff_union_self
Set.union_eq_self_of_subset_right
Set.disjoint_sdiff_left
Set.subset_diff
contract_isBase_iff πŸ“–mathematicalMatroid.IndepMatroid.IsBase
Matroid.contract
Set
Set.instUnion
Disjoint
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
β€”Matroid.dual_delete_dual
Matroid.dual_isBase_iff'
Matroid.delete_ground
Matroid.dual_ground
Matroid.delete_isBase_iff
Set.subset_diff
Matroid.dual_dual
Set.union_comm
Set.union_subset_iff
subset_ground
Matroid.isBase_restrict_iff
Set.diff_diff
Matroid.Spanning.isBase_restrict_iff
Matroid.coindep_iff_compl_spanning
Matroid.dual_coindep_iff
Set.diff_subset_diff_right
Set.subset_union_left
diff_indep_contract_of_subset πŸ“–mathematicalMatroid.Indep
Set
Set.instHasSubset
Matroid.contract
Set.instSDiff
β€”union_indep_iff_contract_indep
subset
Set.union_eq_self_of_subset_left
of_contract πŸ“–β€”Matroid.Indep
Matroid.contract
β€”β€”subset
Matroid.exists_isBasis'
Matroid.IsBasis'.contract_indep_iff
Set.subset_union_left
union_indep_iff_contract_indep πŸ“–mathematicalMatroid.IndepSet
Set.instUnion
Matroid.contract
Set.instSDiff
β€”contract_indep_iff
Set.disjoint_sdiff_left
Set.diff_union_self
Set.union_comm
union_isBasis_union_of_contract_isBasis πŸ“–mathematicalMatroid.Indep
Matroid.IsBasis
Matroid.contract
Set
Set.instUnion
β€”isBasis_of_maximal_subset
contract_indep_iff
Set.union_subset_union_left
Set.disjoint_sdiff_left
Set.diff_union_of_subset
Set.union_subset_iff
Set.diff_subset_iff
Set.union_comm
Set.subset_diff
subset_refl
Set.instReflSubset
subset_ground

Matroid.IsBasis

Theorems

NameKindAssumesProvesValidatesDepends On
contract_dep_iff πŸ“–mathematicalMatroid.IsBasisMatroid.Dep
Matroid.contract
Set
Set.instUnion
Disjoint
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
β€”Matroid.IsBasis'.contract_dep_iff
isBasis'
contract_diff_isBasis_diff πŸ“–mathematicalMatroid.IsBasis
Set
Set.instHasSubset
Matroid.contract
Set.instSDiff
β€”isBasis_subset
contract_isBasis_diff_diff_of_subset
Set.subset_diff
HasSubset.Subset.trans
Set.instIsTransSubset
Set.diff_subset
subset
eq_of_subset_indep
Matroid.Indep.inter_right
indep
Set.subset_inter
Set.inter_subset_right
Set.diff_self_inter
Set.disjoint_sdiff_left
Set.diff_subset_diff_right
contract_eq_contract_delete πŸ“–mathematicalMatroid.IsBasisMatroid.contract
Matroid.delete
Set
Set.instSDiff
β€”Set.diff_union_of_subset
subset
Matroid.dual_contract_delete
Matroid.dual_contract
Set.union_comm
Matroid.delete_delete
Matroid.ext_iff_indep
Matroid.dual_coloops
Matroid.IsLoop.eq_1
Matroid.singleton_dep
Matroid.Indep.contract_dep_iff
indep
Set.singleton_union
Matroid.Indep.insert_dep_iff
closure_eq_closure
Set.diff_subset_diff_left
Matroid.subset_closure
subset_ground
Matroid.Indep.contract_indep_iff
Matroid.Indep.subset
Matroid.coloops_indep
Matroid.delete_indep_iff
Matroid.union_indep_iff_indep_of_subset_coloops
contract_indep_diff_iff πŸ“–mathematicalMatroid.IsBasisMatroid.Indep
Matroid.contract
Set
Set.instSDiff
Set.instUnion
β€”contract_indep_iff
Set.disjoint_sdiff_right
contract_indep_iff πŸ“–mathematicalMatroid.IsBasisMatroid.Indep
Matroid.contract
Set
Set.instUnion
Disjoint
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
β€”Matroid.IsBasis'.contract_indep_iff
isBasis'
contract_indep_iff_of_disjoint πŸ“–mathematicalMatroid.IsBasis
Disjoint
Set
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
Matroid.Indep
Matroid.contract
Set.instUnion
β€”contract_indep_iff
contract_isBasis πŸ“–mathematicalMatroid.IsBasis
Matroid.Indep
Set
Set.instUnion
Set.instSDiff
Matroid.contractβ€”contract_isBasis_of_isBasis'
isBasis'
contract_isBasis_diff_diff_of_subset πŸ“–mathematicalMatroid.IsBasis
Set
Set.instHasSubset
Matroid.contract
Set.instSDiff
β€”Matroid.IsBasis'.isBasis_inter_ground
Matroid.IsBasis'.contract_isBasis'_diff_of_subset
isBasis'
Set.inter_eq_self_of_subset_left
subset_ground
Set.inter_diff_assoc
Matroid.contract_ground
contract_isBasis_of_disjoint πŸ“–mathematicalMatroid.IsBasis
Disjoint
Set
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
Matroid.Indep
Set.instUnion
Matroid.contractβ€”contract_isBasis
Disjoint.sdiff_eq_right
Disjoint.mono_right
subset
contract_isBasis_of_disjoint_indep πŸ“–mathematicalMatroid.IsBasis
Disjoint
Set
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
Matroid.Indep
Set.instUnion
Matroid.contractβ€”Disjoint.sdiff_eq_right
Disjoint.mono_right
subset
contract_isBasis_of_indep
contract_isBasis_of_indep πŸ“–mathematicalMatroid.IsBasis
Matroid.Indep
Set
Set.instUnion
Matroid.contract
Set.instSDiff
β€”contract_isBasis
Matroid.Indep.isBasis_self
Matroid.Indep.subset
Set.subset_union_right
Set.diff_union_self
contract_isBasis_of_isBasis' πŸ“–mathematicalMatroid.IsBasis
Matroid.IsBasis'
Matroid.Indep
Set
Set.instUnion
Set.instSDiff
Matroid.contractβ€”subset
Matroid.IsBasis'.subset
Matroid.IsBasis'.contract_eq_contract_delete
Matroid.delete_isBasis_iff
contract_isBasis_union_union
Matroid.Indep.isBasis_of_subset_of_subset_closure
Matroid.closure_union_congr_right
Matroid.IsBasis'.closure_eq_closure
Set.diff_union_self
Matroid.closure_union_congr_left
closure_eq_closure
Matroid.subset_closure_of_subset'
Set.union_subset
HasSubset.Subset.trans
Set.instIsTransSubset
Set.diff_subset
subset_ground
Matroid.Indep.subset_ground
Matroid.IsBasis'.indep
contract_isBasis_union_union πŸ“–mathematicalMatroid.IsBasis
Set
Set.instUnion
Disjoint
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
Matroid.contractβ€”Matroid.isBasis'_iff_isBasis
Matroid.contract_ground
Set.subset_diff
HasSubset.Subset.trans
Set.instIsTransSubset
Set.subset_union_left
subset_ground
Matroid.IsBasis'.contract_isBasis_union_union
isBasis'
diff_subset_loops_contract πŸ“–mathematicalMatroid.IsBasisSet
Set.instHasSubset
Set.instSDiff
Matroid.loops
Matroid.contract
β€”Set.diff_subset_iff
Matroid.contract_loops_eq
Set.union_diff_self
Set.union_eq_self_of_subset_left
Matroid.subset_closure
left_subset_ground
subset_closure

Matroid.IsBasis'

Theorems

NameKindAssumesProvesValidatesDepends On
contract_dep_iff πŸ“–mathematicalMatroid.IsBasis'Matroid.Dep
Matroid.contract
Set
Set.instUnion
Disjoint
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
β€”contract_eq_contract_delete
Matroid.delete_dep_iff
Matroid.Indep.contract_dep_iff
indep
Set.disjoint_union_right
Set.diff_union_of_subset
subset
disjoint_comm
contract_eq_contract_delete πŸ“–mathematicalMatroid.IsBasis'Matroid.contract
Matroid.delete
Set
Set.instSDiff
β€”Matroid.contract_inter_ground_eq
Matroid.IsBasis.contract_eq_contract_delete
isBasis_inter_ground
Matroid.delete_inter_ground_eq
Matroid.contract_ground
Set.diff_eq
Set.inter_inter_distrib_right
contract_indep_diff_iff πŸ“–mathematicalMatroid.IsBasis'Matroid.Indep
Matroid.contract
Set
Set.instSDiff
Set.instUnion
β€”contract_indep_iff
Set.disjoint_sdiff_right
contract_indep_iff πŸ“–mathematicalMatroid.IsBasis'Matroid.Indep
Matroid.contract
Set
Set.instUnion
Disjoint
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
β€”contract_eq_contract_delete
Matroid.delete_indep_iff
Matroid.Indep.contract_indep_iff
indep
Set.disjoint_union_right
Set.diff_union_self
Set.union_eq_self_of_subset_right
subset
disjoint_comm
contract_isBasis' πŸ“–mathematicalMatroid.IsBasis'
Matroid.Indep
Set
Set.instUnion
Set.instSDiff
Matroid.contractβ€”Matroid.isBasis'_iff_isBasis_inter_ground
Matroid.contract_ground
Set.diff_inter_distrib_right
Matroid.IsBasis.contract_isBasis_of_isBasis'
isBasis_inter_ground
contract_isBasis'_diff_diff_of_subset πŸ“–mathematicalMatroid.IsBasis'
Set
Set.instHasSubset
Matroid.contract
Set.instSDiff
β€”eq_of_subset_indep
Set.union_subset
HasSubset.Subset.trans
Set.instIsTransSubset
subset
Matroid.Indep.contract_indep_iff
Matroid.Indep.subset
indep
Set.diff_union_self
Set.union_eq_self_of_subset_right
Set.diff_subset
Set.union_comm
Set.instReflSubset
Set.instAntisymmSubset
contract_isBasis'_diff_of_subset πŸ“–mathematicalMatroid.IsBasis'
Set
Set.instHasSubset
Matroid.contract
Set.instSDiff
β€”Set.inter_diff_assoc
isBasis_inter_ground
contract_isBasis'_diff_diff_of_subset
contract_isBasis_of_indep πŸ“–mathematicalMatroid.IsBasis'
Matroid.Indep
Set
Set.instUnion
Matroid.contract
Set.instSDiff
β€”contract_isBasis'
Matroid.IsBasis.isBasis'
Matroid.Indep.isBasis_self
Matroid.Indep.subset
Set.subset_union_right
Set.diff_union_self
contract_isBasis_union_union πŸ“–mathematicalMatroid.IsBasis'
Set
Set.instUnion
Disjoint
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
Matroid.contractβ€”Set.union_diff_right
Disjoint.sdiff_eq_left
contract_isBasis'_diff_diff_of_subset
Set.subset_union_right

Matroid.IsCircuit

Theorems

NameKindAssumesProvesValidatesDepends On
contractElem_isCircuit πŸ“–mathematicalMatroid.IsCircuit
Set.Nontrivial
Set
Set.instMembership
Matroid.contract
Set.instSingletonSet
Set.instSDiff
β€”contract_isCircuit
ssubset_of_ne_of_subset
Set.instIsNonstrictStrictOrderSubsetSSubset
Set.instAntisymmSubset
Set.Nontrivial.ne_singleton
contract_dep πŸ“–mathematicalMatroid.IsCircuit
Disjoint
Set
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
Matroid.Dep
Matroid.contract
β€”Matroid.exists_isBasis
Matroid.contract_inter_ground_eq
Matroid.Dep.eq_1
Matroid.IsBasis.contract_indep_iff
Disjoint.mono_left
Set.inter_subset_left
Matroid.contract_ground
Set.subset_diff
Disjoint.mono_right
Disjoint.symm
subset_ground
Matroid.Dep.not_indep
dep
Matroid.Indep.subset
Set.subset_union_left
contract_dep_of_not_subset πŸ“–mathematicalMatroid.IsCircuit
Set
Set.instHasSubset
Matroid.Dep
Matroid.contract
Set.instSDiff
β€”contract_isCircuit
HasSubset.Subset.ssubset_of_ne
Set.instIsNonstrictStrictOrderSubsetSSubset
Set.instAntisymmSubset
Set.inter_subset_right
contract_dep
Set.diff_inter_self_eq_diff
disjoint_sdiff_sdiff
Set.inter_union_diff
Matroid.contract_contract
contract_diff_isCircuit πŸ“–mathematicalMatroid.IsCircuit
Set.Nonempty
Set
Set.instHasSubset
Matroid.contract
Set.instSDiff
β€”sdiff_sdiff_right_self
Set.inter_eq_self_of_subset_right
contract_isCircuit
Set.diff_ssubset_left_iff
contract_isCircuit πŸ“–mathematicalMatroid.IsCircuit
Set
Set.instHasSSubset
Matroid.contract
Set.instSDiff
β€”Matroid.Indep.subset
diff_singleton_indep
Set.instReflSubset
Set.subset_diff_singleton
HasSSubset.SSubset.subset
Set.instIsNonstrictStrictOrderSubsetSSubset
Matroid.Indep.contract_indep_iff
ssubset_indep
Set.diff_union_of_subset
not_indep
Set.diff_subset_diff_left
subset_ground
Set.diff_diff_comm
Set.diff_union_self
exists_subset_isCircuit_of_contract πŸ“–mathematicalMatroid.IsCircuit
Matroid.contract
Set
Set.instHasSubset
Set.instUnion
β€”Set.subset_diff
subset_ground
Matroid.Dep.exists_isCircuit_subset
Matroid.Indep.contract_dep_iff
dep
Set.disjoint_sdiff_left
Matroid.Dep.superset
Set.diff_union_self
Matroid.Indep.subset_ground
eq_of_dep_subset
Set.diff_subset_iff
Set.union_comm
Set.diff_subset
Matroid.exists_isBasis'
Matroid.delete_isCircuit_iff
Matroid.IsBasis'.contract_eq_contract_delete
Matroid.IsBasis'.indep
HasSubset.Subset.trans
Set.instIsTransSubset
Set.union_subset_union_right
Matroid.IsBasis'.subset

Matroid.IsCocircuit

Theorems

NameKindAssumesProvesValidatesDepends On
delete_diff_isCocircuit πŸ“–mathematicalMatroid.IsCocircuit
Set
Set.instHasSubset
Set.Nonempty
Matroid.delete
Set.instSDiff
β€”Matroid.isCocircuit_def
Matroid.dual_delete
Matroid.IsCircuit.contract_diff_isCircuit
isCircuit
delete_isCocircuit πŸ“–mathematicalMatroid.IsCocircuit
Set
Set.instHasSSubset
Matroid.delete
Set.instSDiff
β€”Matroid.isCocircuit_def
Matroid.dual_delete
Matroid.IsCircuit.contract_isCircuit
isCircuit
of_contract πŸ“–β€”Matroid.IsCocircuit
Matroid.contract
β€”β€”Matroid.IsCircuit.of_delete
Matroid.dual_contract
Matroid.isCocircuit_def

Matroid.IsNonloop

Theorems

NameKindAssumesProvesValidatesDepends On
contractElem_indep_iff πŸ“–mathematicalMatroid.IsNonloopMatroid.Indep
Matroid.contract
Set
Set.instSingletonSet
Set.instMembership
Set.instInsert
β€”Matroid.Indep.contract_indep_iff
indep
Set.union_singleton
of_contract πŸ“–β€”Matroid.IsNonloop
Matroid.contract
β€”β€”Matroid.indep_singleton
Matroid.Indep.of_contract

Matroid.Spanning

Theorems

NameKindAssumesProvesValidatesDepends On
contract πŸ“–mathematicalMatroid.SpanningMatroid.contract
Set
Set.instSDiff
β€”subset_ground
Matroid.contract_spanning_iff'
Set.disjoint_sdiff_left
superset
contract_eq_loopyOn πŸ“–mathematicalMatroid.SpanningMatroid.contract
Matroid.loopyOn
Set
Set.instSDiff
Matroid.E
β€”Matroid.eq_loopyOn_iff_loops_eq
Matroid.contract_loops_eq
closure_eq

---

← Back to Index